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Abstract 

Flight control analyses require accurate models of the bare airframe and its associated 
uncertainties, as well as the integrated system (block diagrams) across the frequency range of 
interest. Frequency domain system identification methods have proven to efficiently fulfill these 
requirements in recent rotorcraft flight control applications.  This paper presents integrated 
system identification methods for flight control modeling for flight test examples of the Fire Scout 
MQ-8B, S-76, and ARH-70A. The paper also looks toward how system identification could be 
used in new modeling challenges such as the Joint Heavy Lift rotorcraft as well as small unique 
unmanned configurations.  

Nomenclature  

zyx aaa ,,  accelerometer components in body-axis 

mymx aa ,  accelerations as measured at the sensor, 
not at the center of gravity  

p,q,r angular rates  

T  engine torque 

u,v,w  body-axis velocities  

mm vu ,  velocities as measured at the sensor, not at 
the center of gravity  

u  vector of controls in state-space model 

M , F,G, H0 , H1  state-space model terms 

x  vector of states in state-space model 

ex  engine delay state, used for padé 
approximation  

oβ  rotor coning angle  

cs 11 , ββ  rotor lateral and longitudinal flapping 
angles 

rudflpail δδδ ,,  deflections of aileron, flaperon and 
rudder  

colpedlatlon δδδδ ,,,  longitudinal, lateral, pedal, and 
collective pilot control input 

rε  random error  

ωζ ,  damping and natural frequency of a second 
order system  

CTη  coefficient of thrust ‘fictitious’ state  

CX ′η  delayed collective input for engine 
dynamics  

pwb−μ  derivative relating asymmetric wing 
bending to roll rate  
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ailailwb δμ −  derivative relating asymmetric wing 
bending to aileron input 

φ,θ,ψ  Euler angles  

1pΦ  bending mode displacement coefficient  

σ  standard deviation 

τ f  flapping time constant 

υ  inflow  

ζυ  regressive lag frequency in the rotating 
frame 

ω c  cross-over frequency  

RΩ  rotor speed with respect to the fuselage 

Introduction 

Most flight control design methodologies require a 
linear model that accurately represents the aircraft that 
is to be controlled. For example, classical feedback 
design (root locus), quantitative feedback theory, LQR, 
eigenstructure-assignment, and linear dynamic inversion 
techniques are all examples of control techniques that 
use linear state-space models or transfer functions. 
Additionally, linear models are also used in direct 
parametric optimization techniques such as CONDUIT® 
(Ref. 1). When a prototype aircraft is available, 
frequency domain system identification can be used to 
develop state-space models directly from flight data 
(Ref. 2). This method has been proven to be highly 
accurate and efficient, and also has the benefit of 
providing uncertainty parameters.   

Frequency domain system identification has been used 
to develop linear vehicle models for many recent 
rotorcraft applications such as the CH-47 (Ref. 3), ARH 
(Ref. 4), S-76 (Ref. 5), UH-60MU (Ref. 6), and Fire 
Scout (Ref. 7). In most cases, these system 
identification models were used for flight control design 
even when physics based models were available. The 
reasons for this include:  

1. A model based on flight data will better match the 
dynamics of the actual vehicle. 

2. System identification is more time efficient than 
attempting to correct the physics based model to better 
match flight data.   

3. The identified model provides additional physical 
insight to the control designer (which in many cases is 
later used to correct the physics based model).  

4. Uncertainty data are readily available for the 
identified model.  

For most of these rotorcraft applications, the flight 
control engineers were also responsible for performing 
the system identification. This generally provided the 
flight control group with more control over the degrees 

of freedom in the model, greater understanding of the 
model fidelity, and ultimately resulted in a better 
integration of modeling and flight control development. 

It is well known that “the quality and accuracy of the 
mathematical models describing the basic flight vehicle 
(and its subsystems) used for the flight control law 
design have a tremendous impact on the quality of the 
control laws and the achievable control bandwidth” 
(Ref. 8). Therefore, it is important to look ahead to 
flight control design during the linear model 
determination process, and be careful to take into 
account degrees of freedom that are important in the 
frequency range of interest for flight control design.  It 
is also equally important during flight control design to 
look back to the linear model development process and 
perform uncertainty analysis to determine the effect of 
modeling uncertainties on the control system. This is 
due to the fact that “uncertainties in the models can lead 
to sub-optimal controller operations, reduced flight 
performance, and very often result in additional costs” 
(Ref. 8). The best practice, therefore, is to accomplish 
both modeling and control law development in an 
integrated way. The system identification tool CIFER® 
(Ref. 2) and the control design tool CONDUIT® (Ref. 1) 
can be used to implement this methodology of 
integrated modeling, control design, and uncertainty 
analysis.  

Several recent rotorcraft flight test applications in 
modeling and flight control design will serve as case 
studies in this paper. These example cases will 
demonstrate the added value provided through 
integrated system identification modeling, flight control 
design, and uncertainty analysis. This paper also looks 
towards how this methodology can be used in future 
rotorcraft challenges.  

Frequency Domain System Identification 
Methods 

The system identification methodology has four main 
steps: frequency response identification, state-space 
model fitting to the MIMO frequency response 
database, model structure determination and time 
domain verification. The methodology is well suited to 
rotorcraft identification due to its insensitivity to 
uncorrelated output noise (which produces a bias in 
time-domain methods), and its ability to identify 
unstable dynamics (which is also difficult in the time 
domain due to divergence). The steps are discussed 
below, and with greater detail in Ref. 2.  

1. Frequency response identification from flight data 
(Chirp-Z transform)  

First, a Chirp-Z transform with overlapping windows is 
used to initially transform time-domain frequency 
sweep data to the frequency-domain. Then, multi-input 
conditioning is used to condition out the effect of any 
off-axis inputs that occurred during the frequency 



 
3

sweep. Finally, the frequency range of accuracy is 
improved by combining a weighted average of multiple 
windows, in a method known as Composite 
Windowing. The result is a high quality MIMO 
frequency response database.  

