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This report uses a geographic information 
system (GIS) approach to better understand 
pedestrian safety in San Francisco between 2011 
and 2015. Whereas pedestrian safety research 
has largely been focused on identifying the 
relationship between safety and right-of-way 
characteristics, the research in this report instead 
focuses on land uses adjacent to the right-of-way, 
as well as adding a demographic component to 
the analysis. 

Two primary questions were addressed by 
the research:

What is the relationship between 
population density, employment density, 
and land use mix with pedestrian safety 
in San Francisco?

Is there a correlation between a 
pedestrian’s proximity to specific land 
uses and the risk of being involved in a 
collision? 

XI

Three spatial statistical methods were used. 
Method one consisted of aggregating the 
totality of automobile-pedestrian crashes in 
San Francisco between 2011 and 2015. This 
dataset was integrated into a GIS shapefile that 
quantified the population density, employment 
density, and land use mix at the block group level. 
Population density and employment density 
was measured per acre, and land use mix was 
quantified by dissolving San Francisco’s complex 
zoning designations into five distinct categories: 
residential, commercial, mixed use, industrial, 
and public. Block groups scored between a one 
and five according to the number of unique land 
use categories that are inside their boundaries.

Method two consisted of generating a 
trip attractor typology and measuring several 
individual and composite metrics to find 
correlations between land uses and pedestrian 
safety. Ten categories were included in the 
typology. Examples include schools, transit 
nodes, and senior living facilities. There were 
three individual metrics: crash frequency, 
crash density, and crash rate. Crash frequency 

IDENTIFYING THE RELATIONSHIP BETWEEN LAND USE 
AND PEDESTRIAN SAFETY IN SAN FRANCISCO



quantifies the number of crashes, crash density 
normalizes crash frequency at the per mile basis, 
and crash rate normalizes crash frequency by 
pedestrian exposure. Two composite metrics 
were also included. Sum-of-ranks combined the 
individual metrics to create a single score and 
crash rate normalized the individual metrics 
before combining them.

Walksheds, or service areas, of 250 feet were 
created around each trip generator site. The 
walksheds were created using Network Analyst 
to more accurately model true walking distances. 
By intersecting the crash dataset with these 
walksheds, this report counted the number of 
crashes that occur within one short city block 
from each location.

Method three introduced a binary logistic 
regression model. Since official police records 
include injury severity, the dataset was re-coded to 
create a binary injury severity dependent variable. 
Injuries were coded as either “no visible injury” 
or “visible injury.” Nearly twenty independent 
variables were tested. These variables included the 
trip generator typology and zoning designations, 
as well as crash location details, citations written 
by the responding officer, and time of day. 

To create the dataset for the regression model, 
1/8th mile walksheds were drawn around the 
location of each crash site. Land uses and zoning 
district shapefiles were intersected with these 

buffers to count the number of locations within 
each crash’s service area. Additional independent 
variables were re-coded in SPSS.

XII



Block groups with completely homogenous 
or heterogenous land use mixes had the most 
crashes. This means that block groups with 
moderate land use mix were safest. One can only 
infer as to why this was. One explanation is that 
diverse block groups create the greatest number 
of interactions between cars and walkers, and the 
monotony of single land use block groups lull 
travelers into a false sense of security.

Trip Generator Typology

Different conclusions can be drawn when 
different metrics are considered. For example, 
parks have a far higher crash frequency than any 
other land use. This finding is less disconcerting 
when one realizes that at the same time parks have 
the lowest crash density. This is because there are 
lots of parks, and opportunities for crashes near 
them, but the ubiquity of parks means that one 
sees fewer crashes at the per mile basis.

Neighborhood Commercial Districts 
(NCDs) were the most unsafe for pedestrians 
according to the crash score metric. Neighborhood 
Transit Districts (NCTs) fared significantly 
better, so more should be done to understand the 
differences between these two zoning districts. 
One potential factor is that NCTs call for less 
parking supply than NCDs.

XIII

Findings
The methodology described above yielded 

significant findings. They illustrated some 
striking relationships between certain land 
uses and pedestrian safety, as well as clearly 
demonstrated the impact of normalizing data on 
a study’s findings.

Population Density, Employee 
Density, and Land Use Mix

When measured at the per capita level, block 
groups at either density level extreme were shown 
to be the least safe to pedestrians, although the 
densest block groups had the highest crash 
frequency. The positive relationship was tempered 
at the higher density levels, though. This means 
that even if crash rates rise as density rise, they 
do not rise as quickly once a “terminal density” 
is reached.

Employee density showed a similar 
relationship as population density, however 
employees were clearly safest at the per capita 
level in the densest block groups. There are 
temporal and demographic factors that may 
explain these findings. Central business districts 
(CBDs) during working hours are primarily 
composed of mobile, risk adverse seniors, unlike 
areas that attract young people or seniors.



Senior living facilities, libraries, and police 
and fire stations were considered the safest land 
uses. Only senior living facilities that offered 
independent living housing solutions were 
included in the analysis. Even so, perhaps few 
seniors walk near the facility and instead rely on 
other forms of transportation. Libraries attract 
a diverse clientele and are located across the 
city in a variety of settings. It is heartening that 
libraries scored as well as they did. Police and fire 
stations generate a high number of heavy vehicle 
trips, but were still considered to be safe. This is 
probably due to on-vehicle safety measures, as 
well as changes to the right-of-way that mitigate 
pedestrian interactions with trucks and fast-
moving cars.

Logistic Regression

Non-land use variables had the strongest 
predictive ability in the model. Driver intoxication 
and a pedestrian being cited at the scene both 
correlated in a statistically significant way with a 
pedestrian being involved in a crash that results 
in visible injury. Unfortunately, a driver being 
cited for a “Focus on the Five” violation did not 
withstand mathematical scrutiny. Focus on the 
Five, a Vision Zero-related program, calls for at 
least half of the moving violations written by each 
police station be for one of five driving behaviors: 
red light running, stop sign running, not yielding 
while turning, not yielding to a pedestrian in a 

crosswalk, and speeding.

Other significant non-land use related 
variables were intersection crashes and traffic 
calming measures. Mid-block crashes, more 
so than intersection crashes resulted in visible 
injury. And the introduction of traffic calming 
measures, like speed humps and bulb outs, 
within 1/8th mile of a crash location correlated 
with safer conditions.

For land use independent variables, as the 
share of public and industrial land increases so 
does the likelihood of being in a crash that results 
in visible injury. Once again NCD also correlated 
with unsafe conditions, although unlike public 
and industrial zoning districts, NCDs were not 
statistically significant.

Recommendations

This report has several recommendations:

1. Schools see a disproportionately high 
crash rate, having more crashes per pedestrian or 
per vehicle than other trip generators. Because 
this study’s findings supported the “Strength 
in Numbers” theory, Safe Routes to Schools 
programs should be expanded and children 
should be encouraged to walk to school in groups 
with their peers. 

2. NCD districts scored poorly across every 

XIV
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metric. This report recommends that on-street 
parking supply should be minimized in NCD 
districts. San Francisco’s demand responsive 
pricing scheme should be aggressively expanded 
in NCD districts to minimize circling the block 
looking for on-street parking which results in 
distracted driving. 

3. Although parking lots did not fare much 
better than NCD districts according to the 
metrics, they did score safer. Transportation 
Network Companies (TNCs) have already 
relaxed the demand for parking in the city’s 
garages, so the city would be well-served to re-
route on-street parking demand to off-street 
locations. Parking lot ingress and egress must be 
located off of high-demand pedestrian streets, 
but close enough to still access them by foot.

4. Parks require more study for San 
Francisco’s parks have massive variation in size, 
amenities, and location. A pocket park in a dense 
downtown area will generate different kinds of 
trips than vast open spaces to the south or west. 
Future research should separate parks and open 
spaces into sub-categories for a more refined 
analysis.

5. NCT districts scored safer than NCD 
districts. They already forbid the expansion of 
off-street parking supply, but more must be done 
to address on-street parking. Past transit projects 
have acquiesced to the populist demand for on-

street parking. San Francisco’s policymakers 
must take a safety first approach to counteract 
these supply side tendencies.

6. The city should be looking to expand its 
supply of rapid transit nodes in and outside of 
NCT districts. Rapid transit nodes, often located 
within NCT districts, scored safer than NCT 
districts as a whole. This means that pedestrians 
in NCT districts are safer the closer they are to 
a rapid node.
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INTRODUCTION: WHY IS PEDESTRIAN SAFETY WORTHY OF STUDY?

Road safety is a topic of vital importance 
for researchers across a vast spectrum of 
professional fields. Transportation planners and 
traffic engineers have traditionally considered 
the relationship between crash propensities and 
road network characteristics, while public health 
researchers have attempted to better understand 
the numerous social and economic costs related 
to crashes. As the body of knowledge grows, new 
policies have been formulated and introduced to 
protect human life. The advent of the seatbelt, 
the introductions of airbags, public education 
campaigns, and re-thinking the relationship 
between speed and safety have all brought down 
the rate of fatal automobile crashes.1   

 

Although the frequency and severity of 
automobile crashes have declined, the same is 
not true of automobile-pedestrian collisions. The 
United States has seen a 27 percent increase in 
pedestrian fatalities in the past decade. Walkers 
now account for 16 percent of all crash deaths, 
up from 11 percent in 2007.2 Pedestrians, the 
most vulnerable of all travelers, are injured every 
six minutes and killed every 107 minutes in the 
United States.3 Researchers are hesitant to make 
causal links, but the growth in pedestrian death 
has mirrored the country’s climb out of the Great 
Recession. As the economy has rebounded, 
vehicle miles travelled (VMT) has risen and 
cell phone use has grown in ubiquity, perhaps 
increasing the proportion of distracted drivers. 
American citizens are also getting older. Reflexes 
slow and mobility suffers as one ages.4 Research 
has routinely shown that seniors are the highest 
risk group to be victims of a fatal crash.5   

1 Patricia C. Dischinger, et al., “Declining Statewide Trends in Motor 
Vehicle Crashes and Injury-Related Hospital Admissions” Annals of 
Advances in Automotive Medicine 57, (2013): 247-256.

2 Richard Retting, “Pedestrian Traffic Fatalities by State: 2017 
Preliminary Data,” Spotlight on Highway Safety (2017): 1- 38.
 
3 National Highway Traffic Safety Administration, National Pedestrian 
Crash Report, 2008.

4 Isabelle Tournier, Aurelie Dommes, and Viola Cavallo, “Review 
of Safety and Mobility Issues Among Older Pedestrians,” Accident 
Analysis & Prevention 91, (2016): 24-35.
 
5 George Dunbar, “The Relative Risk of Nearside Accidents is High for 
the Youngest and Oldest Pedestrians,” Accident Analysis & Prevention 
45, (2012): 517-521; Aurelie Dommes, et al., “Crossing a Two-Way 
Street: Comparison of Young and Old Pedestrians,” Journal of Safety 
Research 50, (2014): 37-34; Robert J. Schneider, Jason Vargo, and Aida 
Sanatizadeh, “Comparison of US Metropolitan Region Pedestrian and 
Bicyclist Fatality Rates,” Accident Analysis & Prevention 106, (2017): 
82-98.
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In concert with Euclidean zoning, the 
automobile has been instrumental in shaping the 
modern American landscape.  Turn of the century 
cities and their nascent suburbs were largely built 
along streetcar trunks, until the car opened up 
development in the once vacant interstitial zones 
between streetcar lines. The diffuse development 
patterns encouraged vehicle use in these ever-
expanding areas. VMT, car speeds and volumes 
increased as new autocentric infrastructure was 
built across the country. The performance of a 
road was (and in most cases still is) measured by 
vehicle throughput, or a road’s level-of-service 
(LOS). 

Progressive Californian planners have slowly 
started to consider a road’s performance using 
new metrics. LOS, long the metric of choice for 
traffic engineers, skews toward recommending 
supply side solutions to solving congestion 
problems, which in turn induces more travel, 
kicking in a feedback loop of ever growing 
congestion.  Further, LOS does little to consider 
the environmental impacts of travel. VMT is 
a new metric that has replaced LOS across 
California.8 When using VMT, planners can 
consider greenhouse gas emissions (GHGs) 
and the performance of active and public 
transportation along corridors and through 
intersections. 

Like GHG, pedestrian deaths and serious 
injuries were once thought of as unfortunate 

yet inevitable byproducts of the transportation 
system. Public education campaigns and legal 
solutions were common responses to pedestrian 
death. With its roots in the 1970’s-era “Stop 
de Kindermoord” (“Stop the Child Murder”) 
campaign in the Netherlands, which culminated 
in the Vision Zero movement, pedestrian safety 
is now conceptualized as a public health issue. 
Proponents of the public health approach argue 
that pedestrian fatalities are preventable and that 
the effects of crashes permeate more than just the 
transportation system. This fact becomes clear 
when one considers that in San Francisco alone, 
collisions cost San Francisco General Hospital 
$35 million per year and half of all patients 
treated there are victims of a crash.9  

8 Melanie Curry, “San Jose Becomes Fourth California City to Adopt 
VMT as Metric for Traffic Impacts,” Streetsblog California, https://cal.
streetsblog.org/2018/03/06/san-jose-becomes-fourth-california-city-to-
adopt-vmt-as-metric-for-traffic-impacts/ (accessed March 3, 2018).
  
9 Nuala Sawyer, “Traffic injuries cost patients $35 million per year at 
San Francisco General,” SF Examiner, November 17, 2016; Population 
Health Division of the San Francisco Department of Public Health. 
“2017 High Injury Network Update.” Policy and Governance 
Committee hearing, San Francisco Municipal Transportation Agency, 
San Francisco, July 21, 2017.
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1.1 Research Questions and 
Introduction of Methods 

Pedestrian safety has largely been considered 
in the context of built form characteristics and 
human behavior. Although urban planners 
understand the interrelatedness of land use 
and transportation, most research has failed to 
consider the link between land uses adjacent 
to a right-of-way and collisions. This report 
endeavors to answer the following questions:

What is the relationship between 
population density, employment density, 
and land use mix with pedestrian safety 
in San Francisco?

Is there a correlation between a 
pedestrian’s proximity to specific land 
uses and the risk of being involved in a 
collision? 

To answer these questions, three distinct 
methods, each utilizing several spatial and 
statistical techniques, will be deployed in this 
report. 

• Method one is a comparison of 
pedestrian crash locations with demographic 
and built form characteristics at the block group 
level in San Francisco. Specifically, a block 
group’s population density, employment density, 
and land use mix will be quantified. A dataset 
containing every automobile-pedestrian collision 
in San Francisco between 2011 and 2015 will 
be created and integrated with the population 
density, employment density, and land use mix 
calculations.   

• Method two utilizes a geographic 
information system (GIS) to explore the 
relationship between land use and pedestrian 
safety. For this method, a trip generator typology 
was created. Land use types were selected for 
the trip generator typology if they are known 
to produce pedestrian trips in heterogeneous, 
mixed-traffic areas. Using Esri’s ArcGIS software 
suite, walksheds were created around each trip 
generator location. By assessing the relationship 
between crashes and trip generator walksheds, 
this report endeavors to glean if particular land 
use types were correlated with more crashes in 
San Francisco between 2011 and 2015. 

• Method three is a logistical regression. 
Several built form and demographic variables will 
be included to further elucidate the relationship 
between land use and pedestrian safety in San 
Francisco. 
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1.2 How to Read This 
Report

This planning report is laid out as follows: 
chapter two provides a brief overview of Vision 
Zero – an international framework that strives 
for the elimination of all traffic-related serious 
injuries and deaths. The concept originated in 
Sweden, but San Francisco, along with numerous 
American cities, has introduced the program at 
the local level. Beyond discussing the Vision 
Zero approach to road safety, this report describes 
the context in which San Francisco started the 
program, as well as the specific policies and tools 
that the city has deployed. Chapter two concludes 
by explaining how the original research in this 
report can complement existing traffic safety 
findings.

Chapter three begins the spatial statistical 
discussion. Several tools, including Average 
Nearest Neighbors and Spatial Autocorrelation, 
are explained. After describing the purpose of 
the relevant tools, Hot Spot and Kernel Density 
analyses are completed. These workflows help 
illustrate the spatial orientation of pedestrian 
crashes in San Francisco.

