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ABSTRACT
With the development of new over-actuated multirotor vertical lift aircraft, there is a need to identify accurate vehicle
models from flight data at the individual effector level to validate physics based models or skip physics based models
altogether and develop simulation models direction from the identification results. Typical frequency-domain system
identification methods break down when the bare-airframe inputs are highly correlated, which is often the case when
collecting system identification data for over-actuated vehicles. The Joint Input-Output Method has been previously
used to mitigate the issue of input correlation, and is applied in this paper to a simulation example based on an
octocopter UAS in hover. Several excitation methods are investigated to determine which are best suited for use with
the Joint Input-Output Method. The identification results of the different methods with varying levels of measurement
noise are presented, as are the main advantage and disadvantaged of each method. Based on these results, guidelines
are provided for multirotor system identification using the Joint Input-Output Method.

NOTATION

Symbols
CCC Control allocation matrix
FFF Feed-forward controller
GGGxx Power spectral density matrix
GGGxy Cross spectral density matrix
HHHxy Frequency response (matrix) from inputs in vec-

tor xxx to outputs in vector yyy
KKK Feedback controller
MMM Virtual effector to individual actuator mixing ma-

trix
NNN Individual actuator to virtual effector mixing ma-

trix
nnn Vector of measurement noise
PPP Bare-airframe
rrr Vector of reference inputs
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uuu Vector of tracking signal commands
vvv Vector of commands summed into bare-airframe

inputs
xxx Vector of bare-airframe inputs
yyy Vector of bare-airframe outputs
γ2

xy Coherence between x and y
ω Frequency [rad/sec]
σn Noise RMS value
ṽvv Vector of commands summed into virtual effec-

tors inputs
x̃xx Vector of virtual effector inputs

Acronyms
NSR Noise-to-Signal Ratio
PSD Power Spectral Density
SNR Signal-to-Noise Ratio

INTRODUCTION

The new generation of vertical lift aircraft, including
the U.S. Army’s Future Attack Reconnaissance Air-
craft (FARA) and Future Long Range Assault Aircraft
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(FLRAA) as well as manned urban air mobility (UAM)
and unmanned multirotor electric vertical take-off and
landing (eVTOL) configurations, are generally over-
actuated with more controls (e.g., swashplate actuators,
aerosurface actuators, motor RPM commands, etc.) than
command variables (e.g., roll rate, pitch rate, yaw rate,
and thrust). System identification models for such air-
craft need to accurately represent the bare-airframe with
explicit control derivatives determined for each individ-
ual control effector or actuator. Such models are needed
for physics-based simulation model validation and con-
trol system design including control allocation design for
nominal operation and control reconfiguration algorithms
in the case of failed control actuators (e.g., Ref. 1).

Frequency-domain system identification methods used
to characterize the bare-airframe require that the bare-
airframe inputs be at most partially correlated (with
cross-control coherence of γ2 < 0.5) (Ref. 2). In the case
of over-actuated vertical lift aircraft, system identifica-
tion data are typically collected with a control system en-
gaged and with a fixed control allocation scheme, which
can lead to fully correlated bare-airframe inputs even
when the bare-airframe dynamics are decoupled. Tischler
(Ref. 2) provides a Multi-Input/Single-Output (MISO)
Direct Method to condition the data and remove the ef-
fects of partially-correlated secondary inputs, however,
the method breaks down for highly- or fully-correlated
inputs (cross-control coherence of γ2 > 0.5).

Berger, et al. (Ref. 3) addressed the issue of fully cor-
related inputs in flight dynamics system identification by
employing the Joint Input-Output (JIO) Method as a post-
processing step to the MISO Direct Method, and showed
that accurate identification results of a Multi-Input/Multi-
Output (MIMO) bare-airframe can be obtained in the
presence of fully-correlated inputs.

In the JIO Method, both the inputs and outputs of the
bare-airframe are considered jointly as outputs to a set
of uncorrelated (or at most partially-correlated) reference
inputs. The identification is still done using the standard
MISO Direct Method, and results in two sets of identified
frequency responses: 1) from reference inputs to bare-
airframe inputs, and 2) from reference inputs to bare-
airframe outputs. The bare-airframe frequency responses
are then calculated from the ratio of the frequency re-
sponses identified using the MISO Direct Method.

The JIO Method was first proposed by Akaike in 1967
(Ref. 4) as a way to mitigate measurement noise corre-
lation when analyzing single-input/single-output (SISO)
systems with feedback, and is based on the time-domain
Instrumental Variables Method introduced by Geary
(Ref. 5) and Reiersøl (Ref. 6) in the 1940s in the field
of econometrics. In the 1970s, work was done on as-
sessing the accuracy of results obtained using the JIO

Method (e.g., Ref. 7, 8) and on extending its use to para-
metric MIMO system identification (e.g., Refs. 9–11). In
the 1980s, work continued on extending the JIO Method
to non-parametric (frequency response) MIMO system
identification (e.g., Refs. 12, 13). At the same time, the
JIO Method also began being used in the field of modal
analysis and referred to as the the Three-Channel Fre-
quency Response Function (FRF) Method (e.g., Refs. 14–
16).

More recently, the JIO Method was utilized by Gennaretti
(Ref. 17) and Hersey (Ref. 18) for identification of
rotorcraft inflow models with highly-correlated inputs.
Hersey also introduced a method to estimate the coher-
ence for frequency responses identified using the JIO
Method. The JIO Method has also recently been ap-
plied to identify flight-dynamics models of several air-
craft from flight data, including an F-16 (Ref. 19), a
business jet (Refs. 3, 20), an octocopter unmanned aerial
system (UAS) (Refs. 20, 21), and the Bell V-280 tiltro-
tor aircraft (Ref. 22). In all four cases, the flight data
were collected closed-loop, which resulted in the bare-
airframe inputs being highly correlated. In the case of the
F-16 (Ref. 19), the octocopter (Refs. 20, 21), and the V-
280 (Ref. 22), the aircraft had redundant controls which
further led to high correlation between redundant inputs
in each axis. In all cases, the JIO Method was success-
fully applied to identify accurate bare-airframe models
from flight data with correlated inputs.

