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ABSTRACT
Multirotor unmanned aerial systems (UAS) are prone to tubulent wind conditions and gust disturbances. Improving
gust rejection performance is a critical technology to enable multirotor UAS operations in highly turbulent conditions
and has been a recent topic of interest for study. This work is focused on developing flight dynamics models to better
understand the flight characteristics of these multirotor aircraft which directly affect their ability to reject gusts and
other external disturbances. This paper uses flight data and system identification to develop and validate a reconfig-
urable multicopter model. A Joint Input-Output system identification method is used to determine contributions from
individual motors. The reconfigurable model is used to gain physical insight on the effects of rotor number and spacing
on flight dynamic characteristics and gust rejection capability.

NOTATION

Symbols
MMM Mixing matrix from summed actuator signals to

individual actuator signals
rrr Vector of reference signals in JIO method
yyy Vector of output signals
δδδ A Vector of actuator signals in JIO method
δδδ F Vector of individual actuator command signals
δδδ Sum Vector of summed actuator command signals

INTRODUCTION

Multirotor unmanned aerial systems (UAS) are especially
prone to gust disturbances. The Aviation Development Direc-
torate (ADD) at Ames Research Center has been working with
the Defense Advanced Research Projects Agency (DARPA)
under an effort to explore methods for improving gust rejec-
tion capabilities in UAS. One part of this effort is developing
flight dynamics models to better understand the flight dynam-
ics characteristics of these multirotor aircraft which directly
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affect their ability to reject gusts and other external distur-
bances.

Flight dynamics models for multirotor UAS are not suffi-
ciently mature. While physics-based models exist and are
well validated and understood for traditional manned-size
full-scale rotorcraft, for UAS the model paramters are rarely
known accurately (e.g. aerodynamic coefficients) and as-
sumptions that go into these physics-based models may not
apply at the UAS scale and have not been well validated. Fur-
thermore, while a physics-based model approach may be ap-
propriate for full-scale rotorcraft, the development and vali-
dation cycle of physics-based modeling is currently unable to
keep up with the the rapid fly-crash-fix development cycles of
UAS.

There is currently much ongoing work to make physics-based
models appropriate for multirotor UAS. Bristeau studied the
effects of propeller aerodynamics on flight dynamics for a
quadrotor UAS (Ref. 1). Russel performed a study on the
level of modeling fidelity needed for comprehensive analy-
sis of multirotor UAS (Ref. 2). Most recently Niemiec has
taken steps toward a reconfigurable multicopter flight dynam-
ics model based on first principles (Ref. 3).

While the physics-based model approach is continually im-
proving, system identification (Ref. 4) is an effective approach
for obtaining accurate multirotor flight dynamics models from
flight data that has been used with great success. Wei first
used system identification on a quadrotor UAS to obtain a
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bare-airframe model from closed-loop flight-test data (Ref. 5).
Juhasz used system identification to obtain a bare-airframe
and turbulence models of an Iris+ quadrotor (Ref. 6). Berrios
used the identification results from Juhasz in a control system
optimization effort that greatly improved the gust rejection ca-
pabilities (Ref. 7).

The work presented herein is an approach for a generic, re-
configurable multicopter flight dynamics model, which is de-
veloped based on system identified results from flight data.

SYSTEM IDENTIFICATION

The reconfigurable model is developed based on flight iden-
tified models of quad and octocopter vehicles. A hexacopter
vehicle was also built and identified. However, the hexacopter
was not used in development of the reconfigurable model, it
was used only to verify the reconfigurable model. The quad,
hexa, and octocopter vehicles were built using common parts.
The primary difference among the configurations is the num-
ber and location of arms and rotors. Each vehicle has a hub-
to-hub diagonal distance of 1.27 meters, with 0.46 meter di-
ameter rotors. The quad, hexa, and octocopter have masses of
6.1, 7.1, and 8.2 kg respectively, and pictures of each vehicle
are shown in Fig. 1.