Chapter four is a detailed description of the 
three methods described above. Prior research 
is integrated into the discussion to support 
the substantial methodological choices made 
throughout the study. The workflow for each 
of the three methods is described individually 
before moving on to a discussion of the findings.

Using a combination of tables, figures, and 
text, chapter five presents the findings from the 
three methods in chapter four. The raw data and 
its implications are considered.

Chapter six concludes the report with a 
summary and further discussion of the findings. 
Study limitations are identified in a larger 
discussion of suggestions for future research.
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VISION ZERO IN SAN FRANCISCO: A HOLISTIC APPROACH TO ROAD SAFETY

Vision Zero was adopted by the Swedish 
parliament in 1997 as a response to the 
“violence” of severe injuries or deaths on the 
nation’s transportation infrastructure.10 The 
program aims to re-frame how society treats 
traffic safety. Crashes should no longer be 
thought of as “accidents,” and human error 
should not be thought of as the primary cause for 
these incidents. Creating safer streets requires a 
systems thinking approach: the marriage of a 
public health framework with a re-tooling of 
traffic engineering orthodoxy.11 Injuries and 
deaths should be deemed unacceptable and no 
longer considered an unavoidable byproduct 
of traffic engineering that intends to maximize 
vehicle throughput.

Twenty years after its genesis, the Vision Zero 
toolkit has grown into a holistic, data-driven 
response to unsafe streets. Planners and engineers 
have numerous methods to reduce injuries or 
deaths that result from a crash. These include 
physical changes to the right-of-way. Pedestrian 
bulb outs, raised crosswalks, roundabouts, and 
the strategic placement of bollards are just a few 
design options.12 Innovative technologies have 

also been introduced. Red light cameras and 
remote speed enforcement have both proven 
capable of reducing vehicle speeds and promoting 
road safety.13 

10 Sarah Goodyear, “The Swedish Approach to Road Safety: ‘The 
Accident is not the Major Problem,’” CityLab, https://www.citylab.
com/transportation/2014/11/the-swedish-approach-to-road-safety-the-
accident-is-not-the-major-problem/382995/ (Accessed February 20, 
2018).

11 Ellen Kim, Peter Muennig, and Zohn Rosen, “Vision Zero: A 
Toolkit for Road Safety in the Modern Era,” Injury Epidemiology, 4 
(2017).

12 Roger Johansson, “Vision Zero – Implementing a policy for traffic 
safety.” Safety Science 47 (2009): 826-831.

13 New York City Department of Transportation, “Vision Zero Action 
Plan, 2014,” New York City, http://www.nyc.gov/html/visionzero/pdf/
nyc-vision-zero-action-plan.pdf (accessed March 4, 2018).



24

AN ASSORTMENT 
OF VISION 
ZERO SAFETY 
ENHANCEMENTS

Curb bulb outs shorten the crossing distance 
for pedestrians.

Center medians act as pedestrian refuge on wide 
streets.

Raised intersections slow down vehicular traffic 
and create level crossing for pedestrians.

Soft hit posts and contrasting tan paint daylight 
the intersection. Daylighting treatments are 
added to intersections to increase visibility for 
both pedestrians and motorists.
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IF HIT BY A PERSON DRIVING AT: PERSON SURVIVES THE COLLISION RESULTS IN A FATALITY
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Traditional road safety frameworks only 
consider the actions of road users when assessing 
a crash. To counteract unsafe behaviors, new laws 
are passed or education campaigns are deployed. 
The crash is considered in a vacuum, rather than 
as an outcome of the transportation system 
as a whole. Vision Zero thinking is radically 
different. Vision Zero considers the role of both 
the system and road users.14 It is incumbent 
that engineers design roads to promote safety, 
that manufacturers create safer vehicles, and that 
traffic engineers respond to dangerous collisions 
by making physical changes to the roadway.

As Figure 1 below shows, managing vehicle 
speeds is paramount to protecting pedestrians. 
An increase of only ten miles per hour can mark 
the difference between life and death.

14 Claes Tingvall and Narelle Haworth, “Vision Zero- An Ethical 
Approach to Road Safety,” International Conference Road Safety and 
Traffic Enforcement, (1999).

Figure 1: Vehicle Speeds and Pedestrian Safety 

Source: https://www.sfmta.com/projects/automated-speed-enforcement (3/1/2017)
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2.1 Origins of Vision Zero 
in San Francisco

The City and County of San Francisco 
enacted its first coordinated Vision Zero effort in 
2014 when officials created a two-year action plan. 
The movement towards safer streets was further 
galvanized by the tragic deaths of Heather Miller 
and Katherine Slattery, two cyclists who were 
struck by automobiles in separate locations in the 
city within two hours of one another on June 22, 
2016.15  Mayor Ed Lee, incensed by both events, 
responded by saying, “[t]hese aren’t accidents. 
They are tragedies that can be prevented.”16  
Fewer than two months after the cyclists’ deaths, 
Mayor Lee announced an Executive Directive 
that would hasten the implementation of Vision 
Zero projects throughout the city. 

2.2 High Injury Network 
and “Focus on the Five”

The San Francisco Department of Public 
Health (SFDPH) and the San Francisco 
Municipal Transportation Agency (SFMTA) 
lead the joint task force that addresses street safety. 
In concert with over forty local organizations 
that include San Francisco Unified School 
District and non-profit advocacy organizations 
such as Walk SF and the San Francisco Bicycle 
Coalition, the Vision Zero task force has been 
instrumental in enacting forward thinking 
initiatives that support safer streets. The task 
force’s influential strategies, such as the High 
Injury Network Map, have since been introduced 
in several American cities.17 San Francisco’s 
High Injury Network Map is an annually 
updated tool that highlights the corridors 
accountable for a disproportionate number of 
the crashes that result in severe injury or death. 
The city has focused its capital improvement 
projects on high injury road segments.. The most 
recent update from 2017 identifies 13 percent of 
city streets that have accounted for 75 percent of 
serious injuries and deaths.18 

15 Office of the Mayor, “Mayor Lee Issues Executive Directive on 
Bicycle and Pedestrian Safety,” Office of the Mayor, August 4, 2016.
 
16 Kevin Schultz and Lizzie Johnson, “SF Mayor Outraged by 
Hit-and-Run Death of 2 Bicyclists,” SFGate, https://www.sfgate.
com/bayarea/article/Two-bicyclists-killed-in-separate-SF-hit-and-
run-8321105.php (accessed October 20, 2017).

17 “Pedestrian Safety and Vision Zero in San Francisco: State Climate 
Action Team Public Health Workgroup,” https://www.arb.ca.gov/cc/
ab32publichealth/meetings/100814/wier.pdf (accessed February 20, 
2018).

18 “ San Francisco Department of Public Health, “VISION ZERO 
HIGH INJURY NETWORK: 2017 UPDATE,” https://www.sfdph.
org/dph/files/EHSdocs/PHES/VisionZero/Vision_Zero_High_Injury_
Network_Update.pdf (accessed March 10, 2018).
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Map created by author. Adapted from: http://visionzerosf.org/maps-data/ (accessed January 2018)
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In addition to the High Injury Network, San Francisco has also implemented its “Focus on the 
Five” campaign: a traffic enforcement program that calls for local police to take extra care to cite 
drivers for infractions that are correlated with severe injuries or fatalities, rather than infractions 
that are more administrative in nature. Refer to Figure 3 for the five driver behaviors police are to 
be aware of.
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Figure 3: Focus on the Five

Graphic created by the author
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The Focus on the Five initiative directs officers 
to patrol high injury segments more regularly than 
streets where fewer collisions occur. Although 
it is prudent to minimize behaviors that most 
often result in serious injuries, the Vision Zero 
methodology emphasizes street design over law 
enforcement solutions. Material changes to the 
roadway that make driving, walking, and cycling 
safer will free up an already taxed police force 
to focus on other crimes. Additionally, directing 
enforcement to the High Injury Network means 
that most city streets are not being patrolled at 
the same rates.

The San Francisco Office of the Controller 
concurs that focusing enforcement on the High 
Injury Network is detrimental to overall safety.19  
The department analyzed collisions between 2013 
and 2015 and found that several parts of the city 
saw significant clusters of crashes but were not 
included on the High Injury Network. Figure 
4 shows where these clusters of collisions have 
occurred. The map was created by the Office of 
the Controller as part of a public presentation in 
the summer of 2017. The presenters pressed that 
more must be done to understand the context of 
crash clusters that occur off high injury corridors. 
By studying crashes at a localized scale rather 
than at the corridor level, this report aims to fill 
in gaps of understanding that the Office of the 
Controller has identified. 

19  San Francisco Office of the Controller, “Focus on Enforcement: 
Insights from research and analysis in support of San Francisco’s 
Vision Zero plan to eliminate traffic deaths.” Policy and Governance 
Committee hearing, San Francisco Municipal Transportation Agency, 
San Francisco, July 21, 2017.

Figure 4: Fatal, Severe and non-Severe Injury Collisions in San Francisco, 2013-15

Scale bar and north arrow not in original graphic. and have been added as elements to the map. 

Source: San Francisco Office of the Controller, “Focus on Enforcement: Insights from research 
and analysis in support of San Francisco’s Vision Zero plan to eliminate traffic deaths.” Policy and 
Governance Committee hearing, San Francisco Municipal Transportation Agency, San Francisco, 
July 21, 2017.
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Like the High Injury Network and the Focus 
on the Five initiative, this report is the result of 
a data-driven approach to better understanding 
road violence. Beyond adding to the local Vision 
Zero discussion, the findings in this report 
complement existing pedestrian safety literature. 
Although existing research is thorough, there 
are gaps. So far, researchers have primarily 
focused on road and network characteristics 
and their relationship to road safety.20 This 
area of research may consider, for example, 
how road width, intersection density, or travel 
speeds correlate with automobile-pedestrian 
collisions. For researchers more concerned with 
demographic variables than those associated 
with built form, much research has also been 
undertaken to find correlations between at-risk 
groups and crash rates. 21 For example, studies 
have explored how the age, income, gender, and 
physical ability of crash victims have influenced 
crash likelihood and severity. From these studies, 
researchers and advocates have isolated the 
young, the elderly, and lower-income people as 
at-risk groups. Compared to road characteristics 
and demographic analysis, less research has been 
done that considers the relationship between 
land uses adjacent to the right-of-way and 
pedestrian safety. 

For the purpose of this study, land uses 
adjacent to the right-of-way are physical locations 
that generate trips. Land uses can include 

buildings like schools, libraries, or medical 
centers; undeveloped parcels like parks, open 
spaces, or surface level parking lots; or zoning 
designations. Specific zoning designations, such 
as Neighborhood Commercial District (NCD), 
influence the kinds of physical development 
within the zoning district’s boundaries. By 
focusing on land uses adjacent to the right-of-
way, this report endeavors to address gaps in 
the research and add to the pedestrian safety 
conversation.

Now that the context is clear, the following 
chapter will describe the study area, the data 
utilized in the study, and a first cut analysis of 
where crashes have happened in San Francisco 
between 2011 and 2015. It is important to first 
understand broadly where crashes occur before 
exploring the granular details of the land use and 
demographic variables. The following chapter 
will also ascertain whether crashes have been 
clustered together or have been spread out 
evenly throughout the study area. If crashes are 
randomly dispersed around San Francisco, it will 
be more difficult to find correlations between 
specific land uses and the likelihood of a crash.

20 Peter Swift, Dan Painter, and Matthew Goldstein, “Residential 
Street Typology and Injury Accident Frequency.” Congress for the 
New Urbanism (2006): 1-8; Kelly J. Clifton, Carolina V. Burnier, and 
Gulsah Akar, “Severity of injury resulting from pedestrian-vehicle 
crashes: What can we learn from examining the built environment?” 
Transportation Research Part D: Transport and Environment 14 (2009): 
425-436; Roger Johansson, “Vision Zero – Implementing a policy for 
traffic safety.” Safety Science 47 (2009): 826-831.

21 Dilum Dissanayake, James Aryaija, and D.M. Priyantha Wedagama, 
“Modelling the Effects of Land Use and Temporal Factors on 
Child Pedestrian Casualties,” Accident Analysis and Prevention 41, 
(2009): 1016-1024; Aurelie Dommes, et al., “Crossing a Two-Way 
Street: Comparison of Young and Old Pedestrians,” Journal of Safety 
Research 50, (2014): 37-34; Caitlin D. Cottrill and Piyushimita (Vonu) 
Thakuriah, “Evaluating Pedestrian Crashes in Areas with High Low-
Income or Minority Populations,” Accident Analysis & Prevention 42, 
no. 6 (2010): 1718-1728; Kathryn M. Neckerman, et al. “Disparities in 
Urban Neighborhood Conditions: Evidence from GIS Measures and 
Field Observation in New York City,” Journal of Public Health Policy 
30, (2009): 264-285.
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MAPPING CLUSTERS OF AUTOMOBILE-PEDESTRIAN CRASHES IN SAN FRANCISCO

Chapter three orients the reader to the 
study area and describes the preparation for, 
and execution of, several spatial analyses. These 
techniques were used to assess where pedestrian 
crashes have occurred in San Francisco between 
2011 and 2015 and if these crashes show 
statistically significant spatial clustering. 

After concluding that crashes do show 
spatial clustering, chapter four will describe the 
three primary methods that were used to further 
clarify the relationship between demographic 
factors, land use, and collisions.    

San Francisco, California is a densely settled 
population and employment center that is 
located on the northern tip of the San Francisco 
Peninsula. Forty-seven square miles in area, 
and with a resident population near 900,000, it 
is second only to New York City in population 
density amongst America’s major cities. As the 
tourist center in a region of five million people, 
San Francisco’s daytime population reaches over 
one million people each weekday.22  Because of 
its density, diverse land use mix, and plentiful 
public transportation options, the city has a 

high pedestrian mode share for all intracity 
trips. With numerous conflict points between 
automobiles and pedestrians, San Francisco is a 
prime location to better understand pedestrian 
safety. 
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22 San Francisco Office of the Controller, Citywide Benchmarking 
Report: Demographics, Livability, Public Safety, Transportation, 
Finance, Safety Net, Population Health, February 16, 2017.

Figure 5: Mode Share for All Trips in San Francisco

Graphic created by author

Source: SFMTA 2013-2018 Strategic Plan
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3.1 Aggregating 
Automobile-Pedestrian 
Crashes

This study uses a geographic information 
system (GIS) to better understand automobile-
pedestrian collisions between 2011 and 2015 in 
the City and County of San Francisco. Treasure 
Island and the San Francisco International 
Aiport, both within the purview of city and 
county government, were excluded from the 
analysis since they are physically separated from 
the core city and are not representative of San 
Francisco’s development patterns.

Esri’s ArcGIS software suite was used to 
analyze crashes in San Francisco. A GIS allows 
one to visualize data in its spatial form and makes 
spatial patterns more discernable than viewing 
the same data on a spreadsheet. In addition to 
utilizing common geoprocessing tools, this study 
utilized the Network Analyst extension and 
Esri’s Spatial Statistics toolset. 

A crash dataset was integrated into ArcMap. 
The collision data was downloaded from www.
transbasesf.org, a public-facing website that 
is organized and regularly updated by the 
San Francisco Department of Public Health. 
TransbaseSF was created after the adoption 
of Vision Zero in San Francisco to inform 
the public where collisions have occurred and 

where safety-promoting capital improvement 
projects are being planned and implemented. 
TransbaseSF does not allow direct exporting 
or downloading of data, so a database server 
connection in ArcMap was created to export the 
city’s data directly to an external hard drive.

TransbaseSF includes collisions involving all 
travel modes dating back to 2005, so considerable 
cleaning of the data was completed before 
settling on a final dataset. This involved removing 
non-predestrian crashes, and merging multiple 
datasets to fully aggregate all automobile-
pedestrian crashes between 2011 and 2015. 
15,000 collisions were identified.

Since this study is only concerned with 
pedestrian crashes, non-pedestrian collisions 
had to be removed from the dataset. The “type_
of_collision” field in the dataset’s attribute table 
highlighted all “vehicle/pedestrian” collisions. 
There were 3,546 such collisions. Because 
the data is from police records, which can be 
prone to error23,not every pedestrian collision 
was cataloged as a “vehicle/pedestrian” crash. 
Because of this, 456 misidentified crashes were 
found and added to the dataset. A total of 4,002 
crashes between 2011 and 2015 were ultimately 
identified. Of these, 3,987 were successfully 
geocoded, meaning over 99 percent of the crashes 
were included in the analysis. 