In this paper, a closed-loop simulation example of an oc-
tocopter UAS is used to investigate the effects of differ-
ent JIO strategies on the identification results. Specif-
ically, the choices of vehicle excitation input location,
bare-airframe input selection, and reference signal selec-
tion, are investigated. For example, for vehicles oper-
ating in closed-loop, excitation signals may be summed
into the closed-loop tracking command or directly into
the bare-airframe inputs. In the first case, the control sys-
tem attempts to track the excitation signal, while in the
latter the control system sees the excitation signal as a
disturbance and attempts to reject it. In the case of bare-
airframe input selection, the choice is between individual
actuators or virtual effectors, which can be formed from
symmetric and differential groups of actuators to concen-
trate the vehicle excitation to a particular axis. For exam-
ple, for a winged aircraft with individual actuators con-
sisting of left and right flaperons, virtual effectors con-
sisting of symmetric and differential flaperons can be ex-
cited to produce primarily pitch and roll motion. Finally,
the reference signal used in the analysis can be any sig-
nal measured that has high coherence with both the bare-
airframe inputs and the bare-airframe outputs. However,
external signals that are not correlated with the noise in
the system are often the best choice for reference signals,
since they produce unbiased estimates (Ref. 4).
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Fig. 1. Generic closed-loop block diagram representative of a multirotor vehicle.

The remainder of the paper is organized as follows. First,
a brief overview of multi-input system identification is
given, with descriptions of the MISO Direct and JIO
Methods. Next, the test case used in this paper is de-
scribed, including the bare-airframe and control system.
The different JIO strategies investigated in the paper are
then introduced, and predicted analytical results are given
for each method to demonstrate the difference between
them. This is followed by the simulation identification
results for the different JIO strategies, which are corre-
lated with the analytical results. Finally, a discussion of
the results, including guidelines for system identification
of multirotor UAS, and conclusions are presented.

MULTI-INPUT SYSTEM
IDENTIFICATION USING THE JOINT

INPUT-OUTPUT METHOD

Multi-Input System Identification Overview

Figure 1 shows a generic block diagram that is represen-
tative of a multirotor vehicle and consists of a MIMO
bare-airframe PPP, control allocation CCC (sometimes referred
to as mixer or effector blender), feedback controller KKK,
and feed-forward controller FFF . The tracking command
inputs (generated by the pilot stick or ground station) are
denoted by vector uuu ∈ Rnu , bare-airframe inputs by vec-
tor xxx ∈ Rnx , bare-airframe outputs by vector yyy ∈ Rny , and
measurement noise by vector nnn ∈ Rny . Inputs vvv ∈ Rnx

may also be summed directly into the bare-airframe in-
puts to excite the vehicle.

A non-parametric frequency-response matrix representa-
tion of the MIMO bare-airframe PPP is necessary for para-
metric model structure determination and for transfer-
function and state-space model identification. The
MIMO bare-airframe PPP can be expressed as a matrix of
frequency responses:

PPP =

Hx1y1(ω) . . . Hxnx y1(ω)
...

. . .
...

Hx1yny (ω) . . . Hxnx yny (ω)

≡ HHHxy(ω) (1)

which can be identified from flight data by exciting the
bare-airframe through some external excitation (e.g., uuu or
vvv in Fig. 1), and measuring xxx and yyy. The responses of xxx
and yyy to the external signals in Fig. 1 are given by:

yyy = (III +PPPCCCKKK)−1PPPCCCFFFuuu+(III +PPPCCCKKK)−1PPPvvv

+(III +PPPCCCKKK)−1nnn

xxx = (III +CCCKKKPPP)−1CCCFFFuuu+(III +CCCKKKPPP)−1vvv

−(III +CCCKKKPPP)−1CCCKKKnnn (2)

Using the frequency-domain Multi-Input/Single-Output
(MISO) Direct Method (Ref. 2), the bare-airframe
frequency-response matrix HHHxy can be identified from the
input xxx and output yyy auto- and cross-spectral density ma-
trices as:

HHHxy(ω) = GGGxy(ω)GGG−1
xx (ω) (3)

Equation 3 represents ny×nx matrix at each of the nω fre-
quency points used in the analysis. In CIFER® (Ref. 2)
for example, the spectral density functions (Gxiy j and
Gxix j ) that make up the spectral density matrices in the
right-hand side of Eq. 3 are first extracted from over-
lapped windowed time history data, using several differ-
ent window lengths. Then, the calculation in Eq. 3 is
applied one output at a time to produce conditioned fre-
quency responses. Finally, the conditioned frequency re-
sponses from the different window lengths are combined
into composite frequency responses.

When high correlation exists between the bare-airframe
inputs xxx [as indicated by the coherence between the pri-
mary input xi and secondary inputs x j being γ2

xix j
> 0.5
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(Ref. 2)], the matrix GGGxx(ω) will be nearly singular and
cannot be inverted to complete the calculation in Eq. 3. If
however, all secondary inputs x j are all small compared to
the primary input xi [as indicated by Gx jx j −Gxixi ≤−20
dB (Ref. 2)], then the secondary inputs can be ignored
altogether in the analysis, treating the system as Single-
Input/Single-Output (SISO). When the secondary inputs
are not small, treating the system as SISO may lead to
incorrect results when identifying a bare-airframe with
coupled dynamics, as demonstrated for both simulation
and flight test examples in Ref. 3.

For these cases of highly-correlated inputs with similar
magnitudes, the MISO Direct Method can be applied us-
ing the uncorrelated (or only partially-correlated) exter-
nal excitation signals (uuu or vvv in Fig. 1) as the input, and
a post-processing step using the JIO Method is added as
explained in the following section.

Joint Input-Output Method Overview

In the JIO Method, identification is done in two steps.
First, the bare-airframe inputs xxx and outputs yyy are treated
as outputs to a set of uncorrelated (or partially-correlated)
reference inputs rrr, thus identifying two frequency re-
sponse matrices using the MISO Direct Approach:

HHHrx(ω) = GGGrx(ω)GGG−1
rr (ω)

HHHry(ω) = GGGry(ω)GGG−1
rr (ω) (4)

Then, a post-processing step is added, in which the
frequency response matrices identified in the first step
(Eq. 4) are used to construct the bare-airframe frequency
response matrix:

HHHxy(ω) = HHHry(ω)HHH−1
rx (ω) (5)

Since the bare-airframe input power spectral density
(PSD) matrix GGGxx does not need to be inverted when using
the JIO Method (Eqs. 4 and 5), the bare-airframe inputs
can be highly correlated without negatively effecting the
identification results. However, several conditions must
be met to apply the JIO Method:

1. The individual reference inputs ri must be at most
only partially correlated (i.e., the cross-control co-
herence γ2

rir j
< 0.5 for all i 6= j, following the MISO

Direct Method guidelines in Ref. 2), such that the
PSD matrix GGGrr is invertible to complete the calcu-
lations in Eq. 4.

