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ABSTRACT 

 

Flight testing of explicit rotor-state feedback (RSF) fly-by-wire control laws showed that measuring 

rotor tip-path-plane (TPP) flapping, via a laser measurement system, provided additional lead to the control 

system. This resulted in superior handling qualities in turbulence and heavy winds and improved stability 

margins. However, a significant impediment to the adoption of explicitly measured RSF has been the 

difficulty in extracting reliable rotor measurements. Therefore, this paper describes the development of a 

Kalman filter that was designed to estimate rotor TPP coordinates, and remove noise from the flapping 

signals while retaining the useful information without introducing large time delay, as would be the case 

for conventional low pass filtering. A new method for the design of the process noise covariance matrix 

using optimization of frequency domain specifications was implemented using flight test data from the UH-

60 Black Hawk. The design was integrated into an explicit rotor-state feedback control algorithm, where it 

was tested for robustness to sensor faults and effectiveness based on improvements to stability margins. 

The results showed that the Kalman filter was robust to rotor blade sensor spike and drop-out faults and 

resulted in improved stability margins and handling qualities.  

 

NOTATION 

𝑢, 𝑣, 𝑤 Roll, pitch, yaw angular velocities  

𝑝, 𝑞, 𝑟  Roll and pitch angular accelerations  

X, Y  Longitudinal and lateral position  

vx, vy, vz North, east, down ground speeds  

β1s  Lateral flapping (body frame) 

β1c  Longitudinal flapping (body frame)  

βi   Individual blade flapping  

(rotating frame)  

δlat, δlon  Longitudinal and lateral pilot inputs  

δcol, δped  Collective and pedal pilot inputs   

θ, ϕ  Roll, pitch attitudes  

ψ  Azimuth angle of rotor 

𝒙, 𝒖, 𝒚 State, input, output vectors 

𝒘, 𝒗 Process, measurement noise vectors 

𝑨, 𝑩, 𝑪, 𝑫 State space matrices 
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𝑲   Kalman gain 

𝑸,𝑹  Process, measurement noise 

covariance matrices  

𝑷   Estimation error covariance matrix 

k   Time step  

~   Superscript denoting measurement  

^   Superscript denoting estimate  

ω     Frequency (rad/s) 

σ   Standard deviation 

∆   Optimization design parameter  

eRSF  Explicit RSF control laws 

RSF   Rotor-state feedback 

KF  Kalman Filter 

KFa  Kalman filter design a  

KFb  Kalman filter design b 

TPP   Tip-path-plane  

SNR  Signal-to-noise ratio 

FDEE  Frequency domain estimation error  

ω𝐷𝑅𝐵  Disturbance rejection bandwidth 

ω𝑐  0 dB broken loop crossover 

frequency  
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INTRODUCTION 

The use of rotor tip-path-plane (TPP) 

flapping motions has been shown in flight testing 

and simulation to improve helicopter ride quality in 

gusty conditions and decrease pilot workload during 

precision maneuvers performed in adverse weather 

[1, 2, 3, 4]. Flight testing of the rotor-state feedback 

(RSF) fly-by-wire control laws on board the 

Rotorcraft Aircrew Systems Concepts Airborne 

Laboratory (RASCAL) JH-60A aircraft [5] showed 

that using RSF in the control algorithm provided 

additional lead to the control system, which resulted 

in superior handling qualities in turbulence and 

heavy winds, while maintaining sufficient stability 

margins, compared to standard fuselage feedback 

[2]. Flight tests indicated that RSF using explicitly 

measured rotor states (eRSF), increases phase 

margin which allowed for higher disturbance 

rejection bandwidth (DRB) and crossover frequency 

(ω𝑐), which results in improved tracking 

performance in flight on the order of 10-50% for 

most ADS-33E-PRF Mission Task Elements [2]. In 

addition to using rotor TPP motion for feedback, 

accurate and reliable measurements are also 

desirable to improve rotorcraft simulation models, 

identify correlation with acoustic measurements and 

noise estimation, enable individual blade control, 

and provide vehicle health monitoring during flight 

tests [6, 7]. The Future Vertical Lift fleet will likely 

be equipped with blade mounted sensors for real-

time acquisition of main rotor motions [8]. However, 

a significant impediment to the adoption of eRSF 

remains the difficulty in extracting reliable rotor 

response measurements [9].  

Measurement of rotor states is typically 

performed in the rotating frame, with sensors 

measuring blade flapping, lead-lag, and pitch 

motion. However, control laws are applied to the 

swashplate in the nonrotating frame, necessitating 

the conversion of rotor states from the rotating to 

nonrotating frame, or individual blade flapping to 

TPP attitude [10]. The TPP coordinates describe the 

circular path formed by the tips of blades with lateral 

and longitudinal flapping at a coning angle, as shown 

in Figure 1 [11, 12]. Rotor TPP measurements, 

derived through the multi-blade coordinate 

transformation of individual rotor blade flapping 

measurements, can contain a considerable amount of 

noise and are sensitive to environmental conditions.  

To include blade flapping measurements in RSF, 

conventional filtering techniques are generally 

employed, which introduce significant time delay 

[13]. Additionally, the increased complexity of the 

blade measurement system can deliver intermittent 

and spurious TPP coordinate data to the RSF control 

algorithm.  

While there have been few flight tests of 

RSF systems, researchers have investigated methods 

to process and utilize rotor blade flapping 

measurements for feedback in control law 

algorithms. Theoretical and experimental results 

show that an estimator, particularly the Kalman filter 

(KF), can be used to resolve robust and reliable rotor 

response measurements in real-time [14, 15]. A KF, 

also known as a linear quadratic estimator, is an 

adapted state estimator, which fuses measurement 

data from multiple sensors and uses a mathematical 

model based on physical laws or system 

identification to predict the dynamic behavior of the 

system [16]. The KF refines state estimates through 

an innovation step that minimizes the variance of the 

estimation error (i.e., the difference between the 

estimated output and the raw output) which are 

typically due to uncertainties in the mathematical 

model and noisy measurements [16]. In the KF 

algorithm, the measurement and process noise 

covariance matrices, 𝑹 and 𝑸, respectively, play an 

important role in determining the Kalman gain, and 

therefore the bandwidth and stability of the filter 

[17]. 