 

23 Errors include the intervening officer incorrectly filling out the 
report at the scene or inaccurately transferring the physical report to 
a digital format. It should also be noted that estimates point to fewer 
than half of all pedestrian-automobile crashes being reported to the 
police. Source: Rodney Tolley, “Sustainable Transport: Planning for 
Walking and Cycling in Urban Environments,” Woodhead Publishing 
in Environmental Management, 2003.
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The original research in this report includes 
quantifying the correlation between crashes and 
population density, employment density, and land 
use mix, as well as explaining the relationship 
between crashes and a trip generator typology. 
Before considering these relationships, it is 
important to understand the spatial distribution 
of crashes in San Francisco. One must know if the 
universe of crashes shows significant clustering, 
dispersion, or randomness before being able to 
make any claims about specific built form and 
demographic relationship to crashes. If crashes 
are randomly distributed, claims of a positive 
relationship between density and crashes cannot 
be made. 

3.2 Hot Spot Analysis and 
Kernel Density Estimation

There are a variety of techniques to find 
statistically significant relationships between 
physical phenomena using GIS. This report 
utilizes two of them: Hot Spot Analysis 
and Kernel Density Estimation. Hot Spot 
Analysis determines if crashes show statistically 
significant clustering, dispersion, or randomness, 
and Kernel Density compares nearby features 
to calculate the density of the features. Hot 
Spot Analysis affixes a significance level to each 
feature itself, whereas Kernel Density creates 
an interpolated surface. This interpolated 
surface is represented as a raster output on the 
map. The processes and outcomes of the Hot 
Spot Analysis and Kernel Density Estimation 
techniques will be described below.

 There are several prerequisite steps 
before one can confidently carry out a Hot 
Spot Analysis, for a Hot Spot Analysis must 
be set up with the correct parameters. The 
Average Nearest Neighbor tool in ArcMap was 
used in preparation. This tool creates an output 
that states if the input features (crashes) are 
clustered, dispersed, or random. It shows if there 
is clustering rather than where the clustering 
may occur. The tool calculates the mean 
distance between the features and compares 
this calculation to the expected distance. A 
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p-score24  and z-score25  is calculated based on 
the observed and actual calculations. 

The Average Nearest Neighbor tool was 
used for the San Francisco pedestrian crash 
dataset. After running the tool, crashes show 
clustering with less than one percent chance 
that the distribution of crashes is the result of 
randomness. A low negative z-score coupled 
with a low p-score means that there is significant 
clustering. The Average Nearest Neighbor report 
is shown in Figure 6. 

24 A p-score is a measure of statistical significance. It ranges from zero 
to one, however for most studies in the realm of the social sciences, 
only p-values less than or equal to 0.05 are accepted to reject the null 
hypothesis. A p-value of 0.05 means that one can conclude with 95 
percent certainty that there is a statistically significant relationship 
between two phenomena.

25 A z-score, or standard score, measures a data point’s value in relation 
to the mean. It is expressed in terms of standard deviations from the 
mean. Therefore, a score of one states that a value is one standard 
deviation above the mean. 

Figure 6: Average Nearest Neighbor Output

Nearest Neighbor Ratio: 
0.423179

z-score: -69.677872

p-value: 0.000000

Observed Mean Distance: 
119.6592 US_Feet

Expected Mean Distance: 
282.7624 US_Feet

Given the z-score of -69.6778719523, there is a less than 1 percent likeli-
hood that this clustered pattern could be the result of random chance.
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After concluding that clustering has 
occurred, a new tool, Spatial Autocorrelation, 
is used. Expressed as Global Moran’s I, spatial 
autocorrelation also measures if the data is 
clustered, dispersed, or random, but the Spatial 
Autocorrelation tool considers both the location 
and the features of each record.26  The tool 
also measures at which distance clustering is 
most intense. This distance band is necessary to 
properly carry out a Hot Spot Analysis. 

The Spatial Autocorrelation tool measures 
one distance band at a time and outputs a 
z-score for that distance. Because only one 
z-score is calculated at a time, finding the correct 
distance band is an iterative process. Rather than 
run the Spatial Autocorrelation tool multiple 
times, ArcMap includes the Incremental Spatial 
Autocorrelation tool. This tool creates z-scores 
for a range of distance bands, in effect automating 
the iterative process. 

Incremental Spatial Autocorrelation 
requires accurate input parameters to generate 
accurate z-scores. These input parameters 
include the maximum distance between nearby 
features, as well as the average distance between 
incidents. This means that the tool will start at 
the maximum value and iterate by the average 
distance between features. ArcMap calculates the 
maximum distance between incidents with the 
Calculate Distance Band from Neighbor Count 
tool in ArcToolbox. The maximum distance was 

found to be 4,000 feet. This distance was put 
in to the Incremental Spatial Autocorrelation 
tool. The tool was run at 120-foot iterations 
to calculate the distance band that yielded the 
highest z-score. 120 feet was the observed mean 
distance between incidents from the Average 
Nearest Neighbor tool. The Incremental Spatial 
Autocorrelation tool outputs a line chart that 
plots the z-score for each distance band. The 
highest peak correlates with the highest z-score. 
The higher the z-score, the more intense the 
clustering. The tool returned a value of 5,360 
feet. The output is shown above.
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26 For example, if one is measuring the spread of disease, the Spatial 
Autocorrelation tool considers both the locations of where people are 
sick, as well as the number of sick people in each location.

Figure 7: Incremental Spatial Autocorrelation 
Output
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A Hot Spot Analysis measures the likelihood 
that a distribution of values happened randomly. 
To accomplish this, the tool requires a set of 
features, each with its own numeric value. In this 
case, each feature (a crash location) has a value 
that represents the number of pedestrians injured 
in the crash. There was a maximum of five people 
injured in a single crash in San Francisco during 
the period of study. 92 crashes had zero injuries 
because said crashes resulted in fatalities. Since 
the Hot Spot Analysis for this study does not 
differentiate between the severities of injuries, 
the dataset was manipulated to include these 
fatal crashes in the Hot Spot Analysis.

 The result of the Hot Spot Analysis is a map 
layer that shows if a feature is a cold spot or a hot 
spot and ascribes a confidence interval to each 
feature. The confidence intervals are 90, 95, and 
99 percent. A hot spot is the result of a feature 
that is in a geographic area, or neighborhood, 
with a value higher than the overall study area. 
Conversely, a cold spot is where the neighborhood 
in which a feature is in is a lower value than the 
study area.

The Hot Spot Analysis tool was used with a 
5,360-foot distance band: the distance in which 
the most intense clustering occurs. This is the 
distance in which each neighborhood will be 
created. The results of the Hot Spot Analysis 
are below. Notice the intense clustering of hot 
spots in the mid-Market and South of Market 

areas, as well as the city’s southern Ingleside 
neighborhood. There looks to be many incidents 
in the southeastern section of the city, but 
ArcMap’s analysis found those crashes to be less 
clustered than elsewhere in the city. 



39

0 1½ Mile

Hot Spot - 99% Confidence

Hot Spot - 95% Confidence

Hot Spot - 90% Confidence

Not Significant

Cold Spot - 90% Confidence

Cold Spot - 95% Condidence

Cold Spot - 99% Confidence

Figure 8: Hot Spot Analysis of Automobile-Pedestrian Collisions, 2011-2015

See Appendix B for list of sources
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Kernel Density Estimation, like Hot Spot 
Analysis, considers the spatial relationship 
between features. It differs from Hot Spot 
Analysis in that the value of each feature is not 
included in the analysis. And unlike Hot Spot 
Analysis, Kernel Density Estimation does not 
affix confidence intervals to each feature. Finally, 
the Hot Spot Analysis layer shown above was 
represented as point features of varying colors, 
while a Kernel Density Estimation output layer 
is a raster representing an interpolated surface. In 
other words, Kernel Density Estimation creates 
new features based on the values of the nearby 
observed features. As an example, envision a city 
block with crash incidents at each end. A Hot 
Spot Analysis will not make any claims about the 
middle of the block for there are no data points 
there. However, a Kernel Density Estimation 
will create values for the midblock that are based 
on the observed data points at each end of the 
block. 

The granularity of the Kernel Density analysis 
will depend on the parameters (for raster cell size 
and search radius) that the user sets for the tool. 
The result of the Kernel Density Estimation is a 
map layer that is easier to comprehend than a Hot 
Spot Analysis. The smooth gradations between 
concentrations in the Kernel Density Estimation 
allow for patterns to visually “pop” whereas the 
colored points in the Hot Spot Analysis require 
closer inspection to find meaningful patterns. 

Borrowing from the methods used by 
Pulugurtha, et al. in their study of crashes in 
Las Vegas, this report used the Kernel Density 
method to locate concentrations of crashes.27  
As compared to Simple Density Analysis, the 
Kernel method is the best way to perform a 
fine-grained analysis of crash concentration. 
This is because Kernel analysis works by 
creating a buffer around each incident. All 
nearby incidents are aggregated in the buffer to 
measure how concentrated the incidents are. The 
Kernel method, as compared to Simple Density 
Analysis, refines the analysis by applying weights 
to the aggregated incidents. An incident’s score 
decreases as its distance increases relative to the 
central feature. This creates smoother gradations 
between the measurements than one would find 
with Simple Density Analysis.

As stated above, the granularity of the 
analysis is dependent upon the tool’s parameters. 
The GIS user can identify the output cell size to 
be used in the analysis, effectively dictating how 
fine or coarse the analysis will be. The output cell 
size relates to the search radius to be used for 
the incidents and will affect the output raster’s 
resolution. A large cell size will result in greater 
pixelization, whereas a small cell size will be less 
pixelated but will create a large output file. Put 
another way, selecting too large of a cell size will 
not capture the details in the data, while too 
small of a cell size will not properly consider the 27 Srinivas S. Pulugurtha, et al, “New Methods to Identify and Rank 

High Pedestrian Crash Zones: An Illustration.” Accident Analysis & 
Prevention 39, no. 4 (2007): 800-811.
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relationship between nearby incidents. Therefore, 
Kernel Density is an iterative process. After 
running numerous analyses, an output cell size 
of 125 feet was chosen because it represents 
the approximate length of one-half of a short 
city block. 125 feet can consider mid-block and 
intersection level crashes together, and resulted 
in the smoothest raster output.

The map on the following page is the result 
of the Kernel Density Estimation. The deepest 
red polygons represent locations with the highest 
crash concentrations and blue areas show low 
concentrations. Like the Hot Spot Analysis 
result hown in Figure 8, mid-Market, the 
Tenderloin, and sections of SoMa show the most 
intense concentration of crashes. There are crash 
concentrations along numerous major corridors, 
too. For example, Mission Street, Taraval Street, 
19th Avenue, and sections of Third Street all 
show varying levels of crash concentrations.

Although the map above has value, we can 
clearly see where crashes cluster, but we cannot 
say with any certainty why crashes cluster. Is 
the high concentration area near Civic Center 
simply a result of high population densities? Are 
crash concentrations along major thoroughfares 
due to high vehicle volumes? The following 
chapter will describe the methods used to clarify 
the connection between demography and land 
use with pedestrian crashes. 
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Figure 9: Kernel Density Estimation Output of Automobile-Pedestrian Collisions, 2011-2015

See Appendix B for list of sources
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METHODOLOGY AND UNDERPINNINGS IN PAST RESEARCH STUDIES
 

While the workflows in the preceding 
chapter aimed to understand if spatial patterns of 
crashes exist at a citywide scale, the three distinct 
methods that will be explained below were 
utilized to better understand the relationship 
between demography, land uses, and crashes in 
a more localized context. From the Hot Spot 
Analysis and Kernel Density Estimation results, 
it should be clear that crashes exhibit clustering. 
This is a valuable insight, but it lacks the detail 
necessary to comprehend the issue and be able 
to make policy prescriptions to mitigate the 
likelihood of a crash.

The three methods in this chapter are:

• A comparison of crashes to population 
density, employment density, and land use mix 
at the census block group level across several 
metrics. The purpose of this method is to quantify 
if a denser or more complex urban environment 
correlates with more or fewer crashes than a less 
dense or more homogenous block group.

• Generating a trip generator typology, 
and investigating if crashes cluster near certain 
trip generators more often than others. The trip 
generators will be measured by individual metrics 

as well as composite metrics. Using the metrics, 
one can rank the categories by how safe they are 
in order to assist with prioritization of capital 
improvement safety projects.

• Creating a logistic regression model to 
predict if the presence of several demographic 
and land use variables makes it more or less likely 
to be a victim of a crash that results in visible 
injury or death. 

Before taking a close look at the 
methodology, it is prudent to briefly describe 
the data sources that were used in this study. 
TransbaseSF contained the crash data and 
several websites were utilized to collect the rest 
of the necessary data. San Francisco’s public data 
repository, www.data.sf.org, as well as the United 
States Census Bureau, American Community 
Survey, Longitudinal Employer-Household 
Dynamics, and the Metropolitan Transportation 
Commission’s ArcGIS online page were vital in 
the collection of precise and accurate data. The 
full list of data categories and where they are 
found online is included in Appendix (letter).

The first research question is: 

What are the relationships between 
population density, employment density, 
and land use mix with pedestrian safety 
in San Francisco? 

This is a vital connection to understand 
because as cities increasingly reconsider the 
outcomes of Euclidean zoning techniques and 
strive towards creating more walkable, compact 
communities, our neighborhoods will see more 
residents and employees interacting with each 
other in an increasingly complex built form. As 
more vehicles and pedestrians are introduced to 
an urban environment, the opportunities for a 
crash increase. 
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4.1 Prior Research
Results from existing studies are mixed 

in showing if there is a positive relationship 
between crashes and population density. For 
example, researchers studying pedestrian 
collisions in Buffalo, New York found a clear 
positive, linear relationship between population 
density and crashes.28  They found that at the 
highest population densities, crashes were more 
common than at lower densities. These findings 
were not shared by all researchers. Wedegama, et 
al. concurred that crashes increased as population 
density increased however, once a critical density 
threshold was reached, the pattern reversed.29  
The idea is that as congestion increases and 
travel speeds slow, there are fewer dangerous 
pedestrian-automobile interactions. Other 
hypotheses explain this phenomenon differently. 
Rather than reducing travel speeds, Ewing and 
Dumbaugh claim that compact development 
leads to high population densities and lower per 
capita vehicle miles travelled (VMT). Shorter 
trips help minimize the likelihood of a crash.30 

How one normalizes crash data can make a 
dramatic difference in the findings. Pedestrian 
exposure is one metric to normalize crash rates. 
Pedestrian exposure is simply the degree to which 
a pedestrian interacts with vehicular traffic. 
Depending on the data available, pedestrian 
exposure can be quantified using pedestrian 

counts, population density, employment density, 
the number of people that walk to work, or VMT. 

Measuring crash rates as a function of 
pedestrian volumes generally supports the 
“strength in numbers” premise.31  Strength 
in numbers posits that as pedestrian volumes 
increase, the number of crashes grow more slowly 
than the proportion of pedestrians. That is, per 
capita crash rates decrease as pedestrian density 
increases. Burnier, Graham, and Glaister, as well 
as Bhatia and Wier confirmed this idea.32 

Prior research is less clear on employment 
density than it is on population density. First, 
there are unique temporal and spatial factors as 
they relate to employment density. High-rise 
office settings create different conditions than 
the same employment density in spread-out 
industrial areas like office parks. High intensity 
employment areas also attract a specific kind 
of person: someone of working age. This may 
explain why Wedagama, et al. and Dissanayake, 
et al. found that age was a mitigating factor of 
crash rates in employment zones. Adults were 
more likely than children to be a crash victim 
during normal work hours in these areas.33 

Most of the existing research has considered 
land use, defined by zoning designation, in 
isolation rather than in terms of land use mix. 
However, Burnier and Clifton, Burnier, and 
Akar both studied the relationship of land 

28 Hoe Hun Ha and Jean-Claude F. Thill, “Analysis of Traffic Hazard 
Intensity: A Spatial Epidemiology Case Study of Urban Pedestrians,” 
Computers, Environment and Urban Systems 35, (2011): 230-240.