2. The reference input rrr must have the same number of
elements as xxx (i.e., rrr ∈Rnx ), such that the frequency
response matrix HHHrx is square.

3. The individual reference inputs ri must generate in-
dependent combinations of bare-airframe inputs xxx,
such that the matrix HHHrx is invertible to complete the
calculation in Eq. 5.

Overall, the JIO Method has several advantages and dis-
advantages over the MISO Direct Method. The main ad-
vantage of the JIO Method is that it permits identification
of MIMO systems with highly correlated inputs, as de-
scribed above. A second advantage of the JIO Method
(applicable to both MIMO and SISO identification, and
which was its original application, Ref. 4), is that the
bare-airframe frequency response estimate obtained us-
ing Eq. 5 is unbiased in the presence of correlated noise
nnn in the bare-airframe input xxx and bare-airframe output yyy
(i.e., cases where GGGxn 6= 000 and GGGyn 6= 000). This is because
the reference input rrr can be chosen such that it is not cor-
related with the noise nnn (i.e., GGGrn = 000). Correlated noise
in the input and output can be caused by feedback and
results in biased bare-airframe frequency response esti-
mates using the MISO Direct Method for high levels of
noise-to-signal ratio (NSR > 0.3) (Ref. 2).

The main disadvantage of the JIO Method is that the
overall accuracy of the identification of HHHxy is a func-
tion of the accuracy of both HHHry and HHHrx. Therefore, as
will be discussed in the next section, the reference sig-
nal rrr should be chosen such that is has a high signal-to-
noise ratio (SNR) and high coherence with both the bare-
airframe input xxx and bare-airframe output yyy across the
frequency range of interest. This will ensure estimates of
HHHry and HHHrx with low variance, and improve the overall
accuracy and coherence of HHHxy (Ref. 3).

Experimental Design for Best JIO Results

In a typical flight test, the reference inputs rrr are excited
one at a time using a frequency sweep signal for a total
of nx sets of records (accounting for repeat maneuvers for
each reference inputs). Then, the i-th columns of HHHrx and
HHHry are determined from the records corresponding to the
excitation of ri as:

Hrix j(ω) = Grix j(ω)/Griri(ω)

Hriy j(ω) = Griy j(ω)/Griri(ω) (6)

After analyzing the nx sets of records and filling in the nx
columns of HHHrx and HHHry, the matrices are used in Eq. 5 to
determine HHHxy.

There are several choices to be made when designing an
experiment to collect system identification data to be pro-
cessed using the JIO Method that will affect the accuracy
of the results. First is the choice of where the reference
signal is summed into the block diagram. A good choice
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Fig. 2. Generic closed-loop block diagram with virtual effector mixing matrices MMM and NNN.

for the reference signal is the tracking command signal (uuu
in Fig. 1), because the control system will attempt to fol-
low these commands, thus ensuring high SNR and high
coherence across a large frequency range. However, for
over-actuated systems such as multirotor UAS, the num-
ber of bare-airframe inputs nx is typically greater than
the number of tracking signal inputs nu, and so nx differ-
ent excitations cannot be commanded through uuu. In such
cases, the reference signals can be summed directly into
the actuator commands (vvv in Fig. 1), which will provide
the nx different excitations.

When summing the exciting directly into the actua-
tor commands, it is often beneficial to excite the bare-
airframe inputs as symmetric and differential groups, re-
ferred to here as virtual effectors, to concentrate the re-
sulting aircraft motion to one primary axis at a time. This
is shown in Fig. 2, where a mixing matrix MMM (nx× nx)
is used to allocate the virtual effector commands ṽvv to the
individual actuator external commands vvv:

vvv = MMMṽvv (7)

An example of virtual effectors is treating left and right
flaperons on a fixed-wing aircraft as symmetric flaps and
differential ailerons (e.g., Ref. 19). As such, they are typ-
ically excited as symmetric flaps to generate primarily
pitch/heave motion and as differential ailerons to gener-
ate primarily roll motion, instead of exciting the individ-
ual actuators one at a time to generate coupled aircraft
motion. Exciting virtual effectors instead of individual
actuators helps constrain the aircraft motion to one pri-
mary axis which is beneficial to better keep the aircraft
on-condition during data collection and to improve SNR
in the primary axis being excited. In the case of sym-

metric aircraft, exciting virtual effectors can also help de-
couple the dynamics and reduce the overall system iden-
tification problem size (e.g., identifying the longitudinal
and lateral/directional dynamics of a fixed-wing aircraft
separately).

The next experimental design choice is the selection of
the reference signals rrr used in the JIO analysis. The ref-
erence signals are typically selected to be the same as the
excitation signals used. This ensures that they are not cor-
related with the noise in either the bare-airframe inputs xxx
or aircraft response yyy. The bare-airframe inputs xxx and
outputs yyy can be expressed as functions of the reference
inputs rrr and measurement noise nnn as:

xxx = HHHrxrrr+HHHnxnnn

yyy = HHHryrrr+HHHnynnn (8)

Assuming the reference inputs can be excited one at a
time (which is typically the case) the individual coher-
ence values between each reference ri and each bare-
airframe input x j and output y j are given by:

γ
2
rix j

=
|Hrix j |2Griri

|Hrix j |2Griri +∑
ny
k=1 |Hnkx j |2Gnknk

γ
2
riy j

=
|Hriy j |2Griri

|Hriy j |2Griri +∑
ny
k=1 |Hnky j |2Gnknk

(9)

The reference signal PSD function Griri is a function of
the excitation signal selected, while the noise PSD func-
tion Gnknk is typically assumed flat (white noise). There-
fore, high SNR and high coherence are attained when the
magnitudes of Hrix j and Hriy j are large compared to Hnkx j .
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Finally, the bare-airframe inputs used in the analysis must
be selected. Here, as with the selection of the excitation
signal, the choice is between individual actuators xxx or vir-
tual effectors x̃xx (Fig. 2), where the virtual effectors signal
is constructed by use of an nx×nx mixing matrix NNN:

x̃xx = NNNxxx (10)

which is typically set to NNN = MMM−1.