Generally, filter parameters are tuned off-

line using simulated data and are subsequently used 

for on-line, real-time processing [18]. Setting the 

covariance matrices, 𝑹 and 𝑸, is a difficult task 

because process uncertainties and noise affecting 

output measurements are unknown; tuning strategies 

range from simple manual ad-hoc or trial-and-error 

methods to complex, computationally time-intensive 

methods such as those explored in Ref. [19, 20, 21]. 

 
 

Figure 1. Lateral flapping, β1s tip-path-plane tilt [12]. 
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Approaches such as autocovariance least-squares 

method and Bayesian approach using Monte Carlo 

simulations take numerous iterations and are based 

on time-domain performance. Nonetheless, the 

industrial standard still relies on semi-empirical 

tuning and diagonal parameterization of 𝑹 and 𝑸.   

The objective of this research was to design 

a KF to estimate rotor TPP coordinates, remove 

noise from the flapping signals while retaining the 

useful information, without introducing large time 

delay. A new method for the tuning of the 𝑸 matrix 

using flight data and direct optimization of frequency 

domain specifications was implemented. The KF 

designs were tested for their robustness to sensor 

faults and effectiveness based on improvements to 

stability margins after integration into the eRSF 

control system, and flown in a fixed base simulator 

[1, 2].  
 

COLLECTION OF FLIGHT TEST DATA 
 

Many technologies for measuring blade 

flapping motion have been explored, including strain 

gauges, blade-mounted pressure transducers, 

accelerometers, Hall-effect, magneto-inductive and 

Eddy current distance sensors, ultrasonic 

transducers, optical blade position measurement and 

vision systems [9, 7, 22]. This research uses flight 

test data collected with a rotor blade measurement 

system on the RASCAL UH-60 Black Hawk in 2010 

and 2015-2016 [2]. Flight test data from 40 records, 

which includes ADS-33E Mission Task Elements 

(MTEs) [23], frequency sweeps, and hovering in 

simulated and actual turbulence, were used to 

evaluate and optimize the performance of the KF. 

The rotor blade measurement system on RASCAL 

consists of laser distance transducers and azimuth 

encoder shown in Figure 2 [13].   

The laser measurement system is mounted 

on the rotor in the rotating frame in order to measure 

flap, lead-lag, and pitch blade angles on each of the 

four blades [6]. Signals and power pass between the 

rotating and fixed frames through a slip-ring [24]. 

The flap, lead-lag, and pitch blade angles of an 

individual blade are used to calculate a calibrated 

flap angle, βi, for the blade. Then, the multi-blade 

coordinate transform converts the calibrated flap 

angles of each blade, βi, and a separate rotor-azimuth 

measurement, ψ, to the tip-path plane (TPP) 

longitudinal and lateral flapping angles, 𝛽1𝑐 

and 𝛽1𝑠 [25]: 

 

𝛽1𝑐 =
1

2
[𝛽1 cos(ψ) + 𝛽2 cos (ψ +

𝜋

2
)                       +

                 + 𝛽3 cos(ψ + 𝜋) + 𝛽4 cos (ψ +
3𝜋

2
)],   (1) 

𝛽1𝑠 =
1

2
[𝛽1 sin(ψ) + 𝛽2 sin (ψ +

𝜋

2
)      +

                   +𝛽3 sin(ψ + 𝜋) + 𝛽4 sin (ψ +
3𝜋

2
)].   (2) 

From Equations (1) and (2), one can see that errors 

in blade or azimuth measurements will skew the 

calculation of the TPP measurement. Reference [2] 

showed that azimuth angle bias would have a small 

and likely tolerable increase in cross-coupling 

(cross-contamination), where lateral motion could be 

misrepresented in the longitudinal direction, and vice 

versa. Compounding these potential vulnerabilities, 

the laser sensors are inherently noisy and sensitive to 

sunlight, dust, and sand.  

In previous flight testing, the eRSF control 

laws integrated conventionally filtered blade 

flapping measurements. Rotor TPP signals were 

processed with a 5Hz Butterworth filter and two 

notch filters at 4/rev and 1/rev to mitigate noise [1, 

2].  This introduced a time delay of approximately 

0.05 seconds, which adds approximately 10 deg of 

additional phase lag to the crossover frequency 

thereby limiting performance.  

 

KALMAN FILTER DESIGN 
 

The KF was designed to replace the 

Butterworth and notch filters, and deliver superior 

rotor TPP flap angle estimates, with reduced lag to 

the eRSF control block shown in Figure 3.  As shown 

in Figure 4, a linear model, tested and validated with 
 

Figure 2. Rotor blade measurement system [12]. 
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actuator inputs, fuselage, and rotor-state 

measurements from flight data, formed the basis of 

the KF. The Kalman filter was implemented in the 

discrete state space form [18]: 

 

             
𝒙𝑘 = 𝑨𝒙𝑘−1 + 𝑩𝒖𝑘−1 + 𝒘𝑘−1 

𝒚𝑘 = 𝑪𝒙𝑘 + 𝑫𝒖𝑘
  (3) 

 

where model matrices 𝑨 and 𝑩 relate the past states 

and control inputs at 𝑘 − 1, to the current state time 

step 𝑘. The value w represents the process noise, and 

matrices 𝑪 and 𝑫 relate the states and inputs to the 

outputs, 𝒚. The actual measured outputs are 

described by: 

 

       �̃�𝑘 = 𝒚𝑘 + 𝒗𝑘       (4) 

 

where measurement noise, 𝒗, is added to the model 

outputs. The Kalman filter design is based on linear 

state and measurement dynamics, where process and 

measurement noise are modeled as independent (of 

each other) and zero mean, white Gaussian [18]. In 

reality, the noise may not be perfectly Gaussian; but, 

in practice, the process and measurement noise, 𝒘 

and 𝒗, can be modeled as having normal probability 

distributions, such that their mean values and 

covariances are determined by the expressions [18]:  

 

𝐸[𝒗(𝑡)] = 0, 𝐸[𝒘(𝑡)] = 0,           (5) 

𝐸[𝒗(𝑡)𝒗𝑇(𝑡)] = 𝑹, 𝐸[𝒘(𝑡)𝒘𝑇(𝑡)] = 𝑸,             (6) 

 

with constant process noise covariance matrix 𝑸 and 

constant measurement noise covariance matrix 𝑹.  