To develop the reconfigurable model with user selectable
number and location of rotors, contributions from individual
rotors are needed. Due to the way that forces and moments are
usually allocated for multicopter control (all motors simul-
taneously increase or decrease RPM appropriately to obtain
the total desired force or moment command), all motor inputs
are inhereintly highly correlated. This property of highly cor-
related inputs is difficult to deal with for traditional system
identification methods (Ref. 4). The work presented herein
uses a frequency domain system identification approach of
Ref. 4, with an extra post-processing step to address the is-
sue of highly correlated inputs: the Joint Input-Output (JIO)
methdology with a careful choice of input signals and trans-
formations.

The JIO method was first developed by Akaike (Ref. 8) to ad-
dress noise. More recently, the JIO method has been used
extensively by Gennaretti et al (Ref. 9) and Hersey et al
(Ref. 10) to identify inflow models with highly correlated in-
puts. Knapp et al (Ref. 11) and Berger et al (Refs. 12, 13)
also used the JIO method to identify flight dynamics models
with highly correlated inputs. The JIO method is used here
to obtain frequency responses and state space models where
the inputs are the commands for each individual motor. The
method used herein is similar to the method demonstrated by
Berger (Ref. 13), however there are additional considerations
for the purposes of the reconfigurable model.

System Identification Signals

At this point, it is useful to define the nomenclature that
will be used for describing the system identification and JIO
methodology. There are 3 general signals that are used in the
JIO methodology: the reference, actuator, and output signals.

(a) Quadcopter

(b) Hexacopter

(c) Octocopter

Fig. 1: Pictures of each multirotor vehicle

The output signals yyy are all rigid body responses of interest
and include the standard attitudes and rates in roll, pitch, and
yaw (φ ,θ ,ψ, p,q,r) in addition to the standard body velocity
derivatives and accelerations (u̇, v̇, ẇ,ax,ay,az).

The reference signals rrr are signals used for intermediate fre-
quency response calculations, and are chosen here as the ex-
ternal vehicle commands. For example, during a frequency
sweep, the external sweep command is considered as the ref-
erence signal; for a vehicle doublet, the external doublet com-
mand is considered the reference signal.

The actuator signals δδδ A correspond to the vehicle control ef-
fectors, which are the inputs of interest for flight dynamics,
but are highly correlated and difficult to use as inputs with tra-
ditional system identification methods (Ref. 4). Actuator sig-
nals can be individual control effectors (e.g. individual motor
commands δδδ A = δδδ F = [δF1 ,δF2 , ...,δFN ]

T ), or alternatively ac-
tuator signals can be chosen as pseudo-control effectors (e.g.
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sums and differences of motor combinations δδδ A = δδδ Sum).

Both individual control effectors and pseudo-control effectors
are valid choices for actuator signals, and both choices have
independent uses. For comparison, a generic block diagram is
shown in Fig. 2. In the diagram, PPP is the bare airframe plant,
FFF , CCC, and HHH are generic flight control blocks, and MMM is the
mixing matrix to convert from summed actuator commands
to individual actuator commands. Fig. 2a shows the actua-
tor signals selected as individual motor commands δδδ A = δδδ F .
Fig. 2b shows the actuator signals selected as summed motor
commands δδδ A = δδδ Sum.

Pseudo-control effectors here are chosen as sums and differ-
ences of motor combinations referred to as “summed” actua-
tor commands δδδ Sum. For a pair of two motors δFi and δFj , the
summed commands would be symmetric δsymm = 1/2(δFi +
δFj) and differential commands δdi f f = 1/2(δFi − δFj). For
a group of four motors (tetrad), the “summed” actuator com-
mands are chosen as standard col, lon, lat and ped commands
which correspond to the four standard decoupled heave, pitch,
roll, and yaw commands normally used in flight dynamics and
control. The mixing from summed and individual actuator
commands is chosen such that mixing matrix is square (num-
ber of summed actuator commands is equal to the number of
individual actuator commands) and has mutually orthogonal
rows and columns; these choices allow the mixing matrix to
be invertible so that actuator signals can be easily converted
between summed and individual actuator commands.