29 D.M. Priyantha Wedagama, Roger N. Bird, and Andrew V. Metcalfe, 
“The Influence of Urban Land-Use on Non-Motorized Transport 
Casualties,” Accident Analysis & Prevention 38, no. 6 (2006): 1049-
1057.

30 Reid Ewing and Eric Dumbaugh, “The Built Environment and 
Traffic Safety: A Review of Empirical Evidence,” Journal of Planning 
Literature 23, no. 4 (2009): 347-367.

31 Peter Lyndon Jacobsen, “Safety in Numbers: More Walkers and 
Bicyclists, Safer Walking and Bicycling,” Injury Prevention 9, (2003): 
205-209.

32 Bhatia and Wier, “’Safety in Numbers’ Re-examined”; Burnier, 
“Pedestrian-Vehicular Crashes”; Daniel J. Graham and Stephen Glaister, 
“Spatial Variation in Road Pedestrian Casualties: The Role of Scale, 
Density and Land-use Mix,” Urban Studies Journal Limited 40, no. 8 
(2003): 1591-1607.

33 D.M. Priyantha Wedagama, Roger N. Bird, and Andrew V. Metcalfe, 
“The Influence of Urban Land-Use on Non-Motorized Transport 
Casualties”; Dilum Dissanayake, James Aryaija, and D.M. Priyantha 
Wedagama, “Modelling the Effects of Land Use and Temporal Factors 
on Child Pedestrian Casualties.” 
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use complexity and crashes, but found no 
agreement.34 Although they found no consensus, 
when measured in isolation, research has 
routinely found that commercial and industrial 
land uses correlate with the highest crash rates. 
Children were most often crash victims in 
residential zoning districts, but the finding could 
not be generalized to adults.35  

The following section will explain how 
population density, employment density, and land 
use mix were examined in this report, including 
a description of the GIS workflow and rationale 
for methodological choices.

34 Carolina V. Burnier, “Pedestrian-Vehicular Crashes: The Influence 
of Personal and Environmental Factors.” Master’s thesis, University of 
Maryland, College Park, 2005; Kelly J. Clifton, Carolina V. Burnier, 
and Gulsah Akar, “Severity of Injury Resulting from Pedestrian-
Vehicle Crashes: What Can We Learn from Examining the Built 
Environment?” Transportation Research Part D: Transport and 
Environment 14, no. 6 (2009): 425-436.

35 Loukaitou-Sideris, et al., “Death on the Crosswalk.”
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4.2 Population Density, 
Employment Density, and 
Land Use Mix Workflow

The first step was to choose an appropriate 
geographic unit of analysis. Since this report 
endeavors to explore crashes in San Francisco 
in granular detail, the smallest reasonable census 
designation was chosen. Although block level 
data is finer grained than block group level 
data, fewer demographic variables are collected 
at the block level. Additionally, the American 
Community Survey, an annual sampling of 
Americans, is collected at the block group level 
rather than the block level. Since the crash 
dataset included crashes between 2011 and 2015, 
the density calculations were also created from 
data collected during the same time span. 

After choosing to aggregate crashes at the 
block group level, the correct shapefile was 
downloaded from the United States Census 
Bureau’s website. The City and County of San 
Francisco include many block groups outside 
of the city’s core. These block groups include 
the Farallon Islands, which are void of human 
population, Angel Island, Alcatraz Island, and 
Treasure Island. Other block group boundaries 
consist primarily of ocean or the San Francisco 
Bay. These block groups were removed from the 
analysis so as not to skew the results. In the end, 
578 block groups were included in the analysis. 

After preparing the block group, feature class, 
population, employment, and zoning data were 
joined before the crash data was overlaid for the 
analysis.

An American Community Survey 
population estimate at the block group level 
for San Francisco between 2011 and 2015 
was downloaded. The table was then joined by 
common attributes to the block group feature 
class and checked for accuracy using a variety of 
methods. These included creating a choropleth 
map of population by block group and spot-
checking the table join with the Census Bureau’s 
online tools. There existed a wide range of 
population sizes amongst the block groups. For 
example, block group 60750176011 had zero 
residents. This peculiar finding was confirmed 
when it was discovered that the block group is 
made up entirely of the Westfield Mall near the 
city’s Union Square. The most populated block 
group was 60750607001, which makes up much 
of the Mission Bay neighborhood. This block 
group is significantly larger in area than most 
block groups in San Francisco, so it must be noted 
that these figures consider total population, not 
population density.

A new field, acres, was added to the attribute 
table of the block group feature class. This 
allowed the population data to be normalized by 
the acreage of each block group. After creating 
a choropleth map showing resulting population 
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this block group boundary stretches from the 
Ferry Building to Fourth Street along Market 
Street and south towards Howard Street. 73,403 
employees work in this block group. Block group 
60750159002 had the highest employment 
density. This Japantown location is home to a 
large mall and high-density office buildings and 
has a density of 840 workers per acre. 

Zoning laws dictate the legal uses of a parcel. 
These detailed, often-dense regulations have 
been instrumental in how cities have developed 
over the last 100 years in the United States. For 
example, the concentration of single-family 
residential development away from noxious 
industrial uses in San Francisco was not created 
organically. Rather, zoning districts have been 
created to ensure the safety and welfare of 
residents by isolating them from potentially 
harmful externalities of industrial uses.

density, the table was exported to Excel for more 
analysis. While the Mission Bay block group had 
the highest population, block group 60750125022 
in the city’s Tenderloin neighborhood was its 
most dense, with 310 people per acre (or 123,000 
people per square mile). After successfully 
quantifying the population density of each block 
group and adding the information to the table, 
employment density was considered.

The number of employees at the block group 
level for 2015 was quantified by the U.S. Bureau of 
Labor Statistics and shared on its “On the Map” 
digital application. The tabular information was 
exported and joined to a copy of the block group 
layer. Once again, a new field, acres, was added to 
the attribute table. Employees at the block group 
level were normalized by the acreage of each 
block group to derive the employment density 
at the block group level. A choropleth map was 
created and the attribute table was exported to 
Excel. 

Before moving forward, the data was once 
again checked for quality. Using a combination 
of personal knowledge of the city and comparing 
the employment output with what zoning 
designations allow, the employment density 
calculations were confirmed. Block group 
60750427001in the largely residential Sea Cliff 
neighborhood had the fewest employees. Five 
people work within that block group. Block 
group 60750615001 had the most employees - 
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Cities treat zoning in dramatically different 
ways. While more homogenous locales may be 
content with minimizing the types of zoning 
districts, complex urban areas such as San 
Francisco have myriad zoning designations. 
At minimum, most municipalities zone for 
residential, commercial, industrial, and public or 
institutional uses. Each of these broad categories 
can be further refined, such as creating multiple 
residential zoning districts, each with its own 
height, bulk, or density requirements. San 
Francisco has 13 residential zoning districts. 
These range from fairly uniform, low-density 
districts to neighborhood or detailed corridor-
specific zoning districts. 

For the purpose of this study the districts 
were aggregated into five categories: commercial, 
industrial, mixed-use, residential, and public. 
A zoning shapefile was downloaded from the 
San Francisco Planning Department and added 
to ArcMap. As noted, the city’s zoning code 
is complex. While there are nearly 60 unique 
zoning districts, all of these districts can easily be 
organized into the five primary categories. Using 
the “dissolve” geoprocessing tool in ArcMap, the 
zoning designations were aggregated into the 
five primary groups, and the total acreage that 
each group accounts for was summed. Table 1 
shows the districts that were included in each 
category.

Category Zoning Districts

Commercial C-2, C-3-G, C-3-O, C-3-R, C-3-S, CCB, 

CVR, MB-O, RCD, SSO
 

Industrial M-1, M-2, PDR-1-B, PDR-1-D, PDR-1-G, 

PDR-2, SALI, SLI

Mixed-Use

CRNC, HP-RA, MB-RA, MUG, MUO, 

MUR, NC-1, NC-2, NC-3, NC-S, NCD, 

NCT-1, NCT-2, NCT-3, PM-MU1, PM-

MU2, RC-3, RC-4, RED-MX, SPD, UMU, 

WMUG, WMUO

Residential RH-1, RH-2, RH-3, RH-DTR, RM-1, RM-

2, RM-3, RM-4, RTO-M, PM-R, RED, SB-

DTR, TB-DTR

Public MB-OS, P, PM-CF, PM-OS, PM-S,

Table 1: Aggregated Zoning Districts

Source: San Francisco Planning Department
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It should be noted that San Francisco’s 
zoning code has been continuously updated. 
Longtime conforming uses may become non-
conforming after a zoning change is made, and 
in certain cases non-conforming uses have been 
“grandfathered” in. This means that one may 
find a laundromat or corner convenience store 
in an RH-1 district, two uses that are normally 
prohibited in low-density residential areas. For 
the purpose of this study, non-conforming uses 
were not considered when quantifying the acreage 
of each zoning designation. The breakdown of 
the acreage of the five districts is based off the 
Planning Department’s official shapefile.

Over half of San Francisco is zoned for 
residential use, the majority of which are located 
in the city’s west and south. Public use, which 
includes parks and open spaces, public schools, 
and governmental facilities, is the second 
most common category. Mixed-use districts, 
often found along commute corridors and 
neighborhood commercial centers and industrial 
uses largely located along the city’s east coast, 
account for nearly 17 percent of San Francisco. 
The city’s compact downtown core contains the 
majority of its commercial zoning districts.

Category Area (acres)
Commercial 954

Industrial 2,057
Mixed-Use 3,375

Public 8,054
Residential 15,115

Total 29,555

Table 2: Acreage by Zoning Category

Source: San Francisco Planning Department
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Because this study is concerned with 
understanding land use mix at the block group 
level, once the zoning districts were organized 
into five core categories, they were joined to a 
block group feature class. ArcMap has a “spatial 
join” feature, which allows for the joining of 
data from one feature class to another based on 
shared geographic attributes. Through the spatial 
join process, one can quantify the number of 
unique zoning types in each block group, as well 
as calculate the acreage for the different levels of 
land use mix. The breakdown is shown in Table 
3.

Number of 
Land Uses

Number of 
Block Groups

Area 
(acres)

1 22 944
2 180 7,113
3 313 16,380
4 50 4,516
5 13 648

Totals 578 29,601

As stated above, many cities are moving 
towards more complex development patterns 
rather than homogenous, rigidly separated 
ones. This has manifested itself in an increased 
production of “mixed-use” housing and 
commercial stock located near common amenities 
that are connected by transit. By comparing crash 
rates of block groups with different levels of land 
use complexity, one will better understand the 
relationship between land use mix and crashes. 

The results of the analyses appear in chapter 
five.

Table 3: Land Use Mix by Block Group

Source: San Francisco Planning Department
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4.3 Trip Generator 
Typology

In addition to analyzing crashes as they relate 
to population density, employment density, and 
land use mix at the block group level, this report 
also analyzed crashes as they relate to proximity 
to specific land use categories. The purpose is to 
answer the second research question: 

Is there a correlation between a 
pedestrian’s proximity to specific land 
uses and the risk of being involved in a 
collision? 

To answer this question, land uses that 
generate trips were organized into a trip generator 
typology. The typology was created for this study 
but was informed by prior research. The land uses 
that make up the trip generator typology are:

• Schools

• Parks

• Libraries

• Medical centers

• Rapid transit nodes

• Neighborhood Commercial Transit districts

• Neighborhood Commercial districts

• Public parking garages and lots

• Senior living facilities

• Fire and police stations

The trip generators were defined as follows.
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Schools
Ukkusuri and Rothman, et al. clearly showed 

in their research that of all built environment 
factors, the presence of a school was the strongest 
predictor of a crash. Further, it was found that 
half of all crashes that involve a child pedestrian 
occurred during school commute times, most 
often within 150 meters of the school.36 

A shapefile of all San Francisco Unified 
School District schools was downloaded. Schools 
that do not serve students ten years or older were 
removed from the list. This meant that a pre-
kindergarten to fifth grade school was included, 
but a pre-kindergarten exclusive facility was not 
included. Prior research shows that students 
younger than ten tend to be accompanied by 
an adult and have a relatively low crash rate. As 
students reach ten years old, crash rates increase 
dramatically.37  Private schools were not included, 
for San Francisco has a considerable number of 
private schools and the dataset did not include 
how many students each school served. Not 
knowing the size of the school, it was decided 
to include only public schools, as they tend to 
be larger than private schools. 132 schools in the 
city were analyzed.36 Satish Ukkusuri, et al., “The Role of Built Environment on 

Pedestrian Crash Frequency,” Safety Science 50, no. 4 (2012): 1141-
1151; Rothman, et al., “Walking and Child Pedestrian Injury: A 
Systematic Review of Built Environment correlates of Safe Walking,” 
Injury Prevention 20 (2014): 41-49.

37 Dilum Dissanayake, James Aryaija, and D.M. Priyantha Wedagama, 
“Modelling the Effects of Land Use and Temporal Factors on Child 
Pedestrian Casualties,” Accident Analysis and Prevention 41, (2009): 
1016-1024.
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Figure 10: Locations of San Francisco Unified School District Schools

See Appendix B for list of sources
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Because San Francisco has so 
disproportionately more parks, it was necessary 
to shorten the list. Parks that did not foster 
congregation or recreation were removed. 
For example, planted medians along major 
thoroughfares such as Sunset Boulevard were 
included in the city’s list of parks and thus were 
discarded from the analysis. To make sure that 
only parks that generated pedestrian trips were 
included, a careful visual audit was undertaken 
using Google Streetview. If the Google 
Streetview image did not show anyone at the 
park, if the park had no suitable areas for play, or 
if the park lacked seating, it was removed from 
the analysis. As a result, of the 220 parks on the 
original list, this analysis included 166 of them.

Parks
Research has regularly found that the 

presence of parks is negatively correlated with 
crash risk at both the aggregate and disaggregate 
levels.38  In Baltimore and Los Angeles, block 
groups with the lowest percentage of park land 
had the highest crash rates and children were 
safer near parks than in places without open 
space.39 

A zipfile containing a shapefile of parks and 
open spaces in San Francisco was downloaded 
and extracted. According to the Recreation and 
Parks Department, San Francisco has 220 parks 
and open spaces. In fact, San Francisco’s park 
system is so expansive that it is the only city 
in the country where every resident is within a 
10-minute walk from a park. 

38 Burnier, “Pedestrian-Vehicular Crashes”; Loukaitou-Sideris, et 
al., “Death on the Crosswalk”; Rothman et al., “Walking and Child 
Pedestrian Injury.”

39 Burnier, “Pedestrian-Vehicular Crashes”; Loukaitou-Sideris, et al., 
“Death on the Crosswalk.”
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Figure 11: Locations of Parks

See Appendix B for list of sources
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Libraries
Since libraries have not been studied in 

detail by past researchers, there is no consensus 
as to the relationship between libraries and crash 
rates. They were chosen for the trip generator 
typology since they serve a diverse clientele and 
are located citywide in a variety of settings.

The San Francisco Public Library webpage 
has a list of every library branch in the city. The 
list was transcribed in an Excel spreadsheet and 
geocoded in ArcMap. San Francisco has 28 
public libraries.
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Figure 12: Locations of Libraries

See Appendix B for list of sources
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Medical Centers
Medical centers have not necessarily been 

correlated with an increased risk of being a crash 
victim, however it was still included in the trip 
generator typology.40   This is because it has 
been found that ambulances and other large 
emergency vehicles are involved in crashes that 
result in injury or death at higher rates than 
lighter duty vehicles.41 

Forty hospitals and major medical centers, 
as defined by the San Francisco Planning 
Department, were included in the analysis. 
The list of medical centers was gleaned from a 
shapefile called “San Francisco Facilities” that 
was found on SF Open Data.

40 Schneider, Robert J., Rhonda M. Ryznar, and Asad J. Khattak. 
“An Accident Waiting to Happen: A Spatial Approach to Proactive 
Pedestrian Planning.” Accident Analysis & Prevention 36, no. 2 (2004): 
193-211.