The discrete Kalman filter equations use a 

two-step prediction-correction algorithm.  First, the 

predicted state �̂�− and error covariance estimates 𝑷 

are computed by [18]:    

 

�̂�𝑘
− = 𝑨�̂�𝑘−1 + 𝑩𝒖𝑘−1,  (7) 

                  𝑷𝑘
− = 𝑨𝑷𝑘−1𝑨

𝑇 + 𝑸. (8) 

 

Then the correction step generates a posterior state 

estimate [18]:   

 

�̂�𝑘 = �̂�𝑘
− + 𝑲𝑘(�̃�𝑘 − 𝑪�̂�𝑘

−), (9) 

 

with the Kalman gain 𝑲 given by [18]:   

 

                 𝑲𝑘 = 𝑷𝑘
−𝑪𝑇(𝑪𝑷𝑘

−𝑪𝑇 + 𝑹)−1, (10) 

 

and updates 𝑷, the error covariance estimate by [18]: 

 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑪)𝑷𝑘
−. (11) 

 

The Kalman gain is selected to minimize the error 

covariance of the residual, the difference between the 

actual measurement and estimated or predicted 

measurement (�̃� − 𝑪�̂�−). When the covariance 

matrices 𝑸 and 𝑹 are set to constant values, the 

estimation error covariance 𝑷 and Kalman gain 𝑲 

will rapidly converge to constant values [18].  

If the noise in the system is known or 

measurable then these values would determine the 

covariance matrices. However, even if the 

covariance matrices are measureable, they are often 

adjusted based on the desired characteristics of the 

estimates. In cases where actual measurements are 

trustworthy, the measurement noise covariance, 𝑹 

can be set very low. Alternatively, when the model 

is accurate or the measurements are not as trusted, 

 
Figure 4. Rotor-state estimation block diagram. 

 

 

 
Figure 3. State estimator and failure configuration 

architecture with eRSF. 
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the process noise covariance 𝑸 will be relatively 

small. Note that the Kalman filter’s performance 

does not depend on the absolute process and 

measurement noise covariance matrices, 𝑸 and 𝑹, 

rather on their ratio [17].  

For this application, the linear model was a 

reduced order version of the FORECAST state-space 

model of the UH-60 [26]. The model is an eight 

degree of freedom representation of the aircraft, 

including 8 fuselage states, 2 rotor states and 4 pilot 

inceptor inputs. The state variables used in this KF 

are:  

 

𝒙 =  [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝜙, 𝜃, 𝛽1𝑐 , 𝛽1𝑠]
𝑇  (12) 

 

where:  𝑢, 𝑣 and 𝑤 are the body velocities, 𝑝, 𝑞 and 𝑟 

are angular velocities, 𝜙 and 𝜃 are Euler angles, and 

𝛽1𝑐 and 𝛽1𝑠 are (body frame) longitudinal and lateral 

flapping. The control inputs are:  

 

𝒖 = [𝛿𝑙𝑎𝑡 , 𝛿𝑙𝑜𝑛, 𝛿𝑐𝑜𝑙 , 𝛿𝑝𝑒𝑑]
𝑇

  (13) 

 

where 𝛿𝑙𝑎𝑡 and 𝛿𝑙𝑜𝑛 are lateral and longitudinal 

cyclic stick, 𝛿𝑐𝑜𝑙 is collective stick and 𝛿𝑝𝑒𝑑  is the 

pedal input. All of the state variables were measured 

at a sampling frequency of 320 Hz and down 

sampled to 64 Hz. 

The measurement noise covariance matrix 𝑹 

was computed using flight data at trim. Covariance 

values, 𝜌, were calculated from a culmination of 10 

flight records. Measurement noise covariance values 

specified how each of the measurements interact 

with each other. Theoretically, cross-correlation 

values or covariance values between different 

measurement noises are zero because measurements 

are independent of each other [18]; in reality, these 

values are non-zero but small. The covariance matrix 

is dominated by the diagonal elements, which are 

equal to the variance of the measurement noise. The 

stochastic characteristics of the measurements were 

evaluated in the frequency domain to determine the 

validity of modeling the noise as Gaussian white 

noise.  The power spectral density of white noise has 

uniform power over all frequencies. The 

measurement noise was observed to have nearly 

constant power, except at 1/rev and 4/rev and over 

28 rad/s, where RASCAL is known to have harmonic 

vibration.  For the purpose of this research, the 

measurement noise was approximated as Gaussian 

white noise, covariance values were computed in the 

time domain. As expected, computation of 𝑅 

produced very small cross-correlation values 

between measurements relative to the diagonal auto-

correlation values, the variance of the measurement 

noise. The full measurement noise covariance matrix 

was used in this study. The dominant, diagonal terms 

of the 𝑅 matrix are presented in Table 1. The 𝑹 

matrix was adjusted based on the desire to estimate 

reliable blade flapping and that the blade 

measurements can be noisy and drop out. The blade 

flapping measurement noise covariance terms were 

increased by a factor of 10. This produces estimates 

of blade motion that rely less on the actual blade 

measurements, and more on other trusted sensor 

measurements.  