For a quadcopter with four individual motors (δδδ F =
[δF1 ,δF2 ,δF3 ,δF4 ]

T ), the four summed actuators are straight-
forward (δδδ Sum = [col, lon, lat, ped]T ) and correspond to con-
trol of decoupled axes (heave, pitch, roll, yaw). Thus, stan-
dard system identifcation methods (Ref. 4) can be used to ob-
tain frequency responses with respect to the four summed ac-
tuators with no issues (Ref. 6). The inputs can then be trans-
formed from summed actuators to individual motors, using
the mixing matrix MMM, as follows: δδδ F = [MMM]δδδ Sum.

For an octocopter with 8 individual motors (δδδ F =
[δF1 ,δF2 ,δF3 ,δF4 ,δF5 ,δF6 ,δF7 ,δF8 ]

T ), the 8 motors are divided
into 2 groups of 4 (tetrads). As shown in Fig. 3, Tetrad 1
consists of motors 1, 2, 5, and 6, while Tetrad 2 consists of
motors 3, 4, 7, and 8. For each octocopter tetrad, the four mo-
tors are combined into summed commands col, lon, lat and
ped. Summed commands for Tetrad 1 are col1 (motors 1, 2,
5, and 6 generate net positive thrust), lon1 (motors 1 and 2
generate more thrust, while 5 and 6 generate less thrust, i.e.
net positive pitching moment), lat1 (motors 1 and 6 gener-
ate more thrust, while 2 and 5 generate less thrust, i.e. net
positive rolling moment), and ped1 (motors 1 and 5 gener-
ate more thrust, while 2 and 6 generate less thrust, i.e. net
positive yawing moment). Similarly, summed commands for
Tetrad 2 are col2 (motors 3, 4, 7, and 8 generate net posi-
tive thrust), lon2 (motors 3 and 8 generate more thrust, while
4 and 7 generate less thrust, i.e. net positive pitching mo-
ment), lat2 (motors 7 and 8 generate more thrust, while 3
and 4 generate less thrust, i.e. net positive rolling moment),
and ped2 (motors 3 and 7 generate more thrust, while 4 and

8 generate less thrust, i.e. net positive yawing moment.).
The 8 octocopter summed actuator commands are δδδ Sum =
[col1, lon1, lat1, ped1,col2, lon2, lat2, ped2]

T , which are sum-
marized in Table 1 and the summed-to-individual actuator
mixing equation given in equation 1.

Table 1: Summed octocopter actuator commands.

Summed
Actuator Description
Command
col1 Tetrad 1 creates net positive heave force
lon1 Tetrad 1 creates net positive pitch moment
lat1 Tetrad 1 creates net positive roll moment
ped1 Tetrad 1 creates net positive yaw moment
col2 Tetrad 2 creates net positive heave force
lon2 Tetrad 2 creates net positive pitch moment
lat2 Tetrad 2 creates net positive roll moment
ped2 Tetrad 2 creates net positive yaw moment



δF1
δF2
δF3
δF4
δF5
δF6
δF7
δF8


︸ ︷︷ ︸

δδδ F

=



1 1 1 1 0 0 0 0
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 1
0 0 0 0 1 −1 −1 −1
1 −1 −1 1 0 0 0 0
1 −1 1 −1 0 0 0 0
0 0 0 0 1 −1 1 1
0 0 0 0 1 1 1 −1


︸ ︷︷ ︸

MMM



col1
lon1
lat1
ped1
col2
lon2
lat2
ped2


︸ ︷︷ ︸

δδδ Sum
(1)

It is important to note that for an octocopter with 4 control
channels (heave, pitch, roll ,yaw), the redundancy in summed
actuators and control allocation for each channel leads to re-
dundant actuators being fully correlated. Specifically when
the vehicle is flown closed loop, pitch channel feedback will
be allocated to both lon1 and lon2, meaning that lon1 and lon2
will always be fully correlated. Similarly, roll channel feed-
back will result in lat1 and lat2 being fully correlated, and
yaw channel feedback will result in ped1 and ped2 being fully
correlated. Often the heave axis is flown open loop meaning
that col1 and col2 can be uncorrelated. The high correlation
between redundant summed actuators is addressed using the
JIO method.