2. State space model identification 

A state-space model structure is chosen by the user, 
based on analysis of the frequency responses. Then, the 
freed state-space model parameters are optimized to 
match the frequency responses identified from flight 
data. A coherence weighted cost function (J) is used to 
quantify the match between flight data and the state-
space model. The uniqueness and validity of each 
parameter is tested by calculating the Insensitivities (I) 
and Cramer-Rao Bounds (CR).   

3. Model structure determination 

Parameters that have undesirably large insensitivities 
and/or Cramer-Rao bounds are systematically removed 
from the model structure. The model is re-converged 
after each parameter is removed. This ensures that all 
parameters are sensitive to the cost function and that 
there are no correlated parameters in the model.  

4. Time domain verification 

Once a model that matches the flight data in the 
frequency domain has been determined, the model is 
verified in the time domain using data that was not 
previously used in the identification process. Doublets 
in each axis are usually used for verification. The state-
space model is driven with flight data, and the outputs 
of the model are evaluated against the real flight data. A 
cost function is again used to measure the match 
between the model and the flight data.  

These steps are implemented by the CIFER® software in 
the analyses presented in this paper. 

Flight Control Requirements 

The flight control requirements drive the type and 
fidelity of the model used. Key modeling requirements 
for rotorcraft flight control include:   

1. Model must be a very accurate match of the flight 
data.  

There are two types of model fidelity that must be 
considered for helicopter flight control design (Ref. 9):  

a) Functional fidelity - the level of fidelity required 
to predict flying qualities parameters.  

b) Physical fidelity - the ability of the model to 
represent the underlying physics.  

2. Model must be valid over the frequency range of 
interest.  

This is generally from 1/3 to 3 times the broken-loop 
cross-over frequency of the system, because modes in 

this frequency range contribute substantially to the 
closed loop response (Ref. 10). However, the model 
may need to extend even further to accurately identify 
the gain margin, which occurs at the 180ω  frequency of 
the broken loop response (Ref. 2).  

3. Uncertainty models are needed for assessment of 
system robustness.  

A best practice is to define a set of model uncertainties 
that can be used as design tolerances (Ref. 8).  

4. Broken and closed-loop block diagrams should be 
validated against flight data to ensure that all flight 
control, actuator, mixer, and other subsystem models are 
accurately integrated into the block diagram.  

“The accurate predication of broken-loop and closed-
loop frequency responses establishes a critical anchor 
point for the control system model” (Ref. 2).   

System identification helps with meeting the above 
requirements:  

The model must be a very accurate match of the flight 
data – System identification ensures that the model 
matches the flight data, since it is identified and verified 
against flight. The match of the model to the flight data 
is characterized by a cost function in the system 
identification method which helps facilitate the engineer 
in determining whether the match to flight data is 
acceptable. The use of a model structure that 
incorporates physical parameters ensures that the 
identification values are physically meaningful. The 
hybrid model (Ref. 2), which combines rotor states for 
the mid-to-high frequency range and quasi-steady 
derivatives for low frequency, is an example of a model 
structure that incorporates physically meaningful 
parameters. 

The model must be valid over the frequency range of 
interest – The coherence function provides information 
about the frequency range of accuracy of a non-
parametric (frequency-response) model. If the frequency 
response is accurate over the frequency range of 
interest, then an accurate parametric model should also 
be able to be identified over that same range. If the 
model does not fit flight data over that frequency range, 
additional degrees of freedom can be modeled to 
simulate the dynamics seen at those frequencies.  

Uncertainty Models are needed – Non-parametric 
models (i.e. frequency responses) have a random error 
associated with them that can be estimated. This gives 
an indication of the amount of error in the frequency 
response at any given frequency. These error bounds 
can be used in the analysis if the frequency response is 
used in the flight control design. Theoretical uncertainty 
known as the Cramer-Rao bounds can be calculated for 
the identified state-space model parameters. The use of 
the Cramer-Rao bound as an uncertainty parameter is 
very common and can be integrated into the flight 
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control analysis.  

Aircraft subsystems must be validated – The use of 
frequency sweeps in flight can be used to identify 
broken and closed loop responses of the aircraft with the 
control system. If the open loop and closed loop flight 
frequency responses match those from the block 
diagram (which includes the aircraft linear model and 
subsystem models), then the block diagram subsystems 
can be assumed to be validated. If the broken and closed 
loop responses do not match, identification of individual 
subsystems on the aircraft can be carried out until the 
source of the mismatch is determined. 

Case Studies for Integrated System 
Identification and Flight Control 

A series of case studies are shown to exemplify how 
system identification was used to meet the flight control 

requirements given in the previous section for recent 
rotorcraft flight control development applications. Three 
different case studies are given; MQ-8B Fire Scout 
UAV, S-76D, and the ARH-70A. For these case studies, 
creative modeling solutions were found in order to meet 
the flight control requirements. This trio of case studies 
demonstrates the flexibility of the method and the 
variety of the ways in which it has been successfully 
used.  

Fire Scout 

The Fire Scout is being developed as a ship-based 
VTOL UAV for the U.S. NAVY. The MQ-8B, which is 
the current version of the Fire Scout, has an upgraded 
transmission, four rotor blades (as opposed to three on 
the earlier configuration, RQ-8A), and minor 
modifications to the airframe as compared to the RQ-
8A. The MQ-8B Fire Scout is depicted in Fig. 1.  

 

 

Figure 1. MQ-8B first hover (reprinted from Ref. 7). 
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Frequency domain system identified models were 
exclusively used for the Fire Scout flight control design. 
A physics model was not available, so the identified 
linear models at various speed conditions across the 
envelope were “stitched” together with trim data and 
velocity based interpolation in order to provide for a 
continuous full-envelope simulation model. The Fire 
Scout program had many unique requirements that 
required careful consideration during model 
identification and flight control design/analysis. These 
challenges included:  

1.  To determine whether a 6 DOF model was 
sufficient for flight control design. 

2.  The need for reasonably accurate rotor rpm and 
torque modeling, since torque feedback was to be used 
in the control system. 