When identification is done using the virtual effectors
as the bare-airframe inputs, the identified bare-airframe
takes the form of:

P̃PP = HHH x̃y (11)

and the bare-airframe response to individual actuators can
be determined as:

PPP = P̃PPNNN (12)

since NNN is known.

The following section will describe the octocopter test
case and show how these considerations are applied.

TEST CASES DESCRIPTION

The examples shown in this paper are based on the hover
lateral axis dynamics of the octocopter UAS shown in
Fig. 3(a). Similar results were obtained for the other axes,
which are omitted in this paper for brevity.

Bare-Airframe Model

The octocopter UAS bare-airframe model used in this pa-
per was identified from flight-test data. The results of the
flight test system identification are presented in Refs. 20,
21, and 23, which all utilized the JIO Method. Here, the
model will be used to assess the effects of reference signal
selection and measurement noise on the identification re-
sults. The numbering convention, grouping, and direction
of rotation of the eight motors is shown in the diagram in
Fig. 3(b).

As mentioned earlier, it is often beneficial to group the
individual actuators xxx into virtual effectors x̃xx for excita-
tion and identification purposes, which was done in the
test cases presented in this paper. For the octocopter, the
eight motors were first divided into a pair of tetrads (i.e.,
two groups of four), the first consisting of the front pair
and back pair of motors [motors 1, 2, 5, and 6 in Fig. 3(b),
correspond to individual actuators x1, x2, x5, and x6] and
the second consisting of the left pair and right pair of mo-
tors [motors 3, 4, 7, and 8 in Fig. 3(b), correspond to
individual actuators x3, x4, x7, and x8]. The eight virtual
effectors were then selected to produce lateral, longitudi-
nal, collective, and directional inputs using the Tetrad 1
motors only (virtual effectors x̃1–x̃4) and the the Tetrad

2 motors only (virtual effectors x̃5–x̃8). Table 1 lists the
virtual effectors with their description and corresponding
motor commands. The mixing matrix NNN−1 used to al-
locate the virtual effectors to the individual actuators as
shown in Fig. 2 is given by:



x1
x2
x3
x4
x5
x6
x7
x8


=



1 1 1 1 0 0 0 0
−1 1 1 −1 0 0 0 0

0 0 0 0 −1 1 1 1
0 0 0 0 −1 −1 1 −1
−1 −1 1 1 0 0 0 0

1 −1 1 −1 0 0 0 0
0 0 0 0 1 −1 1 1
0 0 0 0 1 1 1 −1


︸ ︷︷ ︸

NNN−1



x̃1
x̃2
x̃3
x̃4
x̃5
x̃6
x̃7
x̃8


(13)

(a)

1 2

3

4

56

7

8

Tetrad 1

Tetrad 2

(b)

Fig. 3. Octocopter UAV (a) picture and (b) motor num-
bering and rotation convention.

Figure 4 shows the octocopter bare-airframe roll rate re-
sponse to Tetrad 1 Lateral virtual effector p/x̃1 and Tetrad
2 Lateral virtual effector p/x̃5. The octocopter has dy-
namics representative of multirotor UAS, with an unsta-
ble phugoid mode at ω = 2.36 rad/sec and a motor lag
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Table 1. Octocopter Virtual Effectors
Motor Commands

Virtual Effector Description Increase RPM Decrease RPM
x̃1 Tetrad 1 Lateral Input x1, x6 x2, x5
x̃2 Tetrad 1 Longitudinal Input x1, x2 x5, x6
x̃3 Tetrad 1 Collective Input x1, x2, x5, x6 –
x̃4 Tetrad 1 Directional Input x1, x5 x2, x6
x̃5 Tetrad 2 Lateral Input x7, x8 x3, x4
x̃6 Tetrad 2 Longitudinal Input x3, x8 x4, x7
x̃7 Tetrad 2 Collective Input x3, x4, x7, x8 –
x̃8 Tetrad 2 Directional Input x3, x7 x4, x8

mode at ω = 11.66 rad/sec.

Fig. 4. Bare-airframe roll rate response to Tetrad 1
Lateral virtual effector x̃1 and Tetrad 2 Lateral virtual
effector x̃5 (hover).

Control System

The flight-identified hover model of the octocopter
was combined with an explicit model following (EMF)
control system (Ref. 24) which provides an attitude-
command/attitude-hold (ACAH) response type in the lat-
eral and longitudinal axes, and a rate-command/heading-
hold (RCHH) response type in the directional axis. The
collective axis was left open-loop for the nominal case
presented in this paper.

The control allocation matrix used in the control sys-
tem CCC takes the four control system channel commands
(lateral, longitudinal, collective, and directional) and dis-
tributes them to the eight individual motors. The nominal

control allocation matrix is given by:



x1
x2
x3
x4
x5
x6
x7
x8


=



1/8 −1/8 1/8 −1/8
−1/8 −1/8 1/8 1/8
−1/8 −1/8 1/8 −1/8
−1/8 1/8 1/8 1/8
−1/8 1/8 1/8 −1/8

1/8 1/8 1/8 1/8
1/8 1/8 1/8 −1/8
1/8 −1/8 1/8 1/8


︸ ︷︷ ︸

CCC


δlat
δlon
δcol
δped

 (14)

which distributes the control system commands evenly to
all eight motors.

Figure 5 shows the lateral axis broken-loop frequency re-
sponse. The control system has a lateral axis crossover
frequency of ωc = 14.32 rad/sec and gain and phase mar-
gins values that meet the stability margin requires of
SAE-AS94900 (Ref. 25). Figure 6 shows the closed-loop
roll attitude frequency response to lateral stick input. For
this ACAH response type, the control system has a band-
width value (Ref. 24) of ωBW = 9.32 rad/sec.