With the 𝑹 matrix set, a novel optimization 

method was used to tune the process noise 

covariance matrix, 𝑸. The process noise covariance 

matrix optimization was initialized with an ad hoc 

method. By manipulating terms of a diagonal matrix 

to produce estimates with reduced high frequency 

noise but, that still captured the lower frequency 

domain behavior of lateral and longitudinal flapping. 

This ad hoc 𝑸 was used for initial design 

specifications and scaling purposes, which are 

discussed in the following sections. 

 

KALMAN FILTER DESIGN 

SPECIFICATIONS 

A set of frequency domain design 

specifications were established to optimize the 

tuning of the KF and produce an overall performance 

index, which provides the “optimization” criteria for 

Table 1. Measurement noise covariance matrix 

diagonal terms. 

Signal 

variance 
Value (units) 

𝑢 32.9*10-3 (ft/sec) 

𝑣 28.5*10-3 (ft/sec) 

𝑤 6.79*10-3 (ft/sec) 

𝑝 4.26*10-4 (rad/sec) 

𝑞 1.32*10-4 (rad/sec) 

𝑟 4.95*10-5 (rad/sec) 

𝜙 3.42*10-5 (rad) 

𝜃 4.43*10-5 (rad) 

𝛽1𝑐 3.85*10-3 (rad) 

𝛽1𝑠 4.78*10-3 (rad) 
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the KF design. Typically, KF performance is 

evaluated by calculating the root mean square (RMS) 

error of the estimates in the time domain [17, 19]. 

However, the frequency domain representation is 

useful for revealing characteristic properties of the 

signal, especially for signals with cyclic behavior 

like rotor flapping angles. The same raw and 

estimated lateral flapping responses are compared in 

the time and frequency domain in Figure 5 (a) and 

(b). The time history shows the estimate has less 

noise than the raw lateral flapping signal, and the 

frequency domain shows that the signals behave 

similarly, up to around 16 rad/s, where it is evident 

that the estimate has much less high frequency 

content.  The frequency domain specifications used 

to drive the optimization were signal-to-noise ratio 

(SNR), frequency domain estimator error (FDEE), 

and time delay. A time domain specification, 

commanded actuator activity in the RSF 

implementation, was also checked. The 

specifications are set to bounds/limits using 

Reference [12], filtered flapping signal performance, 

and engineering judgement. These specifications 

will be described in detail in the following sections.  
 

Signal-to-Noise Ratio  

Signal-to-noise ratio (SNR) is the ratio of the 

power of the meaningful information of the signal 

and the power of noise mixed in with the signal. 

Analysis of the power spectral densities of the 

flapping signals (e.g., Figure 5(b)) reveals the 

frequency distribution of the measured signal, 

specifically, the contribution of noise in the 

measured signal [12]. The SNR of the estimated 

lateral flapping, for example, was calculated from 

integrating over the power spectral density of the 

measurement β1s (𝐺β1sβ1s), where the useful 

information-carrying portion of the measurement, 

σβ1s
2

signal, was considered to be between 0.3 to 18 

rad/s [12]:  
 

σ𝛽1𝑠
2
𝑠𝑖𝑔𝑛𝑎𝑙

= ∫ 𝐺𝛽1𝑠𝛽1𝑠
  𝑑𝜔

18

0.3
                       (14) 

and the noise in the measurement, σβ1s
2

noise, was 

considered to be distributed between 18 rad/s and 1/5  

the sampling frequency, 𝑓𝑠:  
 

σ𝛽1𝑠
2
𝑛𝑜𝑖𝑠𝑒

= ∫ 𝐺𝛽1𝑠𝛽1𝑠
  𝑑𝜔.

2𝜋𝑓𝑠 5⁄

18
                            (15) 

 

The signal-to-noise was calculated with:   

 

𝑆𝑁𝑅 = σ𝑠𝑖𝑔𝑛𝑎𝑙  / σ𝑛𝑜𝑖𝑠𝑒.                                          (16) 

       

The lateral TPP flapping has a SNR of approximately 

2.4 when it was measured directly and 9.6 when 

processed with the Butterworth and notch filters, 

previously used for eRSF. This filtration method 

comes at the cost of significant time delay (0.05 sec) 

that degrades RSF performance.  

 

Frequency Domain Estimation Error (FDEE) 

It was important to measure how closely the 

KF estimates were representative of the lower-order 

dynamics of the raw measured signals, because the 

sensors were shown to produce accurate data below 

18 rad/s [2]. The FDEE between the estimated and 

raw measurement frequency responses, 𝑇(𝜔)𝑒𝑠𝑡 and 

𝑇(𝜔)𝑎𝑐𝑡𝑢𝑎𝑙, is measured where the meaningful 

dynamic characteristics occur, between the 

frequency range 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 (typically around 

0.3 to 18 rad/s) [12]: 

 

𝐹𝐷𝐸𝐸 = ∑ [(|𝑇(𝜔)𝑒𝑠𝑡| − |𝑇(𝜔)𝑟𝑎𝑤|)2 +
𝜔𝑚𝑎𝑥
𝜔𝑚𝑖𝑛

       + 0.0175 ∗ (∠𝑇(𝜔)𝑒𝑠𝑡 − ∠𝑇(𝜔)𝑟𝑎𝑤)2 ],     (17) 

  
Figure 5. Time and frequency domain responses of lateral flapping angle from a roll frequency sweep maneuver. 
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where |𝑇(𝜔)| and ∠𝑇(𝜔) are the magnitude (dB) 

and phase (deg) from the frequency domain 

responses. FDEE of on-axis and off-axis responses 

are used. For model following, an on-axis lower 

order fit cost of under 50 is excellent. The lower 

order and higher order responses are nearly 

indistinguishable for a pilot; however, under 100 is 

still acceptable for helicopters [12]. These guidelines 

were used to set the FDEE bounds, where a cost of 

under 50 showed excellent agreement between the 

estimated and raw response, and under 100 was 

acceptable.  