3.  A requirement to perform uncertainty analysis of 
the final flight control design.   

The following sections of the paper will provide 
highlights of the model identification, flight control 
design, and uncertainty analysis for the Fire Scout 
UAV. The hover flight condition will be shown 
throughout as an example.  

Hover Model Structure 

The first task in the modeling of the Fire Scout was 
determining the model structure. This required the 
engineers to discern whether a quasi-steady 6 DOF 
model would be sufficient to meet the fidelity 
requirements for flight control design at hover. For 
many rotorcraft, higher order rotor-states are needed in 
order to accurately model the aircraft over the frequency 
range of interest. In order to determine whether a quasi-
steady model was adequate, the intended bandwidth of 
the control system as well as the rotor characteristics 
were considered.  

The first consideration made in determining the validity 
of the use of a 6 DOF model was the frequency range of 
interest. According to flight control requirement #2, in 
the previous section of this paper:   

 cc ωω 3
3
1

≤≤ Interest ofRange  Freq  (1) 

The required cross-over frequency cω  for roll and pitch 
axis was planned to be around 3-4 rad/s.  Therefore it 
was important to have a good model between 
approximately 1 rad/s to 12 rad/s.   

For a rotor system that is moderately stiff, such as the 
Fire Scout rotor, a quasi-steady (6 DOF) model was 
found to be valid up to 10-12 rad/s. A time delay was 

also included to represent the effect of unmodeled rotor 
dynamics on the phase. This was possible because the 
rotor flapping and fuselage roll response modes are 
decoupled in a low or moderately stiff rotor. Engine and 
torque states were also included in the state-space 
structure to meet the requirement to obtain an accurate 
model of the torque. The final model structure was:  

 )( τ−+= tGuFxxM&  (2) 

 xHxHy &10 +=  (3) 

[ ]TR Trqpwvux ΩΩΩ= &θφ  (4) 

[ ]TRzyx Trqpaaawvuy Ω= &&&  (5) 

 [ ]Tcolpedlatlonu δδδδ=  (6) 

Note that rR −= ΩΩ , where RΩ  is the rotor response 
with respect to the fuselage (Ω  is defined in the 
opposite sign of fuselage yaw rate, r). 

A model of the torque response was needed to simulate 
the torque response and to design a torque feedback 
controller. Thus, the additional states [ ]TR ΩΩΩ &  
were included for the engine and torque dynamics. A 
simple Taylor-series expansion was used to model the 
torque:  

 pedpedcolcolt TTTTTT δδ δδ ++Ω+= Ω
&  (7) 

The rotor speed was modeled as a second order system 
with a washout:  

 
))(2( 22 asss

sK col

col +++
=

Ω

ωζωδ
δ  (8) 

Additionally, the rotor-rpm dynamics were coupled to 
the roll and yaw rate responses to collective in order to 
model the phase delay that is associated with the engine 
response. This was done by including ΩL  and ΩN as 
effective control derivatives in the equations of motion 
instead of using colLδ  and colNδ .  

Example Hover Results for Fire Scout Model  

The accuracy of the identified state-space models for 
Fire Scout was quantified by the identification cost 
functions, as well as visual overlays of time and 
frequency domain responses with flight data. The 
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responses were well predicted with the presented model 
structure over the frequency range of interest (1-12 
rad/s) as indicated by  the average cost function:  

 4.79=avgJ  (9) 

An average cost function below 100 is considered a 
very good model. As an example of the model accuracy, 
Fig. 2 shows the on-axis longitudinal responses for 
hover. The cost functions for these two individual 
responses were:  

 2.60=lonqJ δ  (10) 

 9.45=lonuJ δ&  (11) 

The cost functions for these model fits were well within 
the desired values (<150-200) for an individual 
frequency response. A cost of 50 (or less) is considered 
a nearly perfect model. The primary responses for the 
other axes exhibited similar accuracy, and the coupling 
responses also maintained adequate fidelity (Ref. 7). 
This indicated that the model fidelity was good enough 
for flight control design. 

 

Flight results
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Figure 2. On-axis longitudinal responses comparison to flight data for MQ-8B at hover.  
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Flight results
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Figure 3. RPM comparison to flight data for MQ-8B at hover.  

 

 

The simple engine and torque modeling method was 
effective over a wide frequency range, as shown in Fig. 
3 and by the values of the cost functions:  

 5.58=colTJ δ  (12) 

 8.59=Ω colJ δ  (13) 

This indicated that the engine modeling method was 
accurate and could be used for simulation and feedback 
control design.  

As an example of the time domain accuracy of the 
model, the results are shown for the longitudinal and 

heave axes in Fig. 4 and Fig. 5. The pitch and roll 
responses to the longitudinal input were very well 
predicted in the time domain. The mismatch in the yaw 
rate coupling response comes from poor data in the 
associated frequency response lonr δ , which made it 
difficult to accurately identify these coupling 
derivatives. Even so, the magnitude of the coupling is 
correct, although slightly out of phase. The lateral and 
directional axes show similar accuracy but are not 
depicted here for brevity. For full results, see Ref. 7, as 
this paper shows example results that can be considered 
representative.  
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Figure 4. Longitudinal verification results for MQ-8B at hover.  

�
�

�
�

�
�

�
�

�
�

�
�
�
	

�
�

�
��
�
�
	�
�
�

δ

��
�

��
�

��
�

�
�
�
�
�
�
�
�

�

��� � ��� � ��� � ��� � ��� � ��� � ���

���� � ��!

��
�

��
�

�
�
�

�
�
�
�
�
�
�
�




�
�

�
�

�
�

�
�
�
�
�
�
�
�

Ω

��� � ��� � ��� � � ��� � ��� � ���

���� � ��!