Simulated Noise

The measurement noise (nnn in Fig. 1) is modeled by band-
limited white noise to simulate real-world flight test con-
ditions. Similar noise was added to all measurement
signals with the same RMS values σn (in units of deg,
deg/sec, and ft/sec), but different random number gen-
erator seeds. Four levels of noise were used with RMS
values of σn = 0, 1.70, 3.52, and 5.37, selected to give
noise-to-signal ratios (NSR) of 0, 0.1, 0.2, and 0.3 for the
roll rate signal for Method 1 (described below). The NSR
was calculated in the frequency domain as the ratio of roll
rate signal RMS due to noise to roll rate signal RMS due

7



Fig. 5. Lateral axis broken-loop response (hover).

to the reference input (as in Ref. 2):

NSR =

√∫ ny

∑
k=1
|Hnk p|2Gnknk dω√∫
|Hrp|2Grrdω

(15)

A maximum NSR= 0.3 was selected because it is the
highest recommended NSR for closed-loop identifica-
tion using the Direct Method (Ref. 2), due to the Direct
Method’s susceptibility to bias error when measurement
noise is fed back to the bare-airframe inputs. As the JIO
results presented later will show, though, the JIO Method
produces unbiased frequency response estimates in the
presence of noise for all NSR levels simulated here.

Identification Methods

Three identification methods relying on the JIO Method
were investigated in this study and are presented in this
section. In all three cases, the excitation signal magni-
tudes were sized to give resulting peak-to-peak aircraft
outputs of pmax,qmax ≈±50 deg/sec, azmax ≈±5 ft/sec2,
and rmax ≈±7 deg/sec.

In addition to providing a description of each method,
predicted analytical results of the bare-airframe input and
output PSD and coherence functions with respect to the
reference inputs are also presented in this section. The
analytical results make the sometimes subtle differences
between the three methods more clear, and are used to
correlate the differences seen in the simulation results in
the next section.

Fig. 6. Roll attitude closed-loop response to tracking
command input (hover).

Method 1: Tracking Signal Sweeps, Modified Control
Allocation Method 1 uses frequency sweep excitations
injected into the tracking command signal (uuu in Fig. 2).
Recall that the control laws have four channels, and there-
fore four tracking signals (i.e., nu = 4). However, the
octocopter bare-airframe to be identified has eight inputs
(i.e., nx = 8). Therefore, in order to use this method, the
control allocation matrix CCC (Eq. 14) must be modified to
generate different combinations of bare-airframe inputs
xxx for repeated tracking signal commands. In this exam-
ple, two different control allocation matrices were im-
plemented: CCC1 which sends the control system perturba-
tion motor commands to the Tetrad 1 motors only and CCC2
which sends the control system perturbation motor com-
mands to the Tetrad 2 motors only. In both cases of CCC1
and CCC2, the trim motor commands necessary to maintain
the hover condition are sent to all motors. In addition,
the overall loop gain was tuned to be the same for the
two control allocation matrices to maintain the stability
characteristics of the control system.

Two sets of four frequency sweeps were conducted, excit-
ing each of the four control system tracking signals with
CCC1 and then again with CCC2. Table 2 contains a summary
of the reference signals used in this method and the cor-
responding excitation axis.

Figure 7 shows the Method 1 PSD functions of the roll
rate response to the reference signals r1 and r5 (lateral
Tetrad commands), calculated analytically as:

Gpp = |Hri p|2Griri (16)

and roll rate response to noise nnn, calculated analytically
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Table 2. Reference Inputs for Methods 1, 2, and 3
Method 1 ( Tracking Signal Sweeps, Method 2 Method 3

Reference Modified Control Allocation) (Virtual Effector Sweeps) (Simultaneous Sweeps)
1 u1 (Lateral tracking command, CCC1) ṽ1 (Tetrad 1 Lateral input) u1 + ṽ1
2 u2 (Longitudinal tracking command, CCC1) ṽ2 (Tetrad 1 Longitudinal input) u2 + ṽ2
3 u3 (Collective tracking command, CCC1) ṽ3 (Tetrad 1 Collective input) u3 + ṽ3
4 u4 (Directional tracking command, CCC1) ṽ4 (Tetrad 1 Directional input) u4 + ṽ4
5 u1 (Lateral tracking command, CCC2) ṽ5 (Tetrad 2 Lateral input) u1 + ṽ5
6 u2 (Longitudinal tracking command, CCC2) ṽ6 (Tetrad 2 Longitudinal input) u2 + ṽ6
7 u3 (Collective tracking command, CCC2) ṽ7 (Tetrad 2 Collective input) u3 + ṽ7
8 u4 (Directional tracking command, CCC2) ṽ8 (Tetrad 2 Directional input) u4 + ṽ8

as:

Gpp =
ny

∑
k=1
|Hnk p|2Gnknk (17)

The figure shows similar PSD functions for Tetrad 1 Lat-
eral input x̃1 and Tetrad 2 Lateral input x̃5. The PSD func-
tions to noise are shown for the high noise (σn = 5.37)
case. Note that for this method, the Tetrad 2 Lateral input
PSD Gx̃5 x̃5 for reference r1 and the Tetrad 1 Lateral input
PSD Gx̃1 x̃1 for reference r5 are 0 since the control allo-
cation matrices CCC1 and CCC2 only send the control system
commands to one tetrad per set of sweeps.

Figure 8 shows the resulting coherence functions for roll
rate p, Tetrad 1 Lateral input x̃1, and Tetrad 2 Lateral in-
put x̃5 for the high noise (σn = 5.37) case, calculated an-
alytically using the PSD functions shown in Fig. 7 and
Eq. 9. Overall this method results in high SNR and co-
herence for the bare-airframe output p and bare-airframe
inputs x̃1 and x̃5 across a broad frequency range.

The main benefit of this method are that since the con-
trol system is tracking the reference signal, high SNR and
coherence values are achievable across a wide frequency
range (as shown in Figs. 7 and 8). A potential issue with
implementing this method is that changing the control al-
location scheme in the control laws may not always be
possible or not practical, as it may affect the control sys-
tem stability or require retuning gains.

Method 2: Virtual Effector Sweeps Method 2 uses fre-
quency sweep excitations injected into the virtual effector
commands (ṽvv in Fig. 2). The virtual effector command
mixing matrix MMM is the chosen to be MMM = NNN−1, as shown
in Eq. 13, to excite one of the four primary degrees of
freedom at a time using one of the two tetrads. Table 2
contains a summary of the reference signals used in this
method and their corresponding excitation axis. Unlike
Method 1 described above, here the control system con-
trol allocation matrix CCC is not altered and the control sys-
tem commands are sent to all motors (Tetrads 1 and 2)

during all sweeps. This is because even though the ve-
hicle is excited through one virtual effector command at
a time, the excitation is fed-back through the vehicle dy-
namics PPP, feedback KKK, and control system control alloca-
tion matrix CCC to all motors.