41 Kelly J. Clifton, Carolina V. Burnier, and Gulsah Akar, “Severity 
of Injury Resulting from Pedestrian-Vehicle Crashes: What Can We 
Learn from Examining the Built Environment?”
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Figure 13: Locations of Medical Centers

See Appendix B for list of sources

0 1½ Mile

Medical Centers

0 1½ Mile



62

Rapid transit nodes are also defined as any at-
grade stop where a traveler can transfer between 
rapid routes. The SFMTA operates myriad bus 
routes and light rail routes throughout the city. 
The city is “mode agnostic” when referring to 
rapid transit lines. Headways and stop spacing 
rather than vehicle type defines if a route is 
“rapid”. Additionally, rapid stops tend to have 
more substantial shelters than lesser-used stops, 
adding to the stop’s visibility. When considering 
subway stations and transfer points between 
rapid lines, San Francisco has 26 rapid nodes.

Rapid Transit Nodes
Transit riders often begin and end each 

transit trip on foot, so it was reasonable to include 
it as a category in the trip generator typology. 
Researchers in New York City, Baltimore, Los 
Angeles, and Montreal have all studied the 
relationship between crashes and proximity to 
transit, but have arrived at a range of conclusions. 
Although the data has suggested that transit 
stops are inherently unsafe for pedestrians due 
to an increased mixing of traffic modes, research 
has also found that when measured at a per capita 
level, areas near transit stops are quite safe.42  

San Francisco has a plethora of local and 
regional transit choices, so it was paramount to 
decide which locations to include and which to 
leave out. Access to San Francisco Transportation 
Agency (SFMTA) ridership at the stop level was 
not publicly available, so it was impossible to 
parse the high-use transit nodes from ones that 
generated fewer boardings and alightings. 

For the purpose of this study, rapid transit 
nodes are defined in two ways. First, a rapid 
transit node is any subway station. This includes 
the totality of Bay Area Rapid Transit (BART) 
stations inside city limits, as well as the nine 
SFMTA subway stations that facilitate the city’s 
light rail transit vehicles. It should be noted that 
SFMTA and BART share four of the downtown 
stations.

42 Ukkusuri, et al., “The Role of Built Environment.”
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Figure 14: Locations of Rapid Transit Nodes

See Appendix B for list of sources
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Neighborhood Commercial 
Transit (NCT) Districts

NCT districts are sections in the city where 
transit access and mixed uses are promoted. They 
tend to be organized along major commercial 
corridors. These districts have stronger parking 
controls to ensure that transit vehicles can move 
more quickly along routes. The combination 
of plentiful transit access and a variety of 
commercial and residential uses made NCT 
zoning designations an attractive land use type 
to explore. 



65

Figure 15: Locations of NCT Districts

See Appendix B for list of sources
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Neighborhood Commercial 
District (NCD)

NCD districts look to retain the “village” feel 
of having lower intensity, neighborhood-serving 
retail uses near residential and public districts. 
There is less of an emphasis on transit access, 
but parking meters and time-limited curbs are 
abundant in NCDs to promote more frequent 
parking turnover. 
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Figure 16: Locations of NCD Districts

See Appendix B for list of sources
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Parking Lots and Garages
Just as the transit rider is a pedestrian at the 

beginning and end of most transit trips, so is one 
who parks at a parking lot or garage. For this 
reason, and because geography of parking lots 
require conflicts between pedestrians and cars, 
parking lots and garages were included in the 
trip generator typology.

The SFMTA keeps track of all parking 
lots and garages under its and the Port of San 
Francisco’s purview. Seventy-four public lots and 
garages were listed and included in the analysis. 
They tended to be along the waterfront on the 
city’s eastern edge, but there are still plentiful lots 
spread throughout the city. 
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Figure 17: Locations of Parking Lots and Garages

See Appendix B for list of sources
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Senior Living Facilities 
Seniors and children are the two age cohorts 

most likely to be involved in a collision, but 
crash rates among the elderly were not uniform 
according to prior research.43  In fact, an 
existing study of pedestrian safety for seniors 
in San Francisco showed that those older than 
65 are unlikely to be victims of a crash.44  One 
explanation is that seniors are less often exposed 
to vehicular traffic compared to more mobile age 
groups.

There are a plethora of living arrangements 
for seniors. From independent living, to assisted 
living, memory care, and hospice, the elderly 
population has many choices. Since seniors are 
a vulnerable population, senior living facilities 
were added to the trip generator typology. Since 
no singular list exists, Google.com and Yelp.com 
were used to generate a directory of senior living 
facilities. For a senior living facility to make the 
list, it must clearly state on its website that it is 
designed for independent living. Seniors must 
be able to walk freely outside. More intensive 
arrangements, such as hospice, can be included 
on-site, however to make the cut, independent 
living must be an option. Seventeen such facilities 
were found through the Internet search.

43 Schneider, et al., “Comparison of United States Metropolitan 
Regions.”

44 Wier, et al., “An Area-Level Model of Vehicle-Pedestrian Injury 
Collisions.”
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Figure 18: Locations of Senior Living Facilities

Source: Google.com and Yelp.com search for “Senior Living Home,” “Senior Living Facility,” “Assisted Living,” “Senior Housing,” “Elder Care.” Each 
search result’s homepage was then checked.
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Fire and Police Stations
As noted above, emergency and other large 

vehicles are more often involved in collisions that 
result in injury or death than smaller vehicles. 
Firehouses and police stations often include 
larger vehicles that regularly travel at high 
speeds to respond to an emergency. Although 
prior research has not identified either land use 
as a predictor for crashes, they were included in 
the trip generator typology to test these existing 
findings.

San Francisco’s police and fire stations were 
extracted from the “San Francisco Facilities” 
shapefile. Prior research has shown that when 
ambulances and other emergency vehicles are 
involved in a collision, injuries tend to be more 
severe or fatal than when passenger vehicles are 
involved.  There are 49 police and fire stations in 
the city.
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Figure 19: Locations of Police and Fire Stations

See Appendix B for list of sources
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4.4 Trip Generator Metrics
Five primary metrics were used to properly 

assess each of the land uses listed above. They were 
chosen based on the findings from prior research. 
Pulugurtha, et al. tested the efficacy of each of 
the metrics when studying vehicular crashes 
in Las Vegas. They identified three individual 
metrics, and two composite scores that utilized 
the results of the individual metrics. The goal of 
metrics is to normalize and quantify crash rates 
using pedestrian volumes, vehicle volumes, and 
built form characteristics. Through normalizing 
the data, one will be able to ultimately rank each 
category in terms of relative danger.

The three metrics below are all individual 
counts.

• Crash frequency: Crash frequency is 
the gross number of crashes. One simply sums 
the number of crashes within every service area 
of each trip generator category. Service areas 
represent walksheds for each trip generator and 
were created using Network Analyst. The process 
to create a service area will be described in more 
detail below.

• Crash density: Crash density considers 
the number of crashes in relation to the length, 
in street miles, of each service area polygon. To 
measure crash density, one quantifies the mileage 
of streets within each service area polygon, then 

divides the gross crashes by the total street miles 
to quantify crashes per street mile.

• Crash rate: Crash rate measures the 
number of crashes in relation to pedestrian 
exposure46  and vehicle exposure. Fehr and 
Peers created a pedestrian volume model at the 
intersection level for the SFMTA in 2011.47  
This model was used to quantify pedestrian 
exposure. SFMTA traffic counts taken between 
1995 and 2016 were aggregated to quantify 
vehicle exposure at the intersection level.

The following two metrics are composite 
scores:

• Sum-of-ranks: Sum-of-ranks adds crash 
frequency, crash density, crash rate (pedestrian 
exposure), and crash rate (vehicular exposure) 
and then divides the total by four. The trip 
generator categories are then ranked according 
to the sum-of-ranks output.

• Crash score: A crash score is similar to 
sum-of-ranks in that combines several individual 
metrics. Whereas sum-of-ranks combines 
raw data, a crash score further normalizes the 
findings to thereby rank each land use variable. 
The process will be described in more detail 
below.

46 Pedestrian exposure is the rate at which pedestrians must interact 
with vehicles. VMT, intersection density, and population density can all 
be used to quantify pedestrian exposure.

47 Fehr and Peers, “San Francisco Pedestrian Volume Model,” May 
2011.
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4.5 Trip Generator 
Workflow

Now that the trip generator typology and 
crash metrics are clear, the following text will 
describe the workflow that was undertaken to 
find correlations between crashes and a variety 
of land uses. The workflow includes several GIS 
processes, including utilizing ArcMap’s Network 
Analyst extension and making calculations using 
the Field Calculator.

The process is as follows:

1. Create the trip generator typology: 
The trip generator typology consists of ten land 
use variables. The list is the result of an extensive 
literature review and includes land uses that 
generate pedestrian trips. The full list and their 
definitions are listed below.

2. Create service area polygons for 
each trip generator: Network Analyst was 
used to create service area polygons around each 
land use. The buffers measured 250 feet from 
each feature. 250 feet was chosen to mimic an 
approximately one block walk from each land 
use.

3. Intersect the pedestrian feature 
class to the service area polygons: 
Intersecting the two feature classes will calculate 
the total number of crashes that occur within a 
250 foot walk from each feature.

4. Quantify the mileage of streets 
(street miles) within each land uses 
service areas: The intersect geoprocessing tool 
was run to find the overlap between the street 
centerlines feature class and the service area 
polygons. The mileage of streets was summed to 
quantify the total length of the streets for each 
land use category. Quantifying street miles is 
necessary to calculate the crash density metric.

5. Quantify pedestrian exposure: A 
feature class representing pedestrian volumes was 
added to the map. The feature class represents 
point data. Each intersection has one point that 
has a corresponding pedestrian volume. The 
pedestrian volume feature class was intersected 
with the service area polygons to sum the total 
number of pedestrians in for each land use. This 
sum was then divided by the total number of 
intersections for each land use type to represent 
the average pedestrian exposure. The output was 
then used to calculate the crash rate (pedestrian).

6. Quantify vehicle exposure: The same 
process described above was used to quantify 
vehicle volumes for a given land use’s service 
areas. The average vehicle volume per land use 
was used to calculate the crash rate (vehicle).

7. Calculate each land use’s “sum-of-
ranks” score: Sum the crash frequency, crash 
density, and crash rate metrics to get a composite 
score. Each score was weighted evenly.

8. Calculate each land use’s “crash 
score”: Another composite metric, a crash score 
normalizes the individual metrics, combines 
them, and gives an output that compares the 
relative safety of each land use in the trip 
generator typology.
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Since the first step, create the trip generator 
typology, was described above, the following 
section will commence with a discussion of 
creating service area polygons using Network 
Analyst followed by a detailed description of the 
remaining workflow.

Esri’s Network Analyst extension was used 
to create a service area around the location of 
each trip generator. A simple radial buffer would 
suffice, but a service area more closely represents 
the built form environment. Whereas a simple 
buffer creates a perfect circle around a central 
feature, a service area polygon is the result of 
measuring the distance from a central feature 
along the street network. Therefore, the service 
area boundary can be irregular in shape. 

One must create a network dataset to utilize 
Network Analyst’s functionality. A network 
dataset was created from a shapefile of San 
Francisco’s street network. Freeway segments 
or any other street that pedestrians do not walk 
along were removed. One-way restrictions were 
removed since pedestrians can walk against 
traffic on one-way streets.

The Create New Service Area feature in 
Network Analyst was used for each trip generator 
category. After loading a trip generator type, a 
250-foot boundary was created around each 
trip generator location. This radius was chosen 
because it measures the approximate length of 

one short block city block. 

To illustrate, the trip generator category, 
schools, was added to the map. One service area 
polygon was created for each school, resulting 
in a total of 132 service area polygons, each 
representing a 250-foot walk from the school. 
The totality of crashes that occurred within the 
service area polygons will be introduced later in 
the workflow.
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Figure 20: Detail View of School Locations, Walksheds, and Street Miles

As described, Network Analyst service areas can be irregular in shape. 
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The same process described above was 
repeated for eight of the ten trip generator 
categories. NCD and NCT districts did not 
need service area polygons. Since both features 
are already polygons, only the streets contained 
inside the polygons, rather than the streets that 
are within 250 feet of the polygons’ borders were 
deemed important for study. 

After creating the service areas, the mileage 
of streets within the polygons was calculated. The 
same streets feature class that was used to create 
the network dataset was used. Using a “Select by 
Location” query, the roads that were completely 
contained in each polygon were highlighted. 
These roads were exported to a new feature class 
called “SF_street_miles_[trip generator]”. The 
length of roads, in miles, was summed and the 
figures added to an Excel spreadsheet listing 
each trip generator category and the metrics 
listed above.

Pedestrian exposure, represented by 
pedestrian volume, was measured at the 
intersection level and is represented as point 
data. After adding the pedestrian volume feature 
class to the map, the process described above to 
quantify the total street miles within each service 
area was repeated to locate every intersection 
inside each of the polygons. The selected features 
were exported to a new feature class called, 
“SF_PED_volume_[trip generator]”. The total 
number of pedestrians as well as the number of 

intersections inside the polygons were summed. 
The average pedestrian volume was calculated by 
dividing the total number of pedestrians by the 
number of intersections. The average pedestrian 
volume was then used to normalize the gross 
number of crashes and calculate crash rates.

Whereas pedestrian volumes were used to 
quantify pedestrian exposure, vehicle volumes 
at the intersection level were used to calculate 
vehicular exposure. Both exposure metrics were 
used to calculate crash rate and included in the 
composite metrics. To quantify vehicle volumes 
at the intersection level, a large dataset was 
exported from the SFMTA’s geospatial database. 
The tabular data was organized and geocoded 
using ArcMap’s Address Locator functionality. 
Vehicular volumes for nearly 6,000 intersections 
were successfully geocoded. The data is a result 
of vehicle counts undertaken between 1995 and 
2016. 

Once a feature class was created showing 
vehicle volumes at intersections in San Francisco, 
an intersect tool was run to find the overlap 
between service area polygons and the vehicle 
volume points. The total vehicular volume 
was summed and divided by the number of 
intersections that were included in the dataset 
and added to the Excel table. All five metrics 
could then be organized and analyzed from the 
Excel table.
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4.6 Logistic Regression
A regression model was created to further 

investigate land use and crashes at a localized 
level. Both the logistic regression to be described 
shortly and the trip generator method just 
explained used Network Analyst to draw service 
areas around a feature. Whereas a service 
area was created around each trip generator 
location in the prior method, for the purpose 
of the regression model, service areas were 
created around each crash site. Several GIS 
layers representing demographic and built form 
variables were added to the map and intersected 
with each crash location service area polygon.

Via an iterative process, 660 feet (or 1/8th 
mile) was ultimately chosen as the service area 
radius for each crash location. 660 feet was short 
enough of a distance to retain the localized 
nature of the study, but created a service area vast 
enough to capture sufficient data to differentiate 
each crash.

After the 660 feet service area polygons were 
created, the following GIS layers were added to 
map:

• Each trip generator typology category

• Each zoning district category

• Communities of concern (CoC)48  

• Completed traffic calming projects   
 through FY 2014

Additional variables were added to the 
regression model. The crash dataset organized by 
TransbaseSF includes several important details 
for each crash. The following factors were gleaned 
from the crash dataset:

• Collision severity

• Street lighting

• Road conditions

• Intersection control (ie. presence of stop  
 sign or traffic lights)

• Crash location (mid-block vs intersection)

• Driving under the influence of drugs or  
 alcohol

• Driver ticketed for a Focus on the Five  
 infraction

• Pedestrian cited for being at fault

A logistic regression is a well-known 
regression model that is effective in predicting 
and explaining the relationship between a 
dependent variable and several independent, 
explanatory variables. A logistic regression 
requires a binary dependent variable but can 
include nominal, ordinal, interval, or ratio 
level independent variables. In plain English, a 
logistic regression model states that for every 
one unit increase of the independent variable, 
one would expect the odds of the dependent 
variable to increase or decrease by a specific 
rate.