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�

τ

���

��� "

#��$%	 &�	�

 ��'��	��� �� (&��	����& )�&��  

Figure 5. Heave verification results for MQ-8B at hover.  
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Inner Loop Control Law Design 

After the model was identified and verified to be 
accurate, the next step in the process was to perform 
control design. The inner loop architecture was a basic 
attitude command attitude hold PID-type control system 
for pitch, roll, and yaw. The vertical axis was a rate 
command system implemented as a PI controller on the 
vertical velocity, with a torque feedback loop.  Two 
methods of control law optimization were used – the 
CONDUIT® software developed by AFDD and an NGC 
implemented genetic algorithm. Both methods utilized 
the identified linear models. The results of the 

optimizations were compared to provide confidence in 
the control law design results. Table 1 shows the 
specifications that were considered key in the 
optimizations. The results of the two optimizations 
turned out very similar, as shown in Table 2, and thus 
provided confidence in the flight control design.   

Once the control law design was optimized and cross-
checked between the two design methodologies, the 
next step was to test the performance of the system 
under uncertain conditions.  

 

Table 1. Key MQ-8B Specifications. 

Specification Description 

Stability Margins Ensures that stability margins are met for the nominal control system design. 

ADS-33  Bandwidth Ensures that the UAV meets piloted bandwidth requirements since it is a full sized 
rotorcraft, and good flying qualities are desired even though it is not piloted.  

Disturbance Rejection 
Bandwidth 

Ensures that the system will reject disturbances. This is very important for ship 
operations of a UAV.  

Damping Ratio Ensures that lightly damped oscillations are not allowed. This is important for 
precision operations.  

Cross-over Frequency Ensures that the cross-over frequency of the system is minimized (CONDUT®) to 
ensure actuators are not overused. For Genetic algorithms, user checks that cross-over 
frequency is reasonable.   

 

Table 2. Comparison of CONDUIT® and genetic algorithm designs for MQ-8B. 

 
Pitch  
G.M. 
(dB) 

Pitch  
P.M. 
(deg) 

Roll  
G.M. 
(dB) 

Roll 
P.M. 
(deg) 

Yaw   
G.M. 
(dB) 

Yaw 
P.M. 
(deg) 

Collective 
G.M.  
(dB) 

Collective 
P.M.  
(deg) 

CONDUIT® 8.5 46.1 8.32 48.7 16.7 45 7.1 45 

Genetic 9.3 40.5 6.4 42 8.1 49.8 22.7 44.9 

 
Pitch 

Crossover 
(rad/s) 

Roll 
Crossover 

(rad/s) 

Yaw  
Crossover 

(rad/s) 

Collective 
Crossover

(rad/s) 

Pitch  
D.R.B. 
(rad/s) 

Roll 
D.R.B. 
(rad/s) 

Yaw 
D.R.B. 
(rad/s) 

Collective 
D.R.B. 
(rad/s) 

CONDUIT® 3.92 4.18 2.82 2.14 0.96 1.4 1.1942 0.98 

Genetic 3.39 4.68 4.98 2.2 .949 1.75 1.21 1.209 

     G.M.  = gain margin, P.M. = phase margin, D.R.B. = disturbance rejection bandwidth 

 

Uncertainty Analysis 

For Fire Scout, uncertainties in the identified stability 
and control derivatives were considered. For this 
parametric uncertainty analysis, the Cramer-Rao bounds 
of the individually identified parameters from the Fire 
Scout state-space model were considered. Cramer-Rao 

bounds represent the theoretical accuracy of the 
identified derivatives in the state-space model (Ref. 2). 
The Cramer-Rao bounds provided by CIFER® are 
scaled to represent the expected standard deviation in 
the identified parameters:  
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 ( ) iciferiCR σ≈  (14) 

Thus, there was a direct measure of the uncertainty for 
each identified parameter in the state-space model. The 
effect of these uncertainties on the stability of the 
system was analyzed for the hover control laws. In order 
to take into account a 99.7% confidence interval, each 
derivative that has an associated Cramer-Rao bound was 
randomly perturbed by σ3−+ . The random term only 
determines whether the derivative should be perturbed 
positively or negatively, not the absolute size of the 
perturbation, which was fixed at σ3 .  Using this 
method, there are a finite number of possible perturbed 
models - )_(#2 parametersfree . However, with 32 free 
parameters in the hover model, there were 4.29E9 
possible perturbed models. By randomly perturbing all 
derivatives at one time and then looking at the effect on 
the stability, one can determine how severely the 

combinations of uncertainty affect the system and 
whether more robustness needs to be built into the 
control laws.   

CONDUIT® has access to the CIFER® database, and has 
a built in robustness tool that perturbs the model based 
on its Cramer-Rao bounds. The final results are shown 
in the handling qualities window of Fig. 6 for 250 
random perturbations of σ3−+ . All axes remain 
stable, even with such a large perturbation of the 
stability and control derivatives. The perturbations most 
affect the vertical loop which is shown in the bottom 
right of Fig. 6. The phase margin lost 20 degrees, and 
the gain margin was reduced by 7dB relative to the 
nominal design in the vertical axis. The stability 
margins are still within 50% of the original 6dB and 45 
degree boundaries, as required by AS94900 for an 
uncertainty (or “sensitivity”) analysis of the critical 
stability derivates (Ref 11).  
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Figure 6. Parametric uncertainty analysis for MQ-8B at hover. 

 

Lessons Learned on Fire Scout 

System identification was utilized in the Fire Scout 
model identification process, flight control design, and 
uncertainty analysis. The system identification models 
produced accurate predictions of the aircraft dynamics 
for flight control analysis, which were then utilized in 
the flight control design. These models were easily 
implemented into the linear flight control law design 
simulations, and the engineers had the advantage of 

understanding the model states and accuracy in the 
design process since they had themselves produced the 
models. Finally, the uncertainty analysis showed that 
the control system design was robust to the uncertainties 
that were identified with the model. All these 
components worked together to provide confidence in 
the final design.  
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Figure 7. S-76D.  