Joint Input-Output Method

The system identification goal herein is to determine a bare
airframe frequency response matrix [yyy/δδδ A], where δδδ A are the
desired bare airframe inputs or motor commands (actuator
signals) and yyy is the vector of vehicle outputs. Due to the
high correlation between bare-airframe inputs, direct identifi-
cation of the bare airframe frequency response matrix [yyy/δδδ A]
is not possible and the JIO method (Refs. 12, 13) is used in-
stead. The JIO method computes the bare airframe frequency
response matrix indirectly by first computing responses with
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Fig. 2: Generic closed-loop block diagram

respect to reference signals rrr, which herein are the external
sweep commands. The actuator-to-reference frequency re-
sponse matrix [δδδ A/rrr] and output-to-reference frequency re-
sponse matrix [yyy/rrr] are first computed, then at each frequency
ω , the bare airframe response matrix is simply the product
of the actuator-to-reference frequency response matrix inverse
with the output-to-reference frequency response matrix:

[
yyy

δδδ A
( jω)

]
=

[
yyy
rrr
( jω)

][
δδδ A

rrr
( jω)

]−1

(2)

In scalar form, equation 2 can be thought of a simply a chain
rule calculation of y/δA.

It should be noted that the reference signals are chosen such
that they can be independently actuated (and therefore decor-
related) and also that the resulting actuator signals δδδ A are all
linearly independent (i.e. that the acutator-to-reference re-
sponse matrix [δδδ A/rrr] is square and invertible at all desired
frequencies).

For the purposes of obtaining models with individual motor
command inputs, there are several considerations when select-
ing reference signals and actuator signals to process through
the JIO method.

The first consideration is with respect to desired responses
from external vehicle commands. While one method would be
to command frequency exitations to a single individual motor
doing so can cause the vehicle to response to be completely
coupled between all axes. This can result in responses which
have poor signal quality due to the lack of control authority
from a single motor. Instead, the vehicle excitations are cho-
sen such that the responses remain decoupled and on-axis as
much as possible. Specifically, external vehicle commands are
chosen to align closely with the traditional heave, roll, pitch,
and yaw commands. For the quadcopter with 4 motors, only
4 vehicle commands are needed and are chosen as the tradi-
tional heave, pitch, roll, and yaw commands.

For the octocopter with 8 motors shown in Fig. 3, 8 linearly
independent external vehicle commands are needed and are
chosen as heave, roll, pitch, and yaw for each tetrad of motors:
rrr = [col1, lon1, lat1, ped1,col2, lon2, lat2, ped2]

T as shown in
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Fig. 3: Octocopter rotor orientations.

Table 1. This choice of vehicle commands means that for
any particular command, only 2 summed actuator commands
are highly correlated for any given frequency sweep excita-
tion. For example, for a pitch sweep command of lon1, only
the summed actuator signals lon1 and lon2 will be correlated,
with all other summed actuator signals being uncorrelated due
to the on-axis nature of the commands. Selection of the ve-
hicle sweep commands and summed actuator signals in this
manner means that for any given sweep, only 2 summed actu-
ators need to be considered for the JIO calculation in equation
2. For example, for an octocopter pitch sweep command, one
only needs to consider summed actuators δδδ A = [lon1, lon2]

T ;
for an octocopter roll sweep command, one only needs to con-
sider summed actuators δδδ A = [lat1, lat2]T .

The second consideration is the choice of actuator signals to
use in the JIO method. The JIO method can be used to directly
obtain frequency responses to individual motors (e.g. δδδ A =
δδδ F ) as illustrated in Fig. 2a. Results for pitch rate response
to individual motors is shown in Fig. 4. δF2 and δF6 have
higher control power compared to δF4 and δF8 as indicated
by the higher magnitudes for δF2 and δF6 above 3 rad/s. The
difference in control power in Fig. 4 matches the expected
differences based on the rotor placements and differences in
moment arms with respect to the vehicle center of gravity.