 

Time Delay  

The time delay was calculated in the 

frequency domain based on the phase lag between 

estimated and raw flapping signals. Inherent to the 

Kalman filter design, estimates were expected to 

improve time delay and even provide lead in the 

flapping signals compared to the filtered flapping 

signals. Therefore, an acceptable time delay was 

considered anything less than 0.03 seconds, and 

estimates with small lead or no time delay were 

considered excellent.  

 

Commanded Actuator Activity  

Robustness to faulty measurement was an 

important aspect of the design. Estimate 

characteristics depended on how much the KF 

utilized the model and measured data. Relying more 

heavily on the model meant the actual dynamics of 

the aircraft were not guaranteed to be captured. 

However, relying too much on measurement data 

would create a sensitive system, not robust to 

erroneous sensor measurements. For safety of flight, 

when implemented in eRSF control laws, actuator 

commands from the feedback of rotor states are 

limited to +/-0.5 inch (+/-10%) equivalent stick [2]. 

The commanded actuator activity of the RSF path 

was considered acceptable if it did not exceed +/-0.5 

inch.   

Q OPTIMIZATION 

While many sets of design parameters or 

process noise covariance matrices are able to meet 

the given criteria, the optimal design is one that not 

only just meets all the specifications, but produced 

the best performance index, the pareto-optimum 

solution [27]. The performance index is defined as 

the SNR for this optimization problem. The diagonal 

terms of the process noise covariance matrix 𝑸 were 

set as the design parameters, which were tuned to 

meet the design specifications and maximize the 

performance index. To make optimization possible, 

design parameters were constrained in sets to reduce 

redundancy and correlation between terms. Several 

different parameter constraint methodologies were 

tested. Diagonal terms of the process noise 

covariance matrix dominate. Insensitive terms, e.g. 

𝜌𝑤,𝑤 and 𝜌𝑟,𝑟, were fixed. Off-axis flapping, such 

as 𝜌𝛽1𝑐,𝛽1𝑠
, was included to capture cross-coupling. 

Final selection of the optimized process noise 

covariance matrix 𝑸 was:   
 

where the covariance values, 𝜌, were fixed and the 

freed ∆ design parameters were: Δ𝑣𝑒𝑙 for body 

velocity, Δ𝑎𝑛𝑔 for angular velocity, Δ𝑎𝑡𝑡 for attitude,  

Δ𝛽1𝑠
 and Δ𝛽1𝑐

 for lateral and longitudinal flapping 

angles, and Δ𝛽𝑜𝑓𝑓
 for the off-axis flapping angle.   

 The optimization was performed using the 

Control Designer's Unified Interface (CONDUIT®) 

optimization software tool. The setup for the KF 

optimization is presented in Figure 6 and 

optimization specifications are given in Table 2 [27]. 

Design specifications were made with the 

CONDUIT® Specmaker tool specifically for this 

application. Evaluation of these specifications was 

implemented using CIFER® generated frequency 

responses and tool utilities that are integrated in 

𝑄 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
(𝜌𝑢,𝑢 ∗  Δ𝑣𝑒𝑙) 𝜌𝑣𝑒𝑙,𝛽 𝜌𝑣𝑒𝑙,𝛽

(𝜌𝑣,𝑣 ∗ Δ𝑣𝑒𝑙) 𝜌𝑣𝑒𝑙,𝛽 𝜌𝑣𝑒𝑙,𝛽

𝜌𝑤,𝑤

(𝜌𝑝,𝑝 ∗ Δ𝑎𝑛𝑔) 𝜌𝑝,𝛽1𝑠

(𝜌𝑞,𝑞 ∗ Δ𝑎𝑛𝑔) 𝜌𝑞,𝛽1𝑐

𝜌𝑟,𝑟

(𝜌𝜙,𝜙 ∗ Δ𝑎𝑡𝑡)

(𝜌𝜃,𝜃 ∗ Δ𝑎𝑡𝑡)

𝜌𝑣𝑒𝑙,𝛽 𝜌𝑣𝑒𝑙,𝛽 𝜌𝑞,𝛽1𝑐
(𝜌𝛽1𝑐,𝛽1𝑐

∗ Δ𝛽1𝑐
)  (𝜌𝛽1𝑐,𝛽1𝑠

∗ Δ𝛽𝑜𝑓𝑓
)

𝜌𝑣𝑒𝑙,𝛽 𝜌𝑣𝑒𝑙,𝛽 𝜌𝑝,𝛽1𝑠
(𝜌𝛽1𝑐,𝛽1𝑠

∗ Δ𝛽𝑜𝑓𝑓
) (𝜌𝛽1𝑠,𝛽1𝑠

∗ Δ𝛽1𝑠
) ]
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CONDUIT®. A sensitivity analysis for insensitivities 

and Cramér-Rao bounds of the design parameters 

ensured the problem was well posed, and reduces the 

likelihood that a local minima was reached [12].  For 

this design, the optimization will meet all the FDEEs 

constraints, and maximize the SNR of the flapping 

signals. Time delay and commanded actuator 

activity were checked, but did not drive the 

optimization. The required lateral and longitudinal 

flapping FDEE was incrementally tightened and re-

optimized in a design margin optimization [27] to 

produce a family of optimized 𝑸 matrices, all 

optimized solutions for the KF designs. 

 

KALMAN FILTER DESIGN TRADE-OFFS 

Important trade-offs were highlighted from 

the family of KF designs that were determined via 

design margin optimization. Figure 7 shows the 

trade-off between SNR and FDEE for the family of 

optimized solutions, as indicated by the red traces.  

This key trade-off shows that SNR can be improved 

(increased) only when the frequency domain 

estimation error degrades (increases). This is due to 

the nature of forming state estimates based on 

measurements and a mathematical model. Relying 

more on the model, which is accurate but not 

identical to flight data, results in a better SNR but 

reduced accuracy of flapping signal, shown in 

increased FDEE. A knee in the curve occurs at 

around a FDEE of 80, indicating the trade-off 

 
Figure 6. Setup of Kalman filter design specifications for optimization in CONDUIT®. 