 

S-76  
The S-76 is a light twin-engine, four bladed helicopter 
that has been operating since the 1970s.  The newest 
upgrade, the S-76D, will feature a Thales automatic 
flight control system (AFCS). The S-76D is pictured in 
Fig. 7. 

In order to develop an automatic flight control system, 
the S-76 team was required to provide accurate models 
of the aircraft to the Thales AFCS developers. Because 
the S-76D was not ready for flight the S-76C, which is a 
similar design, was used for the initial system 
identification of the helicopter. This model would be 
used for initial AFCS design, and later updated versions 
of the models would be created after first flight.   Thus, 
the key concerns for the S-76C team involved providing 
the best model possible for AFCS design. The following 
challenges related to the flight control requirements 
were important:  

1. The model had to be very accurate over a wide 
frequency range to ensure accurate flight control 
stability analysis and handling qualities prediction.  

2. The model had to be physically meaningful, as it 
was also used to update the nonlinear simulation model.  

The modeling for the S-76 will be discussed in the 
following sections in order to show how the flight 
control challenges were met through the use of the 
system identification technique. The hover model will 
be discussed as an example of the methods used in the 
modeling process.  

Model Structure for the S-76 at hover 

The hover model was identified using piloted frequency 
sweeps of the S-76C helicopter. Frequency response 
identification was completed from these data sets. The 
state-space model structure was selected based on an 
inspection of the identified frequency responses. A wide 
frequency range of accuracy was needed because the 
model was used to check the non-linear simulation 
which included high frequency modes. Therefore, the 
frequency range of interest was chosen as 0.5-20 rad/s 
in this case. The shape of the frequency responses over 
this frequency range indicated that higher-order 
dynamics including coupled flap/fuselage dynamics, 
lead-lag dynamics, engine dynamics, and inflow-coning 
dynamics should be included in the S-76 hover model. 
The higher-order dynamics were included as necessary 
by implementing the hybrid model structure (Ref. 2). 
The hybrid model structure combines higher frequency 
explicit rotor dynamics with low frequency dynamics 
that are modeled in a quasi-steady way.  

 GuFxxM +=&  (15) 

 xHxHy &10 +=  (16) 

The state, input and output vectors for the hybrid model 
identification were:  

 T
CXeTCmm
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xvu
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(17) 
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[ ]Tcolpedlatlonu δδδδ=

 (18) 
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mm

aaaa

rqpwvuy

]

[

2
                 

&&&=

 (19) 

In the following section, examples comparing the higher 
order and quasi-steady models are shown to explain 
why the more complex model structures were needed. 
For the quasi-steady model only the fuselage states were 
included:  

 [ ]Trqpwvux θφ=  (20) 

The use of the higher order model was a key factor in 
obtaining a valid model over a wide frequency range.  

Flap/Fuselage Dynamics 

The S-76 helicopter exhibits moderate blade flap 
stiffness, which indicates that the on-axis responses 

( lonq δ  and latp δ ) were well modeled by a 6 DOF 
approximation for frequencies up to 8-10 rad/s. In order 
to extend the model further across the frequency range 
of interest beyond 10 rad/s, additional degrees of 
freedom were needed. Furthermore, a quasi-steady 
model did not accurately capture the phase 
characteristic for the off-axis responses lonp δ and 

latq δ . A model structure that explicitly models the 
rotor flapping dynamics better predicted these off-axis 
responses, which is consistent with results shown in 
Ref. 2. Figure 8 illustrates this point with a comparison 
of these two models for the off-axis response lonp δ . 
The figure indicates that the coupling response was 
much better represented by the model that included 
flapping dynamics, as seen by the closer match to flight 
magnitude and phase. This is important because it is 
desirable to minimize coupling responses of a closed-
loop aircraft to improve handling qualities, which 
requires a good model of the coupling responses. 
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Figure 8. Off axis roll rate response from longitudinal stick for S-76 at hover.  
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Figure 9. Pitch rate response from longitudinal stick for S-76 at hover. 

 

Lead-Lag Dynamics 

The effect of the lead-lag dynamics can be clearly seen 
in the on-axis pitch rate frequency response lonq δ/  of 
Fig. 9 between 20-30 rad/s. The regressive lag mode (or 
lead-lag dynamics) looks like a notch in the magnitude 
response, accompanied by a large phase shift at roughly 
24 rad/s. It was clear that in order to extend the model 
accuracy beyond 20 rad/s, a higher order model must be 
included to capture these dynamics. The magnitude and 
phase responses were also somewhat affected by the 

lead-lag mode between 15 - 20 rad/s. Since the mode 
was near the frequency range of interest and lightly 
damped, it was important to include it in a model that 
was intended for flight control purposes. The 
combination of the flapping dynamics and lead-lag 
mode gave a very wide frequency range of accuracy, 
from about 0.8 – 30 rad/s, as shown in Fig. 9. A 
comparison with a quasi-steady 6DOF model is given, 
which is only accurate to approximately 12 rad/s, as 
expected. 
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Figure 10. Yaw rate response from collective input for S-76 at hover. 

 

Engine Dynamics  

The phase curve for yaw rate to collective response 
colr δ of a helicopter rolls off very quickly at high 

frequencies. This is well known as a lag effect 
associated with engine dynamics. These dynamics can 
be modeled as a time delay on the colr δ pairing, or 
using simple engine equations as shown in the Fire 
Scout case study. For the S-76, rpm and torque states 
were not needed for flight control, so the time delay 

method was used because it is simpler to implement. A 
padé approximation was included in the state-space 
model structure to produce the lag effect. Figure 10 
shows a much improved phase response as compared to 
a model which does not include the engine lag. This 
proved to be an important modification to the model 
because it provided better prediction of an important 
coupling response that would be considered in the flight 
control analysis. 
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Figure 11. Vertical acceleration response from collective input, for S-76 at hover.  