Figure 7 shows the signal and noise PSD functions for
the roll rate response p, the Tetrad 1 Lateral input re-
sponse x̃1, and the Tetrad 2 Lateral input response x̃5 for
the two lateral reference inputs (r1 and r5). Overall, the
roll rate PSD Gpp is lower for this method than Method
1. This is because when the excitation signal is summed
directly into the actuator or virtual effector commands, it
is treated as a disturbance by the control system which
attempts to drive the aircraft motion to 0. In addition, the
roll rate PSD Gpp is larger for the Tetrad 2 Lateral ref-
erence input r5 than Tetrad 1 Lateral reference input r1,
since Tetrad 2 has a larger rolling moment arm, and the
same reference signal amplitude was used for both.

Figure 8 shows the resulting Method 2 coherence func-
tions for roll rate p, Tetrad 1 Lateral input x̃1, and Tetrad
2 Lateral input x̃5 for the high noise (σn = 5.37) case.
The bare-airframe output (p) and input (x̃1 and x̃5) coher-
ence functions for Method 2 are significantly less than for
Method 1.

The main benefit of this method is that the control system
does not need to be modified to implement it. However,
this comes at the cost of reduced SNR and coherence as
compared to Method 1.

Method 3: Simultaneous Sweeps Method 3 attempts to
combine the benefits of both Methods 1 and 2. In this
case, frequency sweep excitations are injected into the
virtual effector commands (ṽvv in Fig. 2) as in Method 2,
to avoid having to modify the control system control al-
location matrix CCC. Therefore, the control system does not
need to be modified in order to use this method. In ad-
dition, to improve the aircraft response SNR, frequency
sweep excitations are simultaneously injected into the
tracking signal commands that correspond to the primary
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Fig. 7. Predicted power spectral density functions of roll rate p, Tetrad 1 Lateral virtual effector x̃1, and Tetrad
2 Lateral virtual effector x̃5 responses to reference inputs r1 and r5 and noise n (σn = 5.37).

Fig. 8. Predicted coherence of roll rate p, Tetrad 1 Lateral virtual effector x̃1, and Tetrad 2 Lateral virtual
effector x̃5 responses to reference inputs r1 and r5 (σn = 5.37)
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degree of freedom being excited. For example, when the
virtual effector corresponding to Tetrad 1 Lateral input ṽ1
is being excited, the lateral axis tracking command u1 is
simultaneously excited. Similarly, when the virtual effec-
tor corresponding to Tetrad 2 Collective input ṽ7 is being
excited, the collective axis tracking command u3 is simul-
taneously excited.

The ratio of the excitation amplitude sent to the virtual
effector commands versus that sent to the tracking sig-
nal command must be selected when using this method.
When a larger ratio is sent to the tracking signal com-
mand, the bare-airframe output and input PSD functions
will be larger (benefits of Method 1). However, this also
results in the frequency response matrix HHHrx having a
larger condition number (with the limiting case of all the
excitation signal sent to the tracking signal command re-
sulting in a singular frequency response matrix HHHrx). This
results in the JIO calculation of Eq. 5 becoming less reli-
able. In the example case shown here, 50% of the magni-
tude of excitation used in Method 1 was sent to the track-
ing signal and 50% of the magnitude of excitation used
in Method 2 was sent to the virtual effector commands.

Figure 7 shows the signal and noise PSD functions for
the roll rate response p, the Tetrad 1 Lateral input re-
sponse x̃1, and the Tetrad 2 Lateral input response x̃5 for
the two lateral reference inputs (r1 and r5). Overall, the
bare-airframe input and output PSD functions for Method
3 approach the values for Method 1. However, as a result
of the simultaneous excitation done here, at certain fre-
quencies the two excitation signals cancel each other out
due to being out of phase, which is evident in the notches
present in the Method 3 PSD functions in Fig. 7 at around
ω = 4−5 rad/sec and ω = 20−30 rad/sec.

Figure 8 shows the resulting Method 3 coherence func-
tions for roll rate p, Tetrad 1 Lateral input x̃1, and Tetrad
2 Lateral input x̃5 for the high noise (σn = 5.37) case. The
bare-airframe output (p) and input (x̃1 and x̃5) coherence
functions for Method 3 are overall higher than Method 2,
and more similar to those for Method 1. However, coher-
ence drops can be seen at around ω = 4− 5 rad/sec and
ω = 20− 30 rad/sec, corresponding to the notches seen
in the PSD functions.

The main benefits of this method are that the control sys-
tem does not need to be modified to implement it, while
having similar bare-airframe input and bare-airframe out-
put SNR and coherence to Method 1. However, at cer-
tain frequencies, the two excitation signals can cancel
each other out resulting in drops in SNR and coherence at
those frequencies. A method to mitigate this is presented
later in the Discussion section.

TEST CASE RESULTS

Figure 9 shows Method 1, 2, and 3 time histories of
roll rate p, Tetrad 1 Lateral input x̃1, and Tetrad 1 Lat-
eral input x̃5 for the two lateral reference inputs (r1 and
r5). The time histories shown are for the no noise case
(σn = 0). As mentioned previously, the reference signals
were sized to give a peak-to-peak roll rate of p ≈ ±50
deg/sec. Note that in the case of Methods 2 and 3, the roll
rate response to reference signal r5 is larger than the roll
rate response to reference signal r1 because reference sig-
nal r5 excites Tetrad 2 Lateral input (Table 2) which has
a larger rolling moment arm than Tetrad 1 Lateral input.

The following sections will present the identified bare-
airframe roll rate frequency responses for the three meth-
ods and varying levels of noise investigated, as compared
to the know simulation bare-airframe (truth) model. Note
that all of the frequency response identification results
shown here are for the virtual effector bare-airframe in-
puts (i.e., identifying HHH x̃y as shown in Eq. 11). Para-
metric (state-space) model identification is outside of the
scope of this paper, but the steps to identify a parametric
model with individual actuators as the inputs, instead of
virtual effectors, are as follows. First, a parametric (state-
space) model is identified from frequency responses to
virtual effector inputs HHH x̃y. Then, the control derivative
B-matrix of the identified state-space model is multiplied
by the known virtual effector mixing matrix NNN as shown
in Eq. 12, to recover the control derivatives for the indi-
vidual actuators.