 

Table 2 . Optimization Specifications. 

Constraint Type 
Specmaker 

Name 

Design 

Parameter 
Description 

Boundary 

(excellent, acceptable) 

Constraint 

(CONDUIT® 

Soft)  

CosTeU3 Flapping FDEE  Estimated signal error Equ. 17 0-50,          50-100 

CosTeU5 on-axis FDEE  Estimated signal error Equ. 17 0-50,          50-100 

Objective SnrBlU2  flapping SNR  Estimated signal SNR Equ. 16 15-above,   10-15 

Check Only  

TimDeU1 Time delay Time delay in estimated signal  0,                0-0.03 

SatAcU1 Actuator 

activity 

Actuator saturation level -0.4-0.4,    -0.5-0.5 

CosTeU6 Off-axis FDEE  Estimated signal error Equ. 17 0-100,        100-150 
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Figure 7. SNR and FDEE trade-off. 
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becomes more sensitive after this point. The 

conventional filtering method can be seen in green in 

Figure 7. Notably, the filtered flapping signals had 

approximately 0.05 seconds of added time delay, 

reflected in the large FDEEs, while estimated 

flapping signals had little to no time delay.  
 

To test the robustness of the KF designs, the 

effect and severity on commanded actuator activity 

during the worst-case fault scenarios were evaluated. 

The most dangerous faults were evaluated based on 

flight data. The worst-case fault scenario occurred 

when opposing blade laser sensors saturated with 

spikes and drop outs; this could cause the estimated 

flapping signals to produce large, undesirable and 

spurious, commanded actuator inputs to the RSF. 

Figure 8 shows how severe faults affect flapping, 

where injected faults caused the SNR of the 

estimated flapping signals to decrease significantly, 

while the FDEEs were only slightly degraded, as 

indicated by the purple traces. Conventionally 

filtered flapping signals degraded to equivalent SNR 

levels as the estimated during faults but, 

conventionally filtered flapping had significantly 

higher FDEE and time delay.  Figure 9 shows the 

commanded longitudinal actuator activity for the 

family of optimized KF solutions, where the purple 

and red traces show the estimated flapping 

commanded actuator activity with and without 

synthetically injected spikes, respectively. Similar 

results were found in the lateral axis.  

When the laser sensor system is working 

properly, the commanded actuator activity lies well 

below the saturation limit. Injecting sensor faults 

reveals that the optimized KF solutions have 

different degrees of sensitivity. Kalman filter designs 

with FDEE above 90 are tolerant to sensor failures 

but, designs with lower FDEEs rely too heavily on 

measurement data, and would saturate the 

commanded actuator. Notably, filtered flapping with 

faults results in comparable or higher actuator 

activity to the estimated flapping but, the filtered 

flapping has significantly higher FDEE.  

Selected from the family of optimized KF 

designs, KFb with a FDEE of 60, which relies more 

heavily on the sensor measurements and acting like 

a slower, lower gain estimator compared to KFa, 

which relies less on sensor measurements and more 

on the model with a FDEE of 120. These designs are 

indicated in Figure 7 - Figure 9 circled with dotted 

red traces.  Based on linear environment testing, KFa 

was more robust to faults as indicated by less severe 

actuator response to faults, whereas KFb better 

represents the actual flapping motions as indicated 

by low FDEE.  

 

EXPLICIT RSF CONTROL LAWS DESIGN 

AND OPTIMIZATION WITH KALMAN 

FILTER 
 

The effectiveness of two optimized KF 

designs integrated with the eRSF controls system in 

Reference [1] was evaluated in linear analysis.  The 

original eRSF controls system uses conventionally 

filtered flapping signals for RSF. To integrate the 

Kalman filter designs with the eRSF control laws, 

the estimated flapping signals from the Kalman filter 

were exchanged with the conventionally filtered 

flapping signals in the eRSF control laws, as shown 

 
Figure 8. SNR and FDEE trade-off with faults. 

 
Figure 9. Longitudinal actuator activity and FDEE 

trade-off. 
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in Figure 10. Based on the KF design optimization, 

the estimated flapping signals had less time delay 

than conventionally filtered flapping signals, 

providing phase lead. The eRSF with KF designs had 

higher phase margins, which indicated that eRSF 

control gains could be re-optimized to utilize this 

lead to gain tighter tracking performance. Before re-

optimizing the KF designs in CONDUIT®, the 

estimated flapping signals were verified against raw 

flapping signals. Explicit rotor-state feedback 

control gains were re-optimized to provide 

maximum disturbance rejection bandwidth via the 

design margin optimization technique [27], while 

maintaining desired stability margins, Level 1 

handling qualities metrics, and minimizing actuator 

RMS, An example of the control system is depicted 

in Figure 10, for the lateral axis. The eRSF with KFb 

design (lower FDEE) was optimized to a slightly 

better overall performance index than the KFa 

design. As indicated in Table 3, the change in control 

gains of eRSF with KFb design was more evenly 

distributed, whereas the optimization of KFa had 

 
Figure 10.  Explicit model following architecture with rotor-state feedback (lateral-axis). 

 

Table 3. Longitudinal and lateral axes optimized feedback gains with Kalman filter. 

 eRSF eRSF with KFa % Change eRSF with KFb % Change 

RSF Gains 

𝑲𝜷𝟏𝒔
 10.068 11.631 15.52% 12.799 27.13% 

𝑲𝜷𝟏𝒄
 5.985 10.832 81.00% 7.461 24.67% 

Inner Loop Gains 

𝑲𝒑 3.484 3.951 13.41% 3.913 12.32% 

𝑲𝝓 12.776 14.249 11.53% 14.379 12.55% 

𝑲𝒒 8.674 10.984 26.63% 9.923 14.40% 

𝑲𝜽 11.708 18.647 59.27% 14.489 23.75% 

 

Table 4. Re-optimized lateral control system design characteristics with Kalman filter. 