 

Coning-Inflow Dynamics 

Figure 11 shows the response of vertical acceleration 
( za ) to collective input for the S-76 at hover. The rising 
magnitude response above about 2 rad/s is the result of 
the coning-inflow dynamics (Ref. 2). This rise in za  
magnitude cannot be represented within a quasi-steady 
model structure because it creates a flat magnitude 
response as shown in Fig. 11. Considering that a vertical 
controller cross-over frequency is typically around 1-2 
rad/s, it was important to include inflow dynamics to 
extend the frequency range of accuracy beyond 2 rad/s 
to provide accurate predictions of gain margin.  

The use of the hybrid model to characterize certain 
important dynamics that cannot be captured by a quasi-
steady 6 DOF model was successful in providing 

functional fidelity (the match of the model to the flight 
data). 

Time domain verification 

In order to ensure that the hybrid model had good 
predictive accuracy in the time domain, verification was 
performed. The data used were doublet records, which 
were not previously used in the system identification 
process. The model provided a very good match to the 
flight data in the time domain as shown by the 
longitudinal axes examples given in Fig. 12. The other 
axes had similar accuracy.  
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Figure 12. Longitudinal verification for S-76 at hover. 
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Ensuring physical fidelity of the model 

Once the time domain verification was performed, it 
was important to analyze the S-76 model to ensure that 
it was physically meaningful. These checks were 
performed in order to meet the requirement that the 
model could be used to gain physical insight. The 
structure used on the S-76, a hybrid model, contains 
physically meaningful parameters since it was derived 
from the physics that govern the dynamics of a 
helicopter. For the S-76, some of these identified 
physical parameters were compared to theory - the 
flapping constant fτ , the linear acceleration terms due 

to flapping cX 1β and sY 1β , and the rotating lag 

frequency, ζυ .  

The flapping constant was an identified parameter. Its 
value was compared to the theoretical calculation (Ref. 
2):  

 
1*

3
81

16
)(

−

⎥
⎥
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⎤

⎢
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⎣

⎡
⎟
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⎞

⎜
⎝
⎛ −

Ω
=

R
e

theoryf
γτ  (21) 

where ∗γ  is the reduced Lock number 

Using the equation above, the identified flap constant 
was shown to be consistent with theory:  

 τ f( )theory
= 0.09057  (22) 

 τ f( )ID = 0.09118  (23) 

Other rotor parameters that were freed in the 
identification were the flapping spring force terms cX 1β  

and sY 1β− . The theoretical value of these terms is the 
gravity constant (32.17 ft/s2). The identified value was 
close to gravity at 28.3011 =−= sc YX ββ . These 
parameters were reasonably consistent with theory 
considering that the small offset was likely due to 
uncertainty in the exact location of the vertical center-
of-gravity.  

The regressive lead-lag mode (in the fixed-frame) was 
identified with light damping ( rllζ = 0.121) and with a 

natural frequency of 25.5 rad/s ( rllω ). The regressive 

lag frequency was expressed in the rotating frame ( ζυ ) 
by shifting the imaginary part of the fixed frame mode 
by the rotor rotational speed ( Ω ). Then, the normalized 
identified lead-lag frequency was: 

 
( )

241.0
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llrllrd σω
υζ  (24) 

The theoretical value was:  
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e

e
ltheoreticaζυ  (25) 

The excellent agreement between the theoretical and 
identified values for the rotating lag frequency showed 
that the lead-lag model was physically meaningful and 
accurate. 

Lessons Learned for S-76 

The use of inspection of the frequency responses to 
determine the model structure was helpful in ensuring 
that the model was accurate over the frequency range of 
interest. This process was more time efficient than 
identifying a quasi-steady model at first, only to 
discover that it was not as accurate as desired. The 
accurate time and frequency domain matches of the 
model and flight data, as well as the close consistency 
of the physical parameters of the model to theory 
provided confidence in the final model. Because of the 
high accuracy of the model, the model was used to help 
tune the nonlinear simulation to better match the flight 
data.  Overall, system identification provided the S-76 
team with better models of the aircraft for use in 
simulation and for analysis of the performance of the 
AFCS design.  More detailed results for the S-76 model 
identification at hover, as well as at 120 knots, can be 
seen in Ref. 5.  
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Figure 13. ARH-70A. 

 

ARH  

The Armed Reconnaissance Helicopter, ARH-70A, is 
being developed by Bell Helicopter to replace the OH-
58. The ARH-70A is depicted in Fig. 13. 

In order to meet the desire to achieve Level 1 handling 
qualities; the AFCS was designed to meet ADS-33E-
PRF requirements. Flight identified models were 
developed and used in the AFCS design. The flight 
control requirements that were addressed through 
system identification included:  

1. Determination and validation of accurate models 
for flight control design.  

2. Validation of the control law block diagrams. 

System identification played a key role in preparing for 
the flight control design of the ARH-70A. Models were 
identified from flight data at the following flight 
conditions: hover, level flight at maximum rate of climb 
airspeed, and level flight at 90% maximum speed with 
continuous power. The hover model identification and 
control block diagram validation will be given as 
examples of how system identification was used to meet 
ARH-70A flight control design requirements.  

Model Identification at Hover 

The ARH frequency sweep flight testing data was used 
to identify frequency-responses of the aircraft. The next 
step was to determine if a 6 DOF model structure was 
sufficient. Similarly to the Fire Scout, it was determined 
that since the rotor stiffness was moderate, and only 
moderate control cross-over frequencies were to be 
used, that the quasi-steady 6 DOF model was sufficient. 
Therefore the model structure takes the following form:  

 GuFxxM +=&  (26) 

 xHxHy &10 +=  (27) 

 [ ]θφrqpwvux =  (28) 

These models produced a match to the flight data over 
the frequency range of interest, which was from about 
1-12 rad/s (cross-over between 3-4 rad/s). This can be 
seen in the comparison of the model and flight data 
shown in Fig. 14 for the longitudinal axis. The other 
axes showed similar model fidelity. Figure 15 indicates 
that the model was able to accurately predict the 
response of the aircraft in the time domain as well.  
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Figure 14. Linear model as compared to flight data for ARH at hover (reprinted from Ref. 4).  
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Figure 15. Time Domain Verification for longitudinal axis for ARH at hover (reprinted from Ref. 4).  
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Validation of the control law block diagrams 