Fig. 9. Identified bare-airframe roll rate response to
Tetrad 1 Lateral virtual effector (Method 1).
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Method 1: Tracking Signal Sweeps, Modified Control
Allocation

Figures 10 and 11 show the bare-airframe roll rate re-
sponse to the Tetrad 1 Lateral virtual effector x̃1 and the
Tetrad 2 Lateral virtual effector x̃5, respectively. The fig-
ures show the actual (“truth”) bare-airframe model, as
well as the Method 1 JIO identification results for the
varying noise levels. Recall that the noise levels were
tuned to give NSR = 0, 0.1, 0.2, and 0.3 for this method.
The figures also list the mismatch cost function J (Ref. 2)
and the average coherence γ2

ave for each identified re-
sponse. The identified frequency responses are unbiased
in the presence of noise, and even for the high noise case
(σn = 5.37, NSR = 0.3), the mismatch costs for the two
responses are J < 30. Mismatch costs of J < 50 indicate
near perfect agreement between the identified response
and the truth model. In addition, the average coherence
for the high noise case is γ2

ave > 0.7.

The effects of noise on the identified response are largely
isolated to high frequency, above ω ≈ 20 rad/sec, which
corresponds to the frequency range at which the response
PSD due to noise is of similar magnitude to response PSD
due to the reference signal excitation (Fig. 7). This char-
acteristic makes the frequency responses identified using
Method 1 ideal for parametric identification of stability
and control derivatives.

Fig. 10. Identified bare-airframe roll rate response to
Tetrad 1 Lateral virtual effector (Method 1).

Fig. 11. Identified bare-airframe roll rate response to
Tetrad 2 Lateral virtual effector (Method 1).
Method 2: Virtual Effector Sweeps

Figures 12 and 13 show the bare-airframe roll rate re-
sponse to the Tetrad 1 Lateral virtual effector x̃1 and the
Tetrad 2 Lateral virtual effector x̃5 for the truth bare-
airframe model as well as the Method 2 JIO identifica-
tion results for the varying noise levels. Note that the roll
rate NSR ratio for Method 2 is higher than for Method 1.
This is because the control system attempts to suppress
the aircraft motion in this case, as opposed to tracking
the reference inputs as in Method 1. The effects of this
can be seen in the increased mismatch cost function J and
decreased average coherence γ2

ave for the Method 2 results
as compared to the Method 1 results. For Method 2, the
low noise case (σn = 1.70), has mismatch costs J > 100,
demonstrating that this method is less robust to noise.

In addition, the mismatch between the identified re-
sponses using Method 2 and the truth model are not just
isolated to high frequency, as they were for Method 1.
Large offsets can be seen at low frequency, below ω ≈ 1
rad/sec, which can pose an issue for use of these fre-
quency responses for parametric identification of stability
derivatives.

Method 3: Simultaneous Sweeps

Figures 14 and 15 show the bare-airframe roll rate re-
sponse to the Tetrad 1 Lateral virtual effector x̃1 and the
Tetrad 2 Lateral virtual effector x̃5 for the truth bare-
airframe model as well as the Method 3 JIO identification
results for the varying noise levels. Overall, the results
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Fig. 12. Identified bare-airframe roll rate response to
Tetrad 1 Lateral virtual effector (Method 2).

Fig. 13. Identified bare-airframe roll rate response to
Tetrad 2 Lateral virtual effector (Method 2).

for Method 3 are improved over the results for Method
2, especially at the low frequency range, making the fre-
quency responses identified using Method 3 suitable for
parametric identification of stability derivatives.

Fig. 14. Identified bare-airframe roll rate response to
Tetrad 1 Lateral virtual effector (Method 3).

Fig. 15. Identified bare-airframe roll rate response to
Tetrad 2 Lateral virtual effector (Method 3).
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DISCUSSION

Method Comparison

Figures 16 and 17 show the bare-airframe roll rate re-
sponse to the Tetrad 1 Lateral virtual effector x̃1 and the
Tetrad 2 Lateral virtual effector x̃5 for the high noise case
(σn = 5.37) for all three methods. The comparison here
clearly shows the improved accuracy of Method 1 and
Method 3 at low frequency. This makes Method 3 a
good alternative when the control system control alloca-
tion matrix CCC cannot be modified.

Fig. 16. Comparison of identified bare-airframe roll
rate response to Tetrad 1 Lateral virtual effector
(Methods 1, 2, and 3)

However, the results for Method 3 are worse than Method
2, in terms of variance in the identified frequency re-
sponse, at high frequency (ω > 10 rad/sec), and have
lower coherence than Method 2 at high frequency and
around ω = 4− 5 rad/sec. These regions correspond to
the notches seen in response PSD functions in Fig. 7 for
Method 3 at around ω = 4.5 and 25 rad/sec. The presence
of these notches, and potential ways to mitigate them,
can be understood by examining the bare-airframe input
and output responses to the reference input for Method 3.
From Eqs. 2, 7, and 10, the bare-airframe input and out-
put frequency responses to the Method 3 reference inputs
are:

HHHry = (III +PPPCCCKKK)−1PPP(aCCCFFF +bMMM)

HHHrx̃ = NNN(III +CCCKKKPPP)−1(aCCCFFF +bMMM) (18)

Fig. 17. Comparison of identified bare-airframe roll
rate response to Tetrad 2 Lateral virtual effector
(Methods 1, 2, and 3).

where a and b are the ratios of the reference input sent to
the tracking command uuu and virtual effector command ṽvv
respectively. Notches will be present in the frequency re-
sponses where the magnitude of aCCCFFF +bMMM is small (i.e.,
where aCCCFFF ≈−bMMM). One way to mitigate this is to intro-
duce a lead-lag filter L on the part of the reference signal
sent to the virtual effector command, to add phase at the
frequencies where aCCCFFF +bMMM is small, making the mag-
nitude of aCCCFFF + bLMMM larger at those frequencies. Prior
knowledge of FFF , CCC, and MMM is required to tune the notch
filter L to the appropriate frequency, and care must be
taken to not introduce notches at different frequencies.

Figure 18 shows the bare-airframe roll rate response to
Tetrad 2 Lateral virtual effector p/x̃5 identified using
Method 3 with no lead-lag and Method 3 with a lead-lag
filter implemented on the reference signal summed into
the virtual effector commands. The lead-lag filter was
tuned to produce 35 deg of phase lead at ω = 25 rad/sec
and improves the mismatch cost significantly from J =
252.8 to J = 69.46. In addition, the high frequency coher-
ence of the identified response is slightly improved with
the addition of the lead-lag filter.