48 A community of concern (CoC) is defined by the Bay Area’s 
metropolitan planning organization (MPO) the Metropolitan Planning 
Commission (MTC). It is measured at the tract level and is based on 
eight variables: race, income, English language proficiency, elderly, zero-
vehicle households, single-parent households, disability, and number 
of rent-burdened households. A CoC is any census tract that surpasses 
the minimum thresholds for income and race or measures above the 
threshold for income and any three other categories.
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For the purpose of this study, the dependent 
variable was a crash that resulted in physical 
injury or death. The crash dataset included an 
injury severity column in which crashes are, 
per police protocol, categorized into four types 
at the scene by the officer. The least severe 
category is “complaint of pain.” The next step is 
“visible injury” followed by “severe injury” and 
“fatality.” Since there are four categories and a 
logistic regression requires a binary dependent 
variable, the four categories were re-coded into 
two. The first category, coded with a “0” in the 
dataset, represented crashes that resulted in only 
a complaint of pain. The second category, coded 
with a “1,” represented the remaining crashes, all 
of which resulted in visible injury or worse.

After creating the dataset in ArcMap and 
coding several independent variables, the dataset 
was exported to SPSS, a statistical software 
package well suited for logistic regression. 

Now that three methods have been described 
in detail, a discussion of the findings will 
commence in the following chapter. Starting 
with a review of population density, employment 
density, and land use mix, the chapter will move 
on to discussing the trip generator results, and 
conclude with a summary of the findings from the 
logistic regression model. The report will conclude 
with chapter 6 with policy recommendations 
to mitigate dangers to pedestrians and make 
recommendations for future research.
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FINDINGS
 

This chapter will state the findings from each 
method described above. After recapitulating the 
results, the implications of each will be discussed. 
Population density, employment density, and 
land use mix at the block group level are first 
to be examined, followed by the results of the 
trip generator typology method, and lastly the 
logistic regression.

5.1 Population Density 
and Crashes

Since population density was measured at 
the block group level, it was vital to accurately 
categorize the block groups into different density 
ranges. ArcMap has several methods to classify 
the population data. The block groups were 
organized in four equal quantiles: low density, 
low-medium density, medium-high density, and 

high density. This means the nearly 600 block 
groups in San Francisco were divided into four 
equal groups which creates the fairest comparison 
of the block groups. Figure 21 is a frequency 
distribution depicting the population of each 
block group in the city. The vertical blue lines are 
the breaks for each density level. Although they 
are not uniformly spaced apart, the cut off points 
are set to create an equal number of block groups 
at each density level.

Figure 21: Histogram of Population Density

The X axis represents the population per acre and the Y axis quan-
tifies the number of block groups per density. The blue lines show 
the quantile break values.
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ArcMap calculated the numeric breaks for 
each category, with the result depicted in Figure 
22. The number of crashes as well as the total 
number of acres for each density classification 
was summed. The total population at each density 
level was totaled, too. 

San Francisco sees its highest population 
densities in its historic core: east of Van Ness 
Avenue, north of Market Street, and west of the 
Financial District. The block groups encompass 
the Tenderloin, Nob Hill, Chinatown and North 
Beach. There are also clusters of high density 
block groups along the Mission corridor towards 
Bernal Heights, and in the Lower Haight and 
Western Addition as one moves westward 
towards Golden Gate Park. The Richmond and 
Sunset districts, together forming the western 
portion of the city, are largely zoned for lower 
density residential, however the population 
densities there are moderate. 

The most sparsely populated block groups 
are along San Francisco’s eastern waterfront, in 
the Financial District, and west of Twin Peaks. 
The waterfront includes the majority of the city’s 
industrial land, the Financial District is zoned 
for high intensity office and commercial uses, 
and west of Twin Peaks is a mix of open spaces, 
undulating topography, and detached single 
family homes.
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Figure 22: Population Density by Block Group, 2011-2015

See Appendix B for list of sources
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The population density findings are included 
in Table 4 on the following page. From 2011-
2015 the data shows that in terms of gross crashes 
it is most dangerous for pedestrians in block 
groups with the lowest and highest population 
densities. Keeping the number of block groups 
constant between the quantiles, the low density 
and high-density block groups together see twice 
the number of collisions as the block groups in 
the middle. Only six crashes separate the low and 
high-density block groups, with 1,306 crashes 
in high density block groups and 1,300 in low 
density. When looking at gross crashes alone, 
one can conclude that between 2011 and 2015 
in San Francisco’s block groups with the densest 
and least dense populations are the most unsafe 
for pedestrians.

There is a positive relationship between 
crashes and population density: as block groups 
become denser, there are more crashes per acre. 
In fact, the relationship is nearly exponential in 
nature with crash concentrations nearly doubling 
as density climbs. The low-density quantile sees 
fewer than 1/10th of a crash per acre, whereas 
the high density quantile has 0.43 crashes per 
acre, a substantial jump.

It is reasonable to expect that high-density 
block groups will have a greater number of crashes 
per acre. Block groups are generally delineated 
according to population characteristics. With 
equal populations, a high-density block group 

tends to contain fewer acres than a sparsely 
populated one. In fact, Q1 contains one more 
block group than Q4, but takes up over four 
times the area. It would be expected than that if 
comparing crashes per acre, high density block 
groups would seem most unsafe to pedestrians.

One can induce that the high number of 
crashes in the lowest density of block groups are 
due to two primary factors: low-density block 
groups make up nearly half of the entire acreage 
of San Francisco. More street miles increases the 
opportunities for a collision. Another potential 
explanation is that drivers are less aware and 
drive faster in less complex environments. 
Additionally, these more newly developed areas 
may have wider streets with poor enclosure 
which  can influence travel speeds. 
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Quantile

Number 
of Block 
Groups

Area 
(acres) Population Crashes

Crashes 
per Acre

Crashes per 
Capita

Q1 

Low Density 

0-28.79 persons/acre 145 16,649 184,360 1,300 0.0781 0.0071
Q2 

Low-Medium Density 

28.80-40.73 persons/acre 145 5,290 184,691 603 0.1140 0.0033
Q3 

Medium-High Density 

40.74-56.74 persons/acre 144 4,618 224,364 777 0.1683 0.0035
Q4 

High Density 

56.75-309.98 persons/acre 144 3,044 244,161 1,306 0.4290 0.0053
Totals 578 29,601 837,576 3,986 n/a n/a

Averages 144.5 7,400.25 209,394 996.5 0.1482 0.0048

Table 4: Gross Crashes and Crashes per Capita by Block Group Population Density

Source: SFDPH and San Francisco Planning Department
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Although there are more crashes in total and 
per acre in high-density block groups, a different 
conclusion can be reached when considering 
crashes per capita. The block groups with the 
lowest population density have the highest per 
capita crash rate. High density block groups 
rank second. Low-medium density block groups 
are the safest per capita. Figure X makes these 
relationships clear.

The results here somewhat support the 
“strength in numbers” theory. Strength in 
numbers posits that as pedestrian volumes 
increase, so does safety. Even though Q4 is not 
as safe as Q2 and Q3 at the per capita level, high 
density block groups are safer than low density 
ones.

5.2 Employment Density 
and Crashes

The same process described above was used to 
divide the block groups into four equal quantiles.
There is less variation in employment densities 
than population densities. The high intensity 
employment centers see as many as 851 workers 
per square acre, however most block groups have 
25 workers or fewer per acre.

It is clear when comparing the map on the 
following page to the population density map 
that dramatically different block groups make 
up each quantile. Unlike population density, 
San Francisco’s employment patterns show a 
clear clustering of high density employment in 
the city’s northeast quadrant. This area includes 
the Financial District, South of Market, Union 
Square, and the majority of the city’s regional 
public transportation nodes. Whereas the city’s 
east coast saw relatively low population densities, 
there are far more workers.

Figure 23: A Comparison of Crashes per Acre and per Capita (population)
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Figure 24: Employee Density by Block Group, 2011-2015

See Appendix B for list of sources
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Table 5 summarizes the relationship between 
employment density and crashes. No clear 
pattern emerges as one considers the number of 
crashes in each quantile. Q1 (with low densities 
of employees) has the fewest number of crashes, 
and Q4 (with the highest densities) sees the 
greatest number of crashes. However, the 
relationship between employment density and 
crashes is not linear. Block groups in Q2 actually 
see more crashes than block groups in Q3. 
With the highest density block groups having 
nearly twice the number of crashes as the lowest 
densities, some may conclude that areas with lots 
of employees are the most unsafe; however, as 
we will see, the number changes drastically after 
they are normalized for pedestrian exposure.

Like population density and crashes, 
employment density and crashes (when 
normalized by area) shows a positive relationship: 
as block groups get more dense with employees, 
the crash rate per acre increases. The findings make 
a priori sense. The larger the at-risk population, 
the greater the likelihood that a crash will take 
place. And as block groups get more dense they 
become increasingly smaller in area which means 
that there will be a positive relationship between 
crashes per acre and employment density. Figure 
25 makes this clear: the blue line representing 
crashes per acre steadily climbs with density 
levels, whereas per capita crash rates are their 
smallest in the densest block groups.

Crash totals are non-uniform when employment density is considered. Low-medium and high-
density quantiles account for the most crashes. Low density employment areas had the fewest. As our 
example above showed, normalizing the data can have dramatic effects. When acreage is included, 
there is a linear relationship between crashes and employment density: the higher the density, the 
higher the crash per acre rate is. Although this may seem as though high employment density is 
correlated with a more unsafe environment, the results reverse when considered at the per capita rate. 
There is a linear relationship when crashes are measured per capita, but the relationship reverses. The 
negative linear relationship means that pedestrians at the per capita level are struck by vehicles more 
often as employment density declines.

When normalizing crashes by employee density, the relationship between crashes and density 
reverses. There is a clear negative relationship: this means that as a block group gets more dense, one 
sees a decline in collisions per capita. This trend is even stronger than it was for population density 
and crashes. In terms of employment density, the most dense quantile is the safest for pedestrians. 

Figure 25: A Comparison of Crashes per Acre and per Capita (employee)
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Quantile

Number 
of Block 
Groups

Area 
(acres)

Employee 
Population Crashes

Crashes 
per Acre

Crashes 
per Capita

Q1

Low Density

0.00-2.31 persons/acre

144 9,141 10,014 789 0.0863 0.0788

Q2

Low-Medium Density 

2.32-7.83 persons/acre

144 8,825 37,504 1,029 0.1166 0.0274

Q3

Medium-High Density

7.84-23.11 persons/acre

145 6,419 91,402 827 0.1288 0.0090

Q4

High Density

23.12-851.10 persons/acre

145 5,217 544,701 1,341 0.2570 0.0025

Totals 578 29,601 683,621 3,986 n/a n/a
Averages 144.5 7,400.25 170,905.25 996.5 0.1347 0.0058

Table 5: Gross Crashes and Crashes per Capita by Block Group Employee Density
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5.3 Land Use Mix and 
Crashes

This report analyzed automobile-pedestrian 
crashes according to five land use categories: 
commercial, industrial, mixed-use, public, and 
residential. The number of crashes were quantified 
for each zoning designation, as well as totaled 
according to land use mix. To quantify land use 
mix, the number of unique zoning categories 
were summed within each block group. This 
resulted in block groups having a land use mix 
between one and five. Two maps are below. The 
first shows the city’s zoning districts organized 
into the five categories listed above. The second 
map shows the city’s land use mix at the block 
group level.
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Figure 26: Zoning Districts in San Francisco

See Appendix B for list of sources
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See Appendix B for list of sources



95

Designation Acres Crashes
Crash per 

Acre

Commercial 954 633 0.6632

Industrial 2,057 195 0.0948

Mixed Use 3,375 1,709 0.5064

Public 8,054 423 0.0525

Residential 15,115 1,026 0.0679

Totals 29,556 3,986 n/a
Averages 5,911.2 797.2 0.1349

It is clear that much of the western section 
of the city is zoned for residential and the city’s 
eastern neighborhoods are its most diverse in 
terms of land use. One sees large mixed-use 
districts along the central waterfront as well as in 
the city’s Hunter’s Point neighborhood. North of 
Hunter’s Point is zoned for industrial with public, 
residential, and commercial nearby. The larger 
geographic area of the eastern block groups also 
contribute to them being more diverse in land 
use than the north and west. 

The following table totals the number of 
crashes that have occurred within each zoning 
category. In terms of gross crashes, mixed-use 
and residential zoning districts accounted for the 
most crashes with industrial land uses seeing the 
lowest crash total. The results change when one 
normalizes crashes by the acreage of each zoning 
designation. Although residential zoning districts 
account for nearly 25 percent of crashes, over 50 
percent of San Francisco is zoned for residential 
uses. So, when measured at crashes per acre, only 
public districts are safer for pedestrians than 
residential districts. Commercial designations 
are the most unsafe for pedestrians at the per-
acre level with a crash rate nearly ten times 
higher than that of residential districts. 

Normalizing crashes for mixed-use 
designations did not temper the initial findings: 
mixed-use zoning districts account for the 
greatest share of crashes and saw the second 
highest per acre crash rate after commercial.

Table 6: Crash per Acre by Zoning Category
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San Francisco has a complex and diverse mix 
of land uses. This report aggregated the nearly 
60 zoning districts into five basic categories. The 
five land use categories were then spatial joined 
to a block group feature class to quantify the 
number of zoning districts in each block group. 
Land use mix ranged from a minimum of one 
to a maximum of five. It must be noted that this 
analysis does not take into account Conditional 
Use authorizations for non-conforming uses, such 
as the addition of a corner grocer or laundromat 
to a residential zoning district. There is no doubt 
that San Francisco’s mix of land uses is more 
complex than the official zoning districts initially 
suggest. Table 7 organizes crashes, acreage, and 
crash density according to the number of land 
uses within each block group.

Number of 
Land Uses

Number of 
Block Groups

Area 
(acres) Crashes

Crash per 
Acre

1 22 631 102 0.1616

2 180 6,557 667 0.1017

3 313 16,286 2,207 0.1355

4 50 4,476 669 0.1495

5 13 1,651 341 0.2065

Totals 578 29,601 3,986 n/a
Averages 115.6 5,920.2 797.2 0.1347

Table 7: Crash per Acre by Land Use Mix
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Eighty-five percent of the city’s block groups 
have two or three land uses. Taken together, 
these block groups account for nearly 75 percent 
of collisions in San Francisco. This means that 
although a moderate land use mix accounts for 
most the most crashes, these block groups have 
proportionally fewer crashes than their more and 
less diverse counterparts.  

It is rare for block groups in San Francisco 
to have a single land use or all five land uses. The 
lack of block groups with only one land use type 
illustrates San Francisco’s complex and diverse 
built form. In terms of gross crashes, block 
groups with only one or all five land uses had 
the fewest number of crashes. This was a result of 
there being fewer of these kinds of block groups 
rather than something inherently more or less 
safe about them. 

The results change when one considers per 
acre crash rates. Completely homogeneous or 
heterogeneous block groups are the most unsafe 
for pedestrians. Block groups with all five land 
uses had the highest number of crashes per 
acre and block groups with only one zoning 
designation ranked just behind. The results 
signal that homogenous zoning methods should 
be avoided for pedestrian safety reasons, but as 
land uses become more mixed, greater caution 
should be taken to ensure that the environment 
is safe for pedestrians.

To summarize, between 2011 and 2015 
in San Francisco pedestrians were struck most 
often in block groups at the highest population 
density, however pedestrians are more unsafe at 
the per capita level in less dense areas. The same 
relationship was even stronger in block groups 
with high employment density. This report offers 
that diverse land use should not be shunned, but 
extra safety and traffic calming precautions are 
prudent in diverse block groups.
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Category Number Crashes Crash Frequency

Schools 132 479 479

NCT 21 408 408
NCD 25 392 392

Medical Centers 40 117 117
Parks 166 1,163 1,163

Senior Living 17 104 104
Transit Nodes 26 331 331

Libraries 28 136 136
Parking Lot 74 434 434

Police and Fire 49 234 234

5.4 Trip Generator 
Typology

The following section will discuss the 
findings from the trip generator methodology. 
Each of the individual and composite crash 
metrics will be analyzed followed by a discussion 
of the implications from the data. 

The above table lists the ten trip generator 
variables and their individual counts. Each 
category’s acreage and street miles are totaled. 
These figures were derived from the service 
area polygons that were created using Network 
Analyst. 

There are more parks and schools than any 
other land use in San Francisco. Although there 
are only 34 more parks than schools in the city, 
since several parks are spread across significantly 
larger areas than schools, acreage of parks is 
nearly four times larger than that of schools. In 
fact, there are more miles of streets bordering 
parks in the city than all the other land uses 
combined.