Once the model was identified, the next step was to 
check that the block diagrams were correct by doing 
frequency response identification of the aircraft with 
control laws turned on. In an ideal situation, the block 
diagrams would be validated by doing a broken loop 
analysis from flight data and comparing to the block 
diagram. However, the required data to calculate a 
broken loop response were not available, so a validation 
of only the control law portion of the block diagram was 
performed. This ensures that the control laws are 
implemented correctly on the aircraft, which is an 
important part of ensuring that the control laws perform 
as expected. Considering that the model portion of the 
block diagram was already validated in the system 
identification, and that the linkages and actuators were 
well known, checking only the control law portion of 
the block diagram was a reasonable compromise.  

In order to identify the control laws on the aircraft, the 
feedback was isolated by conducting an electronic 
frequency sweep via the SCAS actuator, while the pilot 
stayed off the controls as much as possible. The input to 
the frequency response calculation was the feedback 
signal as measured on the aircraft (pilot input = 0) and 
the output was the SCAS actuator command, as 
indicated by Fig. 16. The modeled control law 
frequency responses were also generated with the same 
input data as from the aircraft, but the output was from 
the block diagram. This was important because there are 
nonlinearities in the control systems that are dependent 
on amplitude. By using the same input signals, this 
ensures that both the aircraft flight control system and 
the block diagram treat nonlinearities in the same way 
and as such, the final frequency responses will match if 
the block diagram is accurate.  

 

 

Figure 16. Control law model validation schematic.  
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Figure 17. Validation of flight control block diagrams for ARH 

 

An example of a typical validation is shown in Fig. 17. 
As shown, the model matches the aircraft data, 
indicating that the block diagram control laws are the 
same as those implemented on the aircraft. This shows 
that even though there were nonlinearities in the control 
laws, frequency domain methods can be accurately used 
to provide important validation data. 

Once the control laws were validated, the engineers 
were able to move forward with the control law 
optimization process. The control law optimization is 
described in Ref. 4.  

Lessons Learned on ARH 

According to the engineers on the program, the system 
identification process provided a large time savings. In 
fact, the lead handling qualities engineer on the program 
wrote in the conclusions of Ref. 4, “The ARH-70A 
flight control development effort stands out as an 
excellent example of how linear modeling, gain 
optimization and simulation can deliver the best 
possible flight control design with a minimal amount of 
flight testing required for design validation.” System 
identification made this possible by providing a fast and 
accurate method for modeling the dynamics and 
validating the control laws.  
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Future Challenges  

System identification methods were very useful in 
resolving flight control challenges for the rotorcraft 
case studies presented in the previous sections. 
These rotorcraft however, are examples of upgrades 
or civilian aircraft that are being converted to 
military use. Thus, these aircraft are well known 
configurations that have been flying in some 
capacity for many years, and as such few real 
surprises in the dynamics arose during the system 
identification. Additionally, these aircraft are of 
average size and gross weight, for which the 
modeling, flight control, and handling qualities 
requirements and challenges are well known. 
Future configurations include the extremes of very 
large and very small aircraft, whose dynamics and 
handling qualities are not well known. The Joint 
Heavy Lift (JHL) program represents the extreme 
of a very large rotorcraft. On the other extreme, 
many small UAVs are being developed for use in 
military and civilian applications. System 

identification from flight data could be used to help 
meet flight control requirements for these new 
configurations.  

Joint Heavy Lift 

The main challenge expected for the JHL is the 
presence of structural modes in the frequency range 
of interest for flight control due to the flexible 
nature of large aircraft. The ability to accurately 
model these structural modes will clearly be 
important for flight control design.  

Parametric Modeling of Structural Modes 

Structural mode modeling has been successfully 
performed using system identification for a large 
transport aircraft (Ref. 12). The simple model 
structure used for that aircraft included a second 
order system to represent the structural dynamics. 
The structural dynamics were added to the 
equations of motion as shown for the lateral 
dynamics: 

 

 111ηδδδβ δδδβ && prudrudflpflpailailrp LLLrLpLLp Φ++++++=  (29) 

where the structural dynamics take the simple modal 
form:  

 1211 ηη =&  (30) 

 
 

&η12 = −ω
2η11 − 2ζωη12 + μwb− p p
+μwb−ailδail + μwb− flpδ flp

 (31) 

A conclusion of this work was that this model structure 
can be used to represent the structural dynamics. As an 
example, the identification of the lateral fuselage 
bending mode is shown as compared to flight data in 
Fig. 18. The study in Ref. 12 indicated that these 
methods are accurate and time-efficient for determining 
a model that contains structural modes for the purpose 
of flight control analysis. Similar methods could be used 
to model structural modes for Joint Heavy Lift. 

 
 

 

Rigid Body Dynamics Structural Dynamics 
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Fuselage Lateral Bending Mode

 

Figure 18. Comparison of model and flight data for lateral dynamics for a large transport aircraft 
(reprinted from Ref. 12).  

 

Non-parametric Modeling of Structural Modes 

Parametric modeling of all the structural and rotor-
modes can be very time consuming due to the coupled 
and overlapping nature of these modes.  A non-
parametric analysis method can be used to replace the 
state-space model with a frequency response from flight 
data, which will contain the un-modeled modes (as long 
as it has good coherence at those modes), to generate a 
broken-loop response. Then stability margins can be 
accurately evaluated over the frequency range of the un-
modeled modes.  This could be used on the JHL to 
easily determine stability margins with respect to 
structural modes that are not included or accurately 
represented in the state-space model. 