 
Gain 

Margin 

(dB) 

Phase 

Margin 

(deg) 

Crossover 

ωc 

(rad/s) 

Attitude 

DRB ωDRB ϕ 

(rad/s) 

Actuator 

RMS 

(inches) 

Actuator 

rate RMS 

(inches/s) 

eRSF 7.13 63.16 4.65 1.28 0.0458 2.22 

eRSF with KFa 

(% Change from eRSF) 

10.54 

(+47.77%) 

61.64 

(-2.42%) 

4.85 

(+4.44%) 

1.32 

(+2.91%) 

0.0433 

(-5.31%) 

1.99 

(-10.47%) 

eRSF with KFb 

(% Change from eRSF) 

8.97 

(+25.71%) 

61.38 

(-2.83%) 

4.92 

(+5.90%) 

1.34 

(+4.35%) 

0.0442 

(-3.40%) 

2.10 

(-5.27%) 
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larger increases in the longitudinal control gains. 

Results of the optimization for the lateral and 

longitudinal control axes are shown in Table 4 and 

Table 5. Increased control gains of the eRSF control 

system resulted in improvements in disturbance 

rejection bandwidth, crossover frequency, with 

reduced actuator RMS, and actuator rate RMS in 

turbulence. Large improvements are seen in the 

longitudinal axis.  

The analysis indicates that improvements in 

disturbance rejection bandwidth for both explicit 

rotor-state feedback with Kalman filters are in the 

range of 2-4% for the lateral axis, and 7-21% for the 

longitudinal axis. The actuator RMS, actuator rate 

RMS, and crossover frequencies were also 

increased by similar amounts for both the eRSF with 

Kalman filter systems, while maintaining gain 

margins greater than 7 dB and phase margin over 60 

deg.  

 

VALIDAITON OF NONLINEAR 

SIMULATION MODEL 

Validation was performed in the frequency domain 

using the nonlinear GENHEL simulation model. 

The validation of the nonlinear simulation model 

ensured that the characteristics designed for in the 

linear analysis were applicable to the higher fidelity 

nonlinear blade element model simulation of the 

UH-60 GENHEL [25]. The linear CONDUIT® 

model broken-loop responses with Kalman filter 

designs incorporated were simulated in position 

hold mode, and extracted from CONDUIT® with the 

loop of interest broken at the mixer during 

automated broken-loop sweeps. The broken-loop 

flapping responses were generated from the 

nonlinear simulation with automated frequency 

sweeps input at the mixer and the frequency 

response was calculated from input/output on either 

side of the sweep. The nonlinear and linear analyzes 

were compared in the frequency domain using 

CIFER® software [12] to calculate the nonlinear 

response. An example comparison is given in Figure 

11, where linear analysis and nonlinear model are in 

agreement around the crossover frequency (1-9 

rad/s), indicating the linear model provided 

acceptable predictive accuracy. Closed-loop 

validation was performed in a similar fashion for the 

lateral and longitudinal axes, as shown in Figure 12. 

 

 
Figure 11. Longitudinal broken-loop response 

validation for Kalman filter estimated flapping. 
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Table 5. Re-optimized longitudinal control system design characteristics with Kalman filter. 

 
Gain 

Margin (dB) 

Phase 

Margin 

(deg) 

Crossover 

ωc 

(rad/s) 

Attitude DRB 

ωDRB θ 

(rad/s) 

Actuator 

RMS 

(inches) 

Actuator 

rate RMS 

(inches/s) 

eRSF 11.45 58.21 3.03 0.74 0.0509 3.31 

eRSF with KFa 

(% Change from eRSF) 

21.79 

(+90.31%) 

59.97 

(+3.03%) 

3.27 

(+8.00%) 

0.89  

(+20.85%) 

0.0461 

(-9.40%) 

3.02 

(-8.59%) 

eRSF with KFb 

(% Change from eRSF) 

20.28 

(+77.09%) 

56.99 

(-2.10%) 

3.21 

(+5.86%) 

0.79 

 (+7.36%) 

0.0482 

(-5.31%) 

3.13 

(-5.45%) 

 

 

 
Figure 12. Closed-loop validation of Kalman filter 

longitudinal flapping 𝛽1𝑐/𝛿𝑙𝑜𝑛 𝑒𝑞. 
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Based on these broken-loop and closed-loop 

responses comparisons, good agreement between the 

linear and nonlinear models was achieved and 

validation was sufficiently accurate in all axes. 

  

SIMULATION OF EXPLICIT RSF WITH 

KALMAN FILTER IN NONLINEAR 

ENVIRONMENT 

Validation of the nonlinear Kalman filter 

designs led to desktop simulation testing and later 

limited piloted simulation. Nonlinear environment 

testing was divided into three cases, presented in 

Table 6. For case 1, the robustness to faults of the 

eRSF with KFs were tested. The original eRSF gains 

were used to expose the impact/difference that the 

KF made during blade sensor faults. In case 2, the 

eRSF and eRSF with KFs and re-optimized gains 

was tested to show the impact that increased gains 

had on performance. In case 3, comparison of the 

original eRSF to the eRSF designs with KFs and re-

optimized gains was tested for overall advantage of 

implementing the KF for blade flapping.  

Desktop simulation was sufficient for testing 

robustness to blade faults. To assess the handling 

qualities and performance differences between the 

original eRSF and eRSF with increased gains, 

piloted evaluations were performed in the 

Aeroflightdynamics Directorate (AFDD) fixed base 

simulator, shown in Figure 13. 