When neither Method 1 nor Method 3 can be imple-
mented in flight test, a good alternative is to first use
Method 1 with a fixed control system control allocation
matrix CCC to obtain the frequency response matrix from
the input to the control allocation to the aircraft output,
corresponding to identification of PPPCCC, using the standard
MISO Direct Method. Since the control system tracks the
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Fig. 18. Comparison of identified bare-airframe roll
rate response to Tetrad 2 Lateral virtual effector
(Method 3 with and without lead-lag).

reference inputs for Method 1, these identified responses
are expected to have high coherence and low variance,
especially at low frequency, making them ideal for iden-
tification of the stability derivatives. But these responses
can only be used to identify lumped control derivatives
that include the control allocation matrix. Then, to iden-
tify the control derivatives associated with the individ-
ual bare-airframe inputs, a second set of data is col-
lected using Method 2 and frequency responses are iden-
tified using the JIO Method. These frequency responses
can be used to identify the individual control derivatives
while holding the previously identified stability deriva-
tives fixed.

Effects of Altitude Hold

The results presented thus far were simulated with a con-
trol system that provides an ACAH response type in the
lateral and longitudinal axes, an RCHH response type
in the directional axis, and open-loop in the collective
axis. An investigation was also done using a vertical
rate command/altitude-hold response type in the collec-
tive axis. For actual flight testing, it would be easier
to remain on-condition with an altitude hold mode en-
gaged, and allow the pilot/operator to focus on the axis
being excited without having to worry about maintain-
ing altitude. However, the bare-airframe collective in-
put response with altitude hold engaged is nonlinear to
pitch and roll sweeps (even though the aircraft response
to collective is linear), as positive collective is required

to maintain altitude for both positive and negative pitch
and roll motion. Recall that the overall accuracy of iden-
tification results obtained with the JIO Method require
that both the bare-airframe outputs and inputs have high
coherence with respect to the reference inputs. The non-
linear collective input response to pitch and roll reference
inputs results in lower coherence and increased variance
in the identified frequency responses when altitude hold
mode is engaged.

Figure 19 shows the mismatch cost J and average co-
herence γ2

ave for the bare-airframe roll rate response to
the Tetrad 1 Lateral virtual effector x̃1 and the Tetrad 2
Lateral virtual effector x̃5 for Method 1 with and with-
out altitude hold engaged as a function of noise RMS
σn. The identification results with altitude hold mode
engaged have higher mismatch costs and decreased co-
herence, especially for the higher noise cases. This sug-
gests that system identification flight testing should be
done with altitude hold modes disengaged to improve the
identification results.

Fig. 19. Effect of altitude hold on fit cost and average
coherence of identified roll rate response to Tetrad 1
and Tetrad 2 Lateral virtual effectors (Method 1).

Guidelines

Based on the results and discussion presented in this pa-
per, the following guidelines for performing system iden-
tification of multirotor vehicles using the JIO Method are
recommended:

1. When possible, bare-airframe inputs should be
grouped into virtual effectors during excitation and
analysis to concentrate vehicle responses to particu-
lar axes.
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2. In order to apply the JIO Method, the same num-
ber of independent excitations (reference inputs) are
needed as bare-airframe inputs.

3. Reference signals should be selected to have high
signal-to-noise ratios (SNR) and high coherence
with both the bare-airframe inputs and outputs, since
the overall accuracy of the identification results ob-
tained with the JIO Method is a function of the ac-
curacy of the reference signal to bare-airframe in-
puts and reference signal to bare-airframe outputs
frequency responses.

4. When the control system control allocation matrix
can be modified, exciting the aircraft though the
tracking signal commands (Method 1) yields iden-
tification results that are accurate over a large fre-
quency range in the presence of noise. Frequency
responses identified using tracking signal command
excitation are suitable for identifying both stability
and control derivatives.

5. When the control system control allocation ma-
trix cannot be modified, simultaneous excitations
summed into the virtual effector commands and cor-
responding tracking signal commands (Method 3)
yields identification results with a similar level of
accuracy as Method 1. In certain cases, the simul-
taneous excitations can cancel each other out at par-
ticular frequencies, which can be mitigated by the
addition of a lead-lag filter on one of the excitation
signals.

6. When the control system control allocation matrix
cannot be modified and simultaneous excitations
cannot be performed, two sets of system identifica-
tion data should be gathered. First, the tracking sig-
nal commands should be excited and the data used
to identify a bare-airframe model with lumped con-
trol derivatives that include the control system con-
trol allocation matrix. Then, excitations should be
summed into the virtual effector commands and the
data used to identify the individual actuator control
derivatives while holding the previously identified
stability derivatives constant.

7. Finally, altitude hold modes should be disabled
when collecting system identification data for use
with the JIO Method.

CONCLUSIONS

This paper presented an overview of the Joint Input-
Output (JIO) Method for system identification which is
a post-processing step on the frequency responses iden-
tified using the Mult-Input/Single-Output (MISO) Direct

Method and is necessary when the bare-airframe inputs
are highly correlated. A simulation test case based on an
octocopter UAS was used to demonstrate the JIO Method
results for three different methods of vehicle excitation.
The following conclusions are supported by the results:

1. Frequency responses extracted from closed-loop
simulation data with highly-correlated bare-airframe
inputs using the JIO Method showed excellent
agreement with the truth bare-airframe model. This
validates the JIO Method’s ability to extract accu-
rate MIMO bare-airframe frequency response matri-
ces from data with highly-correlated bare-airframe
inputs.

2. Frequency responses identified using the JIO
Method are unbiased in the presence of measure-
ment noise up the maximum noise-to-signal ratio
(NSR) of 0.3 tested. Mismatch costs as low as
J = 26 were obtained between the identified fre-
quency responses and the truth bare-airframe model
for NSR = 0.3.

3. For a fixed level of measurement noise, exciting
the closed-loop system with a reference signal in-
put at the tracking command (referred to as Method
1 in this paper) results is higher bare-airframe input
and output signal-to-noise ratios (SNR) and coher-
ence with respect to the reference signals, than when
exciting the closed-loop system directly at bare-
airframe input (referred to as Method 2). This results
in identified bare-airframe frequency responses with
higher coherence and less variance in the presence
of noise.

4. The presented guidelines for performing system
identification of multirotor vehicles using the JIO
Method are recommended for best identification re-
sults.
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