While Fig. 4 shows that directly obtaining frequency re-
sponses to individual motors is possible (e.g. δδδ A = δδδ F ), there
are also variations between the smoothness of responses and
therefore overall data quality (e.g., pitch rate q/δF2 and q/δF6
have much smoother magnitude and phase responses com-
pared to q/δF4 and /qδF8 ). It was found that obtaining fre-
quency responses with the summed actuator signals as inputs
(e.g. δδδ A = δδδ Sum) yielded the best coherence and frequency
response quality. The reason for this is that vehicle excita-
tion commands were chosen to be heave, pitch, roll, or yaw
commands, which are all directly correlated to summed actu-
ator commands in each axis. For example, for a pitch sweep
command, individual motors δδδ F will be correlated with the
pitch sweep command, but will also be correlated with any
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Fig. 4: Octocopter pitch rate response to individual motors
q/δFi , extracted directly with δδδ A = δδδ F .

off axis responses due to disturbances (e.g. roll feedback to
a roll disturbance will be allocated to all individual motors);
in contrast, summed actuator commands lon1 and lon2 will be
correlated with the pitch sweep command, but will be uncor-
related with any off-axis disturbances (e.g. roll feedback and
yaw feedback to disturbances are not allocated to lon1 and
lon2) due to the decoupled nature of summed actuator inputs.

System Identification Process

The full process is for obtaining models with individual ac-
tuators is shown in Fig. 5. The description of each step is
shown on the left, and an example for the octocopter in pitch
is shown on the right.

The first step is to sweep each reference command rrri. In this
case, the reference command sweeps rrri are mixed into sweeps
of all individual actuators δδδ Fin as shown in Fig. 2b. In the
diagram, MMM is the mixing matrix to convert from summed
actuator commands to individual actuator commands. The
individual actuator commands (i.e. commands to each mo-
tor δδδ F = [δF1 ,δF2 , ...,δFN ]

T are fully correlated. The summed
actuator commands δδδ Sum are computed by multiplying total
individual actuator commands δδδ F with the mixing matrix in-
verse. Any redundant summed actuator commands will also
be fully correlated; for example, an octocopter r1=lon1 vehi-
cle sweep command will excite lon1, lon2, and q, with lon1
and lon2 being redundant control inputs and therefore com-
pletely correlated.

The second step is to extract the bare airframe frequency re-
sponses using the JIO method. In this case, the sweep com-
mands are the references rrr, the actuator signals in the JIO
method are the summed actuators δδδ A = δδδ Sum as shown in Fig.
2b, and the outputs any desired vehicle responses yyy. For the
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lon1 sweep         excites lon1, lon2, and q
lon2 sweep         excites lon1, lon2, and q
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Octocopter Example

2) Joint Input‐
Output Method
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Fig. 5: Process for obtaining models with individual actuator commands.

octocopter pitch example, r1 = lon1 and r2 = lon2 sweeps
are used to extract frequency responses q/lon1 and q/lon2.
It should be noted that the choice of references and summed
actuator commands results in all axes (heave, roll, pitch, and
yaw) being mutually decoupled (e.g. for the octocopter, only
lon1 and lon2 will cause any pitch rate response.

The third step is then to identify state space models with re-
spect to the summed actuator command inputs. Once this
appropriate frequency responses have been obtained throught
the Joint-Input Output method, this state space identification
is straightforward and follows the standard identification pro-
cedure (Ref. 4). Guidelines from Tischler are used for param-
eter reliability and model acceptability (Ref. 4). Cramér-Rao
bounds are within 20% and insensitivities are within 10% for
all identified parameters indicating good reliaibility. Table 2
shows the average and maximum cost functions for each con-
figuration. All models have average cost functions Jave < 50
(Ref. 4), indicating that overall each individual model is an
excellent fit to its corresponding flight data. Maximum cost
functions are also displayed for each configuration and are all
below 100, indicating good levels of fit for corresponding fre-
quency responses from flight data.

Table 2: Cost Functions for Identified State Space Models.