In the analysis, the block diagram should be setup 
similarly to that shown in Fig. 19. The broken loop is 
calculated by multiplying the flight identified frequency 
response with the control system frequency response. 
The state-space model is still in place for all off-axis 
inputs, and a single frequency response replaces the 

dynamics for the on-axis input/output response. This 
method ignores the effect of off-axis couplings on the 
calculated on-axis broken loop response, but these have 
a small effect when the off-axis loops are closed. This 
will produce an accurate broken loop response, which 
can then be used to determine stability margins in the 
frequency range of the un-modeled modes.  

This was performed on the UH-60M to predict stability 
margins associated with the progressive lag mode 
around 34 rad/s, which was not accurately determined 
by the state-space model (Ref. 6). For the baseline 
gains, a low gain margin associated with this mode was 
not predicted by the state-space model as shown in Fig. 
20.  By using the actual frequency response from flight 
in place of the state-space model, the low gain margin 
that was observed in flight by an oscillation could be 
predicted in the analysis. Using this same method, new 
gains were optimized that did not destabilize the 
progressive lag mode.    

 



 24

State-Space
Model,

Actuators,
Mixer

pController
1/s

φ

p

Frequency
Response

Data

x x

Break
Loop

δlat

 

Figure 19. Block Diagram showing use of non-parametric model in flight control analysis. 
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Figure 20. Pitch stability from analysis of flight test measured response (reprinted from Ref. 6). 
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An uncertainty analysis of the non-parametric model 
can also be included in these broken loop calculations. 
This is especially important in cases like Fig. 20 
because of low coherence, indicating low accuracy, 
around some of the modes of interest. For an identified 
frequency response, the uncertainty is characterized 
with the random error function. The random error is a 
function of the coherence and the number of averages 
used in the computation of a frequency response (Ref. 
2):  

 
[ ]

dxy

xy
r

n
C

2

1
5.02

γ

γ
ε ε

−
=  (32) 

where εC  is a constant to account for the 80% window 

overlap, 2
xyγ is the coherence function, and dn is the 

number of independent time history averages 
( windowrecord TT ). 

From the equation above, it can be seen that high 
coherence and a high number of averages produces a 
small random error function. The random error can be 
related to the 95% confidence limits on the magnitude 
and phase curves. For small normalized random error 
( rε ), random error is approximately equal to the 
standard deviation (Ref. 13). This indicates that the 
confidence intervals are given by:  

For magnitude:  

 ( ) ( )rr HHH εε 21ˆ21ˆ +≤≤−  (33) 

with 95% confidence, where H is the true magnitude 

and Ĥ is the estimated magnitude 

For phase:  

 rr εφφεφ 2ˆ2ˆ +≤≤− (in rad)  (34) 

with 95% confidence, where φ is the true phase and 

φ̂ is the estimated phase 

Then, referring to Fig. 19, the state-space model for 
latp δ would be replaced with the flight identified 

frequency response data for latp δ with +/- 95% 
confidence intervals included.  

As an example of the analysis, the results of a non-
parametric uncertainty analysis of an example XV-15 
case are shown. The random error bounds (95% 
confidence limits) were then applied to the identified 
frequency response, and the gain and phase margins 
determined as shown in Fig. 21. 

 

 

Figure 21. Lateral broken loop frequency 
responses with uncertainty for MQ-8B at hover. 

For the worst case, which is the combination of the 
lower magnitude and lower phase bound, the low 
frequency gain margin decreases from 13.85 dB to 8.19 
dB. This case still meets the requirement of 6 dB gain 
margin since extra margin was built in. The phase 
margin changes no more than a few degrees for any 
combination, because of the good coherence around 
cross-over. The confidence intervals have a small effect 
in this case because the coherence functions are good 
over the frequency range of interest. However, if the 
frequency response models had low coherence as is 
often is the case at lightly damped structural or rotor 
modes, the uncertainty analysis would have a more 
drastic result. For the JHL configuration, similar 
methods could be used to determine the effect of non-
parametric uncertainty on stability margins around 
structural and rotor modes that are not parametrically 
modeled.  

 Unmanned Aerial Vehicles  

Small unmanned aerial vehicles are being developed for 
civilian and military surveillance purposes. Unmanned 
aerial vehicles are often unique configurations so their 
dynamics are not well known. Additionally, UAVs are 
also often on rapid development schedules, leaving 
insufficient time to develop a full physics based non-
linear model.  System identification can quickly provide 
both dynamic frequency response information and 
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parametric models. Rapid system identification has been 
very useful for UAV applications in the past (Ref. 14). 
As example of this was rapid system identification of an 
R-50 helicopter in Ref. 14, which used coupled rotor-
fuselage dynamics (similar to S-76) to achieve a good 
match in the roll rate response. A comparison between 
the R-50 flight data and the model is given in the paper, 
and is shown in Fig. 22. The results indicate that these 
higher-order modeling methods for large rotorcraft also 
work well on small rotorcraft, and provide a wide 
frequency range of accuracy.   
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Figure 22. R-50 model and flight data 
comparison (reprinted from Ref.  14).  

Further examples include the use of system 
identification methods on the 3 meter rotor diameter 
RMAX (Ref. 15), and the 50.5 cm rotor diameter E-sky 
electric helicopter (Ref. 16). Both references conclude 
that system identification is an effective method for 
identification of small unmanned aerial vehicles.  

Conclusions 

This paper has shown how system identification can be 
used to meet flight control development requirements 
by giving case studies for rotorcraft programs that have 
recently utilized this modeling method. The case studies 
show that system identification can efficiently provide:  

1. Models with both function and physical fidelity.  

2. Precise control over the frequency range of 
accuracy through choice of model structure.  

3. The ability to integrate uncertainty analysis directly 
from the model to flight control analysis. 

4. A method for validating the flight control block 
diagram, even in the presence of nonlinearities.  

These capabilities will be important for new rotorcraft 
configurations including large flexible vehicles, and 
small unique unmanned configurations. System 
identification techniques provided solutions to complex 
flight control and modeling challenges on recent 
rotorcraft applications, and will also be able do so for 
upcoming flight control design efforts.  
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