After organizing each trip generator category, 
the individual metrics were measured. Crash 
frequency is the most basic of the metrics in the 
study. It simply represents the total number of 
crashes for each land use category. Table 9 below 
shows the crash frequency for each category.

Category Number Area 
(acres)

Street 
Miles

Schools 132 2,160 96
NCT 21 464 25
NCD 25 523 17

Medical centers 40 615 8
Parks 166 9,538 485

Senior Living 17 258 22
Rapid Transit Nodes 26 436 24

Libraries 28 477 23
Parking Lot 74 1,162 21

Police and Fire 49 787 38

Table 8: Count, Area, and Street Miles for Each Trip Generator Category

Table 9: Crash Frequency
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The most crashes occur within 250 feet of a 
park and open space in San Francisco. This may 
seem alarming since parks generate trips from 
diverse populations, but the high levels of crashes 
are  a function of the high number of parks in the 
city rather than something inherently dangerous 
about them. Numerous studies have shown that 
parks and open space are generally more safe 
than other land use types.

Schools followed by public parking lots 
account for the second and third most crashes. 
These numbers should be studied more carefully 
since vulnerable children frequently walk to 
school and parking lots necessarily set up 
conflicts between pedestrians and cars. 

NCT and NCD districts are next. These trip 
generators see a mix of land uses and planned 
for multimodal travel. It is alarming that crash 
frequencies are so high as there are fewer NCT 
and NCD districts than other land use types.

Transit nodes see fewer crashes than the 
zoning districts listed above. The remaining land 
use categories are also correlated with fewer 
crashes than parks, schools, parking lots, NCT, 
NCD districts.

Crash density normalizes gross crash rates 
by the length, in street miles, of the service area 
polygons. Crash density is an improvement over 
crash frequency, but it still does not factor in 
pedestrian exposure. The crash density table is 
shown here.

Category Street Miles Crashes Crash Density

Schools 96 479 4.98

NCT 25 408 16.40

NCD 17 392 22.53

Medical Centers 8 117 14.21

Parks 485 1,163 2.40

Senior Living 22 104 4.75

Transit Nodes 24 331 13.63

Libraries 23 136 5.79

Parking Lots 21 434 21.17

Police and Fire 38 234 6.20

Table 10: Crash Density
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Although parks had significantly more 
crashes in total, when street miles are considered 
in the calculation, parks have the lowest crash 
density. On the other hand, NCDs, high on 
the crash frequency scale, see more crashes per 
street mile than any other land use category. 
Conclusions cannot be drawn as to why there are 
more crashes per mile. One can hypothesize that 
NCDs have diverse land uses, see high levels of 
pedestrian activity, and have many conflict points 
between pedestrians, transit vehicles, and cars. 
Further study can attempt to breakdown the 
circumstances of each crash to better understand 
the specific variables that correlate with crashes 
in NCD districts.

Parking lots see the second highest crash 
density with 21.17 crashes per street mile. This 
figure is disconcerting. There are numerous 
parking lots along the eastern waterfront and 
the Embarcadero. With few through-streets 
and lower intensities of development along the 
eastern edge of the Embarcadero, one would 
think that there would be fewer crashes within 
250 feet of parking lots and garages. 

NCTs, medical centers, and rapid transit 
nodes have the next three highest crash densities. 
NCTs are similar to NCDs in that they combine 
a multitude of uses and are multimodal in nature. 
Medical centers have only eight street miles – the 
lowest of all categories – but has 14.21 crashes per 
street mile. Many rapid transit nodes are located 

in or near NCT districts, so it is reasonable that 
its crash density is similar to NCTs. A heartening 
sign is that crash density near rapid transit nodes 
is lower than at NCTs, so it may be safer for 
pedestrians as they get closer to a rapid transit 
transfer station or underground station.

The remaining categories see similarly 
low crash densities. Like parks, schools is an 
interesting case. Although schools had a high 
crash frequency, since there is a high number of 
schools in San Francisco there is a high number 
of street miles surrounding them. Because of 
this, schools may look unsafe in terms of crash 
frequency, but actually see relatively few crashes 
per street mile than other land use categories.
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Category Pedestrian 
Volume

Number of 
Intersections

Average 
Pedestrian 
Exposure

Crashes Crash Rate 
(ped)

Schools 1,166,900,885 727 1,605,091 479 0.000298

NCT 818,917,332 258 3,174,098 408 0.000129

NCD 760,522,615 287 2,649,905 392 0.000148

Medical Centers 215,482,408 127 1,696,712 117 0.000069

Parks 2,993,355,462 2,558 1,170,194 1,163 0.000994

Senior Living 314,770,541 93 3,384,629 104 0.000031

Transit Nodes 671,392,742 156 4,303,800 331 0.000077

Libraries 349,263,156 178 1,962,153 136 0.000069

Parking Lot 1,212,828,257 345 3,515,444 434 0.000123

Police and Fire 861,822,007 292 2,951,445 234 0.000079

Crash rate is normalized by pedestrian 
exposure which can be measured by several 
metrics. This study used two metrics to create two 
unique crash rates. The first metric normalized 
crashes by pedestrian volumes. This report used 
a 2011 model created by Fehr and Peers for the 
SFMTA to quantify pedestrian volumes at the 
intersection level. The second metric normalized 
collisions by vehicle volumes. Data was derived 
from an SFMTA database of traffic counts. 
Crash rates normalized by pedestrian volume are 
shown in Table 11 below.

Table 11: Crash Rate (pedestrian)
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When normalizing crash frequency by 
pedestrian exposure, parks have the highest crash 
rate by a significant margin. Nearly three billion 
people walk near parks according the SFMTA 
model – the highest of any land use category, 
however with 2,558 intersections included in 
the parks and open spaces service area polygons, 
the average exposure is quite low. It follows that 
with a high frequency of crashes and relatively 
few pedestrians at each intersection, the crash 
rate will be quite high.

Schools, NCDs, NCTs, and parking lots 
have the next highest crash rates. Besides parks, 
schools and parking lots are the only categories 
that attract over one billion pedestrians annually. 
What is especially disconcerting about parking 
lots, however, is that unlike schools and parks, 
the average pedestrian exposure near parking 
lots is quite high. This means that “strength in 
numbers” does not necessarily apply to parking 
lots like it does for other land use variables.

The remaining categories have the lowest 
crash rates of the land use variables that were 
considered. Of these categories transit nodes and 
police and fire stations see the most foot traffic 
within 250 feet of each site. Since there are fewer 
rapid transit nodes in the city as compared to 
police and fire stations, transit nodes generate 
the highest average pedestrian exposure of all 
ten land use variables. This is reasonable since the 
majority of transit trips start and end by walking, 

and rapid transit nodes are located in dense areas 
that are suitable for mass transit.

Senior living facilities have the lowest of all 
crash rates. They are located across the city and 
are not necessarily clustered in quiet areas. One 
cannot draw conclusions from this research, but 
the findings mean that senior living facilities 
have taken care to make sure their pedestrian 
environments are safe. Or it simply means that 
seniors, a normally at-risk group, may not walk 
much outside.
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Category Vehicular 
Volume

Number of 
Intersections

Average 
Vehicular 
Exposure

Crashes Crash Rate 
(veh)

 Schools 2,966,637 587 5,054 479 0.0948

NCT 3,886,071 407 9,548 408 0.0427

NCD 1,046,124 243 4,305 392 0.0911

Medical Centers 1,483,876 177 8,383 117 0.0140

Parks 11,738,219 2,094 5,606 1,163 0.2075

Senior Living 1,084,178 118 9,188 104 0.0113

Transit Nodes 2,393,312 295 8,113 331 0.0408

Libraries 490,711 125 3,926 136 0.0346

Parking Lot 3,459,176 392 8,824 434 0.0492

Police and Fire 1,445,210 214 6,753 234 0.0346

As noted, this report also quantified a second 
crash rate metric by using vehicle counts at the 
intersection level. Crash rates as a function of 
vehicle volumes are represented in Table 12.

Table 12: Crash Rate (vehicular)
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When normalizing crash frequencies by 
vehicle volumes, parks are correlated with the 
highest crash rate. This is because parks see a 
significantly high number of crashes, but have 
a low average vehicle exposure of 5,606 vehicles 
per intersection per day. On the other end of the 
spectrum is senior living facilities. Service areas 
within 250 feet of senior living facilities generate 
the highest average traffic volume, but generate 
the fewest number of collisions out of all ten 
land use categories.

Parking lots and NCT districts have the 
second and third highest crash rates. Unlike 
parks, parking lots and NCT districts generate 
significantly high levels of vehicular traffic. 
One would think that a high average vehicular 
exposure would mitigate crash frequencies, but 
in these cases, crash frequency and crash rates are 
quite high.

Crash frequency, crash density, and crash rate 
are all individual metrics. Sum-of-ranks, which 
will be described next, is a composite metric. To 
identify the sum-of-ranks for the ten categories, 
the results of the individual metrics are ranked 
numerically from most dangerous to safest. The 
sum-of-ranks is the result of adding up how 
each land use category ranks for each metric and 
dividing by three. The three individual metrics 
can be weighted, but they were not in this 
study. Since a rank of one means that a land use 
measured as the most dangerous, the lower the 
sum-of-rank value, the more dangerous the land 
use is. The equation looks as follows:

The results can be ordered from low to high 
in order to create ranks among the land use 
variables. Table 13 shows each category’s sum of 
ranks score.

Figure 28: Sum-of-Ranks Equation

Source:  Srinivas S. Pulugurtha, et al, “New 
Methods to Identify and Rank High Pedestrian 
Crash Zones.”
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Category Sum-of-Ranks Score

NCD 7

Parking Lot 11

NCT 12

Parks 12

Schools 12

Transit Nodes 18

Police and Fire 19

Medical Centers 22

Libraries 23

Senior Living 29

Table 13: Sum-of-Ranks Scores
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According to the sum-of-ranks composite 
metric, NCD districts are most highly correlated 
with more crashes than the other land use 
variables. Parking lots have a slightly higher score, 
followed by schools, NCT districts, and parks. 
It is important to note that parks scored as the 
most dangerous in two of the three categories, 
but the least dangerous in crash density. This is 
due to crashes near parks being diffused among 
a significantly larger area than the other trip 
generators.

Like the sum-of-ranks method, a land use’s 
crash score is a composite metric. In differs from 
a sum-of-ranks by normalizing each metric 
before comparing them. Further, by normalizing 
the data, one is able to better diagnose and 
explain why a certain trip generator is unsafe. For 
example, if a land use has a disproportionately 
high crash rate when compared to vehicle 
volumes, it may mean that drivers are travelling 
too quickly along relatively uncongested roads. 
If a trip generator sees disproportionately high 
crash rates when compared to pedestrian volume, 
it may mean that motorists are not yielding to 
pedestrians or the pedestrian realm is lacking in 
infrastructure.

The crash score equation is as follows:

The three scores are summed to get a trip 
generator’s final crash score. The land uses can 
then be ranked from most dangerous to most 
safe. Table 14 below shows the crash scores.

Figure 29: Crash Score Equation

Source:  Srinivas S. Pulugurtha, et al, “New 
Methods to Identify and Rank High Pedestrian 
Crash Zones.”
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Category Crash Score Rank

Parks 210.64 1

NCD 158.77 2

Parking Lot 130.09 3

NCT 106.31 4

Schools 97.83 5

Transit Nodes 87.89 6

Medical Centers 76.74 7

Police and Fire 52.18 8

Libraries 49.37 9

Senior Living 29.65 10

Table 14: Crash Score Ranks
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Whereas NCD districts were deemed most 
unsafe according to the sum-of-ranks method, 
parks have the highest crash score. Parks scored a 
perfect 100 for both crash rate metrics, meaning 
that it led all other categories in crashes as they 
relate to pedestrian and automobile volumes. 
Since parks have a low crash density score, one can 
confidently claim that parks are not too densely 
situated in the city. Their ubiquity makes them 
relatively safer, however crashes are happening 
at disproportionately high rates as they relate to 
pedestrian and vehicle volumes.

NCD districts ranked just behind parks. The 
relatively small footprint of these areas meant 
crashes were highly concentrated. Because of this, 
NCDs were the most dangerous of all land uses 
in terms of crash density. NCD districts also had 
a disproportionately high crash rate as compared 
to vehicle volumes. This means that automobile-
pedestrian interactions are particularly dangerous 
in these areas. One can only make educated 
guesses, but the phenomenon of circling the 
block looking for on-street car parking spaces is 
prevalent in NCD districts. Distracted drivers 
looking for a parking space are more prone to 
strike a pedestrian than a more aware driver. 
If this hypothesis is true, an expansion of San 
Francisco’s demand responsive pricing model 
should be expanded throughout the city.

Parking lots scored third on the list. They 
scored high on the crash density metric, 
meaning that there are a high number of crashes 
as compared to the street miles surrounding 
parking lots and garages. According to crash 
rates as a function of vehicle volume, they scored 
safer than NCD districts. Although care should 
always be taken when building more parking 
supply, San Francisco should direct drivers to 
existing parking lots and garages rather than 
looking for difficult to find on-street parking in 
and near NCD districts.
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5.5 Logistic Regression
The final method was the creation of a 

binary logistic regression model. The model 
was set up to glean the relationship between 
18 demographic and land use variables and the 
odds of there being a crash that results in visible 
or injury or death. Although the totality of the 
methods until now have only included land use 
and population variables, the logistic regression 
model also included driver characteristics, driving 
conditions at the time of the crash, and if any 
citations were written at the scene. Although this 
original research is aimed at learning more about 
the relationship between land use and safety, by 
adding extra non-land use variables, one can be 
more certain that the conclusions reached are 
valid.

3,985 crashes were ultimately included 
in the model. Care was taken to remove any 
records with incomplete data. Of the cases that 
were included, 2,267 of them resulted in only a 
complaint of pain. The 1,718 remaining crashes 
created visible injury or death. The nearly fifty-
fifty split lent itself nicely to a logistic regression.

The following table is the regression output. 
For the purpose of this study, the key columns 
in the table are the name of each variable, the 
intercept (B), significance level (Sig.), and odds-
ratio (Exp(B)). Several independent variables 
that had insignificant p-values were removed 

from the model. However, since only including 
statistically significant independent variables 
could result in a model that is “over-fit,” variables 
that were integral to this study were included even 
if they could not disprove the null hypothesis.

Choosing the correct variables in a logistic 
regression can be more art than science, so this 
report selected independent variables using a 
careful, iterative approach. The totality of the 
variables were included in the model, and the 
“Backward- Conditional” method was used to 
iterate. This method works in a stepwise manner: 
it starts by including every independent variable 
and, one by one, removing the variable with 
the highest significance rating. At the end of 
the process, only the significant variables were 
included. The 17 iterations informed which 
variables would ultimately be included in the 
model.
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

80% C.I.for EXP(B) 

Lower Upper 

Step 1a FocusOnTheFive .092 .098 .880 1 .348 1.096 .967 1.243 

DUI 1.193 .474 6.328 1 .012** 3.298 1.796 6.058 

PedCited .736 .101 53.429 1 .000** 2.088 1.835 2.376 

IntersectionCrash -.163 .082 3.935 1 .047** .850 .765 .944 

Traffic_Calm -.155 .081 3.702 1 .054* .856 .772 .949 

Nightime .150 .069 4.677 1 .031** 1.162 1.063 1.269 

Libraries -.271 .141 3.713 1 .054* .762 .636 .913 

Police_Fire -.276 .107 6.609 1 .010** .759 .662 .871 

Transit_Nodes -.066 .108 .373 1 .541 .936 .814 1.075 

CoC -.097 .068 2.067 1 .150 .907 .832 .989 

Schools -.015 .078 .036 1 .850 .985 .892 1.089 

NCT .096 .058 2.785 1 .095* 1.101 1.023 1.186 

NCD .112 .072 2.409 1 .121 1.118 1.020 1.226 

Parks -.010 .048 .044 1 .834 .990 .931 1.053 

PERC_INDUSTRIAL .494 .274 3.243 1 .072* 1.639 1.153 2.330 

PERC_PUBLIC .524 .220 5.681 1 .017** 1.689 1.274 2.239 

PERC_COM -.024 .170 .020 1 .888 .976 .785 1.214 

PERC_RES .207 .138 2.248 1 .134 1.230 1.030 1.468 

Constant -.577 .153 14.294 1 .000 .562   
a. Variable(s) entered on step 1: FocusOnTheFive, DUI, PedCited, IntersectionCrash, Traffic_Calm, Nightime, 

Libraries, Police_Fire, Transit_Nodes, CoC, Schools, NCT, NCD, Parks, PERC_INDUSTRIAL, PERC_PUBLIC, 

PERC_COM, PERC_RES. 