Configuration Average Maximum
Cost Function Cost Function

Quadcopter 40.8 89.9 (q/lon)
Hexacopter 45.5 98.4 (u̇/lon)
Octocopter 27.5 61.2 (u̇/lon)

It should be noted that there are 3 caveats for the state space
identification, which are specific to the goal of the recon-
figurable multicopter model. 1) All longitudinal and lateral
derivatives are constrained to be equal after accounting for
differences in inertia. 2) All actuator dynamics and delays
are constrained to be equal. 3) Quad, hexa, and octocopter
state space models all have the same structure. Each of the
constraints are assumptions based on the symmetry of the ve-
hicles and common parts used for each rotor and each vehi-
cle. One consequence of these caveats is that the state space
identification must be performed with all axes simultaneously;
even though the vehicle dynamics are decoupled, the way to
enforce symmetries among the axes and motors is by simul-
taenously identifying all axes with the inter-axis constsraints.
The final step is to transform the state space inputs from
summed actuator commands to individual actuator com-
mands. This is straightforward as the mixing matrix MMM was
chosen to be invertible. A similar process is done to the states
corresponding to actuator dynamics (motor lags), which is
possible due to the constraint that all actuators are the same.
This process for identifying state space models with individ-
ual actuator command inputs is repeated for the quad, hexa,
and octocopter. The final state space form is shown in Fig. 6
with individual actuator command inputs. The mass and in-
ertia terms are explicity separated from aerodynamic terms in
the stability and control matrices for the purposes of the re-
configurable model. All 3 configurations share the same state
space form. The stability derivatives Xw,Yr,Zu,Zq,Lr,Mw,Nv,
and Np are all fixed to 0 due to their corresponding fre-
quency responses being dropped as a result of the decoupled
responses (Ref. 4). Additionally, the stability derivatives Xq
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Fig. 6: State space model with individual actuator commands.

and Yp are fixed to 0 as they were found to be insenstive for
all 3 vehicles. Additionally, the stability derivative Nr is fixed
to 0 for the quad and hexacopter configurations, as it was in-
sensitve for those configurations. A final note is that there
are motor lags present to account for motor dynamics; this is
similar to previous work that found actuator dynamics were
needed for other multicopter configurations (Ref. 6).

RECONFIGURABLE MULTICOPTER
MODEL

The reconfigurable multicopter model is derived from quad
and octocopter flight identified models. The hexacopter con-
figuration was also flight tested and a model was extracted,
however this data was only used in validation of the recon-
figurable model, not in the model development. The recon-
figurable model is developed by producing a fit between each
individual state space term of the quad and octocopter identi-
fied models.

Linear least squares fits are used for terms which are expected
to vary linearly with the number of rotors or rotor placement.
For example, mass varies linearly with the number of rotors,
while inertias vary linearly with the rotor placement. It should
be noted that inertias from identified models are computed
from a spreasdsheet buildup of individual components and are
fixed in the actual state space identification process. Figure
7 shows the pitch inertia for the reconfigurable model along
with the values used in system identified models. The dashed
line indicates the fit used in the reconfigurable model (RM
Fit). The red “x”, black upward facing triangle, and blue circle
indicate the pitch inertia for the quad, hexa, and octocopter re-
spectively based on values used in the system identified mod-
els (based on a spreadsheet buildup). The downward facing
magenta triangle indicates the pitch inertia for the hexacopter
based on the reconfigurable model (Hexa RM). The reconfig-
urable model precisely predicts the hexacopter pitch inertia
computed from a spreadsheet buildup as the Hexa RM and
Hexa ID markers lie directly on top of one another.

The reconfigurable multicopter model is based on fits of the
“basic derivatives” as defined by McRuer (Ref. 14). The
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Fig. 7: Pitch inertia for reconfigurable model.

basic stability and control derivatives are in terms of force
or moment, for example the basic pitch damping derivative
has units of [(Nm)/(rad/s)]. This is in contrast to standard
dimensional derivatives, which are in terms of acceleration,
for example the standard dimensional pitch damping deriva-
tive has units of [(rad/s2)/(rad/s)] = [1/s]. For clarity, the
standard dimensional derivatives can be obtained by divid-
ing the basic derivatives with the appropriate mass or iner-
tia term. For example, standard dimensional pitch damping
is obtained by dividing basic pitch damping by pitch inertia:
Mq,dimensional =Mq,basic/Iyy. The standard dimensional deriva-
tives are normally used in state space flight dynamic model
identification. The basic derivatives are independent of mass
and inertia, and are used in the reconfigurable model in order
to separate the effects of inertia from aerodynamic effects.

Aerodynamic terms such as heave, roll, and pitch damping
vary linearly with the number of rotors or rotor placement and
are fit using linear least squares fits. Figure 8 shows the basic
pitch damping derivative for the reconfigurable model along
with values from system identified models. Error bars are
shown indicating a 1-standard deviation confidence based on
Cramér-Rao bounds. The reconfigurable model has an overall
linear trend with the number of rotors as depicted in Fig. 8.
The reconfigurable model accurately predicts the hexacopter
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Fig. 8: Pitch damping for reconfigurable model (basic de-
riative).

basic pitch damping from the flight identified value, as the
Hexa RM marker is very close to the Hexa ID marker, and
well within the Hexa ID error bounds.

Step function fits are used for terms which do not vary linearly
with the number of rotors, for example control derivatives are
greatly affected by interference effects, which are a nonlinear
function of rotor spacing. Figure 9 shows the basic pitch con-
trol derivative for an individual motor, relocated to be 1 meter
from the vehicle center of gravity. Basic control power for
an individual motor is shown in terms of moment [Nm] per
motor input command [PWM]. For configurations where the
number of rotors is less than 8, each motor has the same con-
trol power as an individual motor from the quadcopter. For
configurations where the number of rotors is 8 or more, each
motor has the same control power as an individual motor from
the octocopter. Figure 9 shows a reduction in inidivdual motor
control power between when the number of rotors is increased
from 6 to 8. This reduction in individual motor control power
is due to the decrease in rotor spacing resulting in rotors be-
coming physically close enough that significant aerodynamic
interference occurs.

After accounting for the step function in individual motor con-
trol power and also accouting for changes in rotor placement
and inertia, the total dimensional pitch control power for the
reconfigurable model is shown in Fig. 10. Total dimensional
control power is shown in terms of vehicle angular acceler-
ation [rad/s2] per mixer input command [PWM]. Due to all
factors combined (aerodynamic interference and changes in
rotor placement and inertia), the quadcopter vehicle acutally
has the largest total dimensional control power in pitch. Com-
pared to the quadcopter, the hexacopter has significantly less
total pitch control power. The octocopter has more total pitch
control power compared to the hexacopter, but not as much as
the quadcopter. Thus, adding more rotors can result in a net
increase or decrease in total control power, which may con-
tradict initial intuition.

Similar validations for all individual state space terms (Fig.
6) were performed between the hexacopter directly identi-
fied model and the hexacopter configuration from the recon-
figurable model. All terms from the reconfigurable model

based hexacopter were within the 1-standard deviation error
bounds from the directly identified hexacopter model, validat-
ing that the reconfigurable model is able to predict individual
terms within the accuracy of the directly identified hexacopter
model.

FLIGHT DATA VALIDATION

After the reconfigurable model has been validated at the hexa-
copter flight identified configuration for all state space model
terms, it is next checked against the identified hexacopter
in comparison to the actual flight data using frequency re-
sponses.

Figure 11 shows the pitch rate response due to a longitudinal
mixer input for flight data, state space model directly identi-
fied from flight data (Hexacopter ID), and state space model
from the reconfigurable model (Hexacopter RM). The directly
identified and reconfigurable model responses lie directly on
top of each other, both with nearly identical costs (J = 73 vs
75). This shows that the reconfigurable model is able to pre-
dict the pitch rate response just as well as the directly identi-
fied hexacopter model.