Variables with an (**) are statistically significant at the 95 percent confidence level. 

Variables with an (*) are statistically significant at the 90 percent confidence level. 
 

Table 15: Logistc Regression 
Output
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There were six variables that were statistically 
significant at the 95 percent confidence level. 
Ten variables were significant at 90 percent 
confidence level. If a significance value is 
equal to or less than 0.05, one can say with 95 
percent certainty that the there is a statistically 
significant relationship between the independent 
and dependent variables and the null hypothesis 
can be rejected.

Looking at the output, one quickly finds that 
the type of violation that was written by the police 
officer at the scene has the strongest positive 
relationship with a pedestrian being involved in 
a crash that results in visible injury. If a driver is 
cited for driving under the influence, the odds of 
a crash resulting in visible injury increases three-
fold. Likewise, if a pedestrian is cited at the scene 
for an illegal behavior, such as crossing against 
a light or walking in the street, he is over twice 
as likely to be involved in a crash that results in 
injury. Future research needs to be done to learn 
if this is due to an underreporting of crashes by 
pedestrian victims, or if responding police officers 
are more prone to find a pedestrian at fault than 
a driver when making crash site reports.

Intersection crashes are less likely to result in 
visible injury than mid-block crashes, and crashes 
that occur near traffic calming measures such as 
speed humps, roundabouts, or bulb outs are less 
likely to result in visible injury. This can be due 
to intersection crashes being lower speed than 

mid-block crashes. These results also support the 
efficacy of street calming measures in slowing 
down traffic to make streets safer. This report 
calls for an increase in mid-block traffic calming 
measures and the continuation of intersection 
level pedestrian upgrades. Finally, nighttime 
crashes were modelled and were statistically 
significant to increase the odds of a visible injury. 
A street light audit should be undertaken to 
address this issue.

Five land use variables were significant at 
the 90 percent confidence level. Libraries, police 
and fire stations were all found to decrease 
the odds of a visible injury. This is heartening 
because libraries attract a diverse clientele. And 
there would be serious problems if police and 
fire stations create dangers rather than mitigate 
them.

NCT districts, and percentage of public 
or industrial were all correlated with a slightly 
higher odds of a crash resulting in visible injury. 
NCT districts, although statistically significant, 
had a weaker correlation than public and 
industrial zoning districts. It should also be 
noted that, although not statistically significant, 
the presence of a rapid transit node lessened the 
odds of a dangerous crash. 

Each percentage increase in public and 
industrial zoning districts, on the other hand, 
correlated with a 68 percent and 63 percent 

greater odds of a crash resulting in visible injury 
or death. The city should look into additional 
traffic calming measures when locating new 
housing developments in and around industrial 
areas. 

Overall, whereas several land use variables 
were statistically significant, non-land use 
variables such as driver intoxication and 
pedestrian citations were stronger predictors of 
an increased likelihood of a crash resulting in 
visible injury. This confirms Ukkusuri, et al.’s 
finding that whereas land use is a useful indirect 
measure of crash severity, vehicle speeds and 
street design more directly influence pedestrian 
safety.51 

51 Satish Ukkusuri, et al., “The Role of Built Environment on 
Pedestrian Crash Frequency.”
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POLICY RECOMMENDATIONS AND SUGGESTIONS FOR FUTURE RESEARCH

This report endeavored to better understand 
the relationship between demography and 
land use with pedestrian crashes. Population, 
employment, zoning, and land use data was 
collected and integrated with a crash dataset for 
the City and County of San Francisco between 
2011 and 2015. After an analysis of crashes at a 
citywide scale, three distinct, localized methods 
were used. The first method compared crashes 
with population density, employment density, 
and land use mix at the block group level. The 
findings confirm prior research: although there 
are more crashes in total, per capita crash rates 
are lower in denser block groups than in less 
dense ones. This relationship was stronger for 
employment density than population density. 

San Francisco’s diverse land use mix is 
represented, and shaped, by its zoning code. 
Most block groups had a moderate mix of two 
to four distinct land use types, and fewer were 
entirely homogenous or heterogeneous. Block 
groups with a single land use and all five land 
uses were the two most dangerous land use mix 
levels. 

The second method included the creation 
of a trip generator typology to closely study the 
relationship between each trip generator and 
pedestrian safety. To understand these links, 
several metrics were calculated. Depending on 
the metric, different conclusions can be drawn; 
however, if one uses the normalized, composite 
crash score metric, parks, NCDs, and parking lots 
rank as the most dangerous land uses. Police and 
fire stations, libraries, and senior living facilities 
were deemed the safest.

A logistic regression model was created 
to quantify the odds that the presence of an 
independent variable near a crash site would 
increase the likelihood of a crash resulting in 
visible injury or death. The land uses from the 
typology, as well as demographic and crash 
location variables were included as independent 
variables in the model. Although several trip 
generator land uses were statistically significant, 
non-land use variables had a stronger predictive 
relationship for the dependent variable.
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There are policy implications from the 
findings recapitulated above. First, this study has 
shown the value of addressing pedestrian safety 
in a localized context rather than at the corridor 
or citywide level. By highlighting nearby land 
uses, one is more able to answer the why rather 
than simply the where of a crash. It is still 
impossible to make any causal claims from the 
research, and care should be taken not to overly 
generalize the findings, but the methodology can 
be easily replicated in other municipalities to see 
if patterns emerge.

From the density and land use calculations, 
the strength-in-numbers theory was generally 
supported. Because of this, dense housing or 
office developments should not be avoided, 
however extra precautions should be taken to 
minimize automobile-pedestrian interactions in 
the densest areas. A congestion pricing scheme in 
the city’s northeast quadrant, its densest, where 
the densest areas of the city are, would moderate 
traffic levels and reduce vehicular exposure. 

Although denser block groups are safer 
per capita, one must still reckon with the fact 
that more people are injured in total in dense 
block groups than less dense ones. Per capita 
crash rates matter, but San Francisco should be 
more concerned with gross crash totals when 
measuring progress in pedestrian safety.

San Francisco should continue its 
development of mixed-use, walkable 
communities. Although the block groups with 
all five land uses were the most unsafe, block 
groups with multiple land uses were safer than 
block groups with only one land use. One can 
only infer as to why this is, but one explanation 
is that homogenous block groups correlate with 
higher traffic speeds or less attentive drivers. 
What urban planning researchers do know is 
that mixed use developments can better promote 
short, walkable trips without the need for a 
private vehicle, so for both safety and quality 
of life reasons, land use diversity should be 
promoted. This report recommends further study 
to see why block groups with five land uses are 
most unsafe.
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Numerous policy recommendations can be 
made from the trip generator typology.

• Schools see a disproportionately high 
crash rate as compared to other land uses. That is, 
one sees more crashes per pedestrian or per vehicle 
near schools than other areas. To counteract this 
trend, Safe Routes to Schools programs should 
continue to be funded and children should be 
encouraged to walk to school with their peers. 

Research has shown that parents choose to 
drive instead of walk with their children to school 
because of time constraints rather than safety 
concerns.  Rather than have hurried parents 
converge near schools in vehicles, children should 
be supported to safely walk in groups to school.

• NCD districts routinely scored poorly. 
Its crash rate suggests that distracted driving is 
a culprit. NCD districts attract a wide range of 
interests due to a wide variety of trip destinations, 
so more time should be taken to study their 
intricacies. One recommendation is that on-
street parking supply should be minimized in 
favor of curb regulations that promote active 
uses. San Francisco’s demand responsive pricing 
scheme should be aggressively expanded in NCD 
districts to minimize circling the block looking 
for on-street parking which results in distracted 
driving. 

• Although parking lots did not fare 
much better than NCD districts according to 

the metrics, they did score safer. Transportation 
Network Companies (TNCs) have already 
relaxed the demand for parking in the city’s 
garages, so the city would be well-served to re-
route on-street parking demand to off-street 
locations. Parking lot ingress and egress must be 
located off of high-demand pedestrian streets, 
but close enough to still access them by foot.

• Parks require more study. This report 
only partially supported the working theory that 
parks and open space foster safety. This can be due 
to the extreme variation in size, amenities, and 
locations of San Francisco’s parks. A pocket park 
in a dense downtown area will generate different 
kinds of trips than vast open spaces to the south 
or west. Future research should separate parks 
and open spaces into sub-categories for a more 
refined analysis..

• NCT districts scored safer than NCD 
districts, however they did not perform as well as 
libraries, senior housing, or emergency services. 
NCT districts already forbid the expansion of 
off-street parking supply, but more must be done 
to address on-street parking. As the Mission 
Street dedicated bus lane and the Muni Metro 
L-Taraval projects have shown, San Francisco 
has not taken an aggressive stance in limiting 
vehicular exposure in NCT districts. In both of 
these examples, populist demand for on-street 
parking trumped safety. Opponents of the each 
project successfully lobbied for the watering 

down of transit improvements in favor of parking 
retention. 

• Rather than sacrifice safety for most 
for the convenience of a few, the city should be 
looking to expand its supply of rapid transit 
nodes in and outside of NCT districts. Rapid 
transit nodes, often located within NCT districts, 
scored safer than NCT districts as a whole. This 
means that pedestrians in NCT districts are safer 
the closer they are to a rapid node.
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According to the model, as the share of 
public zoning within a crash location’s service 
area increases, so does the likelihood of a crash 
resulting in visible injury or death. As mentioned 
above, more must be done to understand the 
relationship of publicly zoned land and safety 
in San Francisco. A temporal study, as well as a 
study of crash victim demography may elucidate 
why public zoning districts scored poorly for 
safety. 

The research in this report is an early step 
for local planners and safe streets advocates to 
best understand the conditions for pedestrians 
in San Francisco. By harnessing current data 
and using several methods to analyze safety 
at numerous localized levels, this paper was 
able to propose achievable and actionable 
policy recommendations for practitioners and 
researchers alike. However, as smart-phone 
enabled shared mobility, managed fleet, and 
autonomous technologies proliferate, it is 
paramount that researchers continuously update 
and reconsider previously held notions. Even 
though the ways we interact with our built form 
environments change with technology, we all 
deserve to be safe.

Each of the above recommendations 
withstand the results from the logistic regression, 
but the addition of demographic and crash 
details to the regression model add more depth 
to analysis. Although outside the scope of this 
report, it was found that a pedestrian being cited 
at the scene of a crash correlated with greater 
odds that the pedestrian was visibly injured. This 
is a disconcerting trend and more must be done 
to explain this finding. Further, a driver being 
ticketed for a Focus on the Five offense had a 
statistically insignificant negative relationship 
with crash severity. This means that when a driver 
is cited, the crash is less likely to produce a visible 
injury. This paper recommends the statewide 
adoption of automated speed enforcement 
and red light cameras to remove the human 
element as much as possible from policing traffic 
infractions. Camera footage can also be used for 
midblock and intersection level crashes to more 
objectively measure the culpability of either party.

The logistical regression shows that mid-
block crashes more seriously injure pedestrians 
than crashes in intersections. This finding, 
coupled with the model clearly stating that 
traffic calming measures increase safety, means 
that the city should focus on mid-block safety 
interventions when possible. This can include 
mid-block roundabouts, traffic humps, or 
chicanes. 
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Appendix A
The following series of maps shows the locations, street miles, and 250 foot service areas for each 

trip generator category. In addition, a map showing the every crash location has been included for 
reference.
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Appendix B
The following table lists the categories, online locations, and purpose for each category in the trip 

generator method.

Data categories and sources

Category Source URL Purpose
Parks SF Open 

Data

https://data.sfgov.org/Culture-and-Recreation/Park-Lands-Recreation-and-

Parks-Department/42rw-e7xk

Trip Generator Typology

Map of Schools SF Open 

Data

https://data.sfgov.org/Economy-and-Community/Map-of-Schools/qb37-w9se Trip Generator Typology

Library SF Public 

Library

https://sfpl.org/pdf/libraries/sfpl421.pdf Trip Generator Typology

SFMTA/Port 

Parking Garage

SF Open 

Data

https://data.sfgov.org/Transportation/Parking/9qrz-nwix Trip Generator Typology

Fire/Police SF Open 

Data

https://data.sfgov.org/Geographic-Locations-and-Boundaries/San-Francis-

co-Facilities-Current-Zipped-Shapefile-/9vhi-qnsc

Trip Generator Typology

Rapid Transit Nodes SF Open 

Data

https://data.sfgov.org/Geographic-Locations-and-Boundaries/San-Francis-

co-Facilities-Current-Zipped-Shapefile-/9vhi-qnsc

Trip Generator Typology

Annual Pedestrian 

Volume

SF Open 

Data

https://data.sfgov.org/Transportation/Map-of-Estimated-Yearly-Pedestrian-Vol-

ume-at-Inter/xzu6-znwn

Crash Metrics

Medical Facilities SF Open 

Data

https://data.sfgov.org/Geographic-Locations-and-Boundaries/San-Francis-

co-Facilities-Current-Zipped-Shapefile-/9vhi-qnsc

Trip Generator Typology

Zoning Districts SF Open 

Data

https://data.sfgov.org/Geographic-Locations-and-Boundaries/Zoning-Dis-

tricts/8br2-hhp3

Land Use Mix
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Category Source URL Purpose
Neighborhood Commercial 

District

SF Open Data https://data.sfgov.org/Geographic-Locations-and-Boundaries/Zon-

ing-Districts/8br2-hhp3

Trip Generator 

Typology
Neighborhood Commercial 

Transit District

SF Open Data https://data.sfgov.org/

Geographic-Locations-and-Boundaries/Zoning-Districts/8br2-hhp3

Trip Generator 

Typology

San Francisco Block Groups United States Census https://www.census.gov/geo/maps-data/data/cbf/cbf_blkgrp.html Density 

Calculations
San Francisco Population 

by Block Group, American 

Community Survey 5-Year 

Estimate (2011-2015)

American 

Community 

Survey

https://factfinder.census.gov/ Population 

Density

Employment Population Longitudinal Employ-

er-Household Dynamics

https://lehd.ces.census.gov/ Employment 

Density
Metropolitan 

Transportation 

Commission’s Communities 

of Concern 

MTC’s ArcGIS 

Online Data 

Portal

http://mtc.maps.arcgis.com/home/

item.html?id=7ce7b5ba22514340bb7dffdc6bdc4287

Equity 

Calculation
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Logistic Regression Independent Variables

Category Description
Focus on the Five Crashes where a driver was cited for a Focus on the Five infraction was coded as “1.” All other 

crashes coded with a “0.”
DUI Crashes where a driver was cited for DUI was coded as “1.” All other crashes coded with a “0.”

Pedestrian Cited Crashes were a pedestrian was cited at the scene were coded as “1.” If they were not, the crash 
wascoded with a “0.”

Traffic Calming If a traffic calming feature was located within the service area of a crash, the record was coded 
with a “1.” All other crashes coded with a “0.”

Nighttime Nighttime crashes were coded with a “1.” All other crashes coded with a “0.”
Libraries The count of libraries within the service area of a crash.

Police Fire The count of police and fire stations within the service area of a crash.
Transit Nodes The count of transit nodes within the service area of a crash.

Community of Concern Crashes within the boundary of a CoC coded with a “1.” If not, the crash was coded with a “0.”
Schools The count of schools within the service area of a crash.

NCT Crashes within the boundary of an NCT coded with a “1.” If not, crash was coded with a “0.”
NCD Crashes within the boundary of an NCD coded with a “1.” If not, crash was coded with a “0.”
Parks The count of parks within the service area of a crash

Percent Industrial Is the percentage of each service area polygon that is zoned for industrial uses.
Percent Public Is the percentage of each service area polygon that is zoned for public uses.

Percent Commercial Is the percentage of each service area polygon that is zoned for commercial uses.
Percent Residential Is the percentage of each service area polygon that is zoned for residential uses.
Percent Mixed Use Is the percentage of each service area polygon that is zoned for mixed uses.

The following list defines each indepdenent variable in the logistic regression.
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