The costs for all frequency responses are compared for the
reconfigurable model and the directly identified hexacopter
model in Table 3. The Hexa ID column is the cost of the di-
rectly identified state space model compared to the flight data.
The Hexa RM column is the cost of the reconfigurable model
compared to the hexacopter flight data. For all frequency re-
sponses, the reconfigurable model has a cost similar to the di-
rectly identified model. On average, the reconfigurable model
has a cost of 46.0 which closely compares to the average di-
rectly identified model cost of 45.5, meaning that the reconfig-
urable model is able to predict flight data frequency responses
just as well as the directly identified hexacopter model.

Table 3: Cost Functions for Hexacopter Identified and Recon-
figurable Models.

Response Hexa ID Hexa RM
az/col1 13.6 13.6
az/col2 60.7 56.6
az/col3 79.4 83.9
u̇/lon 98.4 97.8
q/lon 73.3 75.1
ax/lon 45.3 49.3
v̇/lat 27.2 27.2
p/lat 23.9 23.8
ay/lat 28.3 26.8
r/ped 5.4 5.4
Average 45.5 46.0

The reconfigurable model and directly identified hexacopter
model are checked in the time domain with doublet response
flight data. Figure 12 shows the pitch rate response due to a
longitudinal doublet for flight data, state space model directly
identified from flight data (Hexacopter ID), and state space
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model from the reconfigurable model (Hexacopter RM). The
directly identified and reconfigurable model responses lie di-
rectly on top of each other.

The RMS cost of the time response data can be Froude scaled
based on multicopter hub-to-hub distance scaled to UH-60 ro-
tor diameter to so that existing RMS cost guidelines can be
applied (Ref. 4). Both models have the same scaled RMS cost
JRMS,Scaled = 0.78 < 2, and both models have a Theil Inequal-
ity Coefficient T IC = 0.08 < 0.3. This shows that the recon-
figurable model is able to predict the pitch rate response in the
time domain just as well as the directly identified hexacopter
model, and both are extremely accurate (Ref. 4).

The JRMS,Scaled and T IC values for all axes are shown in Table
4. The ID columns are the scaled RMS cost and TIC of the di-
rectly identified state space model compared to the flight data.
The RM columns are the scaled RMS cost and TIC of the
reconfigurable model compared to the hexacopter flight data.
For all doublet responses, the reconfigurable model has a cost
and TIC similar to the directly identified model. On average,
the reconfigurable model has an RMS cost JRMS,Scaled = 0.73
and T IC = 0.13 which closely compares to the average di-
rectly identified model JRMS,Scaled = 0.70 and T IC = 0.11,
meaning that the reconfigurable model is able to predict flight
data frequency responses just as well as the directly identified
hexacopter model.

Table 4: Scaled RMS Cost and Thiel Inequality Coefficients
for doublet verification.

Input ID Cost RM Cost ID TIC RM TIC
colmixer 0.43 0.55 0.07 0.09
lonmixer 0.79 0.79 0.08 0.08
latmixer 1.28 1.28 0.16 0.16
pedmixer 0.31 0.31 0.17 0.18
Average 0.70 0.73 0.11 0.13

CONCLUSIONS

To study the inherent effects of the number of rotors on gust
rejection capability, a quad, hexa, and octocopter were built
and used to obtain system identified flight dynamics mod-
els. The quad and octocopter configurations were then used
to develop a reconfigurable multicopter model, which was
validated with hexacopter flight data and a directly identified
model. This work supports the following conclusions:

1. Frequency response system identification augmented
with the Joint Input-Output method can be used to ex-
tract stability and control contributions from individual
rotors of a multicopter vehicle.
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Fig. 11: Pitch rate response to longitudinal mixer input.

2. A reconfigurable multicopter model based on identified
quad and octocopter configurations can be used to predict
hexacopter flight dynamics parameters and responses
just as well as a directly identified model.

3. Individual rotor control power may be reduced when the
number of rotors is increased. This is due to decreased
rotor spacing which results in significant aerodynamic
interference effects between rotors.

4. Increasing the number of rotors on a multicopter may not
inherently add control power or gust rejection capability.
Adding rotors affects inertia, rotor placement, and indi-
vidual rotor control power and all 3 effects combined can
result in an increase or decrease in total control power.
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