Although the simulator has a side-stick, 

instead of a cyclic, it was considered to be sufficient 

for evaluation of relative effectiveness of the 

different eRSF designs. The control laws were flown 

by Marcos Berrios, an operational Air Force pilot 

with 1000 hours of flight time. The ADS-33E 

precision hovering turn maneuver [23] was 

performed for each configuration with moderate 

turbulence. A hovering turn MTE requires the pilot 

to complete a 180 deg turn to a stabilized hover 

within a 15 sec window, while maintaining the 

longitudinal and lateral position within 3 ft of the 

initiation point on the ground [23]. For simulation of 

turbulence, the CETI turbulence model was used 

because it was shown to accurately predict rotor 

flapping motion in light turbulence for eRSF [2]. The 

pilot repeated each configuration a minimum of three 

times and in many cases repeated the maneuver and 

compared it with the original eRSF control laws. 

 

Case 1: Robustness to faults   

To test robustness in the nonlinear desktop 

simulation, faults were injected to the individual 

(rotating blade) flapping signals and the body frame 

lateral and longitudinal flapping responses used for 

eRSF were observed.  Faults were synthetically 

created based on observation of over 40 flight 

records. The worst case scenarios were used to 

model these failures. A total blade signal failure was 

very unlikely because individual blade flapping 

signals are measured using individual flap, lead-lag, 

and pitch measurements for each of the four blades. 

For the purposes of testing the robustness of the 

Table 6. Simulation tests and test conditions. 

Case Test Designs   
Atmosphere 

Condition  
Faults  Evaluation/Purpose  

1 

eRSF  

KFa original gains 

KFb original gains 

Calm winds Opposing blade doublets & spikes 
Desktop sim, robustness to 

faults, actuator activity   

2 

eRSF  

KFa optimized gains 

KFb optimized gains 

Moderate 

Turbulence  
None Piloted sim, DRB performance 

3 

eRSF  

KFa optimized gains 

KFb optimized gains 

Moderate 

Turbulence 
Opposing blade doublets & spikes 

Piloted sim, DRB performance,  

pilot comments 

 

 
Figure 13. AFDD fixed base simulator. 
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Kalman filter designs, the worst case for lateral and 

longitudinal rotor flapping faults were tested. This 

would occur if opposing blades had opposing faults 

of maximum values injected simultaneously. The 

most severe cases included faults with spikes at 

random magnitudes and doublet-hardovers/dropouts 

at the most severe magnitudes, which are shown in 

Figure 14 at 6 seconds and 8 seconds respectively. 

The conventionally filtered method reacted 

unfavorably to injected faults whereas the Kalman 

filter estimated flapping has the capacity to mitigate 

faults, as shown in Figure 15. Two KF designs were 

evaluated to compare how a higher gain estimator, 

that deweights the sensor measurements, would 

behave to faults. Actuator RMS results show that 

both KF designs are sufficiently robust to faults, 

while the conventionally filtered eRSF is not. With 

the original eRSF gains, the two KF designs show 

similar improvments in actuator RMS, SNR, and 

flapping error in both axes. Recall that KFa relies 

more on the model and KFb relies more on sensor 

measurements. Table 7 shows that as expected, KFa 

had marginally better performance during faults 

compared to KFb, likely due to the fact that KFa 

relies less on sensor measurements.  

Case 2: Disturbance rejection in turbulence   

In addition to handling faulty measurement 

data, the KF estimated flapping signals provide 

phase lead, which enabled modest increases to 

feedback gains. Increased gains resulted in 

improvements in disturbance rejection bandwidth, 

which had a significant effect on position 

maintenance.  Decreases in position and attitude 

error, or difference between the actual and 

commanded position and attitude are presented in 

Table 8. Larger improvements in tracking were 

observed in pitch than roll. As shown in Figure 16, 

both eRSF with Kalman filter designs had improved 

tracking compared to the eRSF with conventionally 

filtered flapping. The pilot found that there was 

“very little difference between the two 

configurations KFa and KFb.” Because the re-

 
Figure 15. Comparison of eRSF current filtered lateral 

flapping and Kalman estimated lateral flapping during 

faults.  
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Figure 14. Faults injected in opposite directions on opposing blades 1 and 3. 
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Figure 16. Comparison of controller position 

error during Hovering Turn MTE with 

turbulence. 
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optimized eRSF gains were similar between the two 

KF designs, it was not surprising that their tracking 

performance was similar.  

 

Case 3: Disturbance rejection in turbulence with 

faults   

Finally, the original eRSF and the re-

optimized eRSF with KF designs were compared in 

turbulence with faults. Faults were injected 

throughout the maneuver without the pilot’s 

knowledge. As shown in Figure 17, the eRSF with 

KF designs both demonstrate significantly improved 

position maintenance compared to eRSF with 

conventional filters. Table 9 shows that eRSF with 

KF designs achieved even greater improvements in 

disturbance rejection during position maintenance 

during faults than the previous eRSF design. Pilot 

feedback after the Hovering Turn maneuvers during 

turbulence with faults matched this conclusion; 

according to the pilot, he would virtually not 

experience faults, whereas with the original eRSF, 

faults were evident, “the behavior of eRSF without 

KFs is less smooth and more erratic, less predictable 

Table 7.  Robustness to faults in Hover with original eRSF gains. 

Configuration 
Lat. Actuator 

RMS (inches) 

Lon. Actuator 

RMS (inches) 
SNR 𝜷𝟏𝒔 SNR 𝜷𝟏𝐜 

𝝈(𝜷𝟏𝒔 𝐞𝐫𝐫𝐨𝐫)
(deg) 

𝝈(𝜷𝟏𝒄 𝐞𝐫𝐫𝐨𝐫)  

(deg) 

eRSF 1.376 0.276 9.290 7.076 6.771 7.650 

eRSF with KFa 

(% Change from eRSF) 

1.371 

(-0.391%) 

0.262 

(-4.848%) 

40.378 

(+335%) 

32.189 

(+355%) 

0.684 

(-89.90%) 

0.132 

(-98.28%) 

eRSF with KFb 

(% Change from eRSF) 

1.372 

(-0.315%) 

0.264 

(-4.265%) 

40.036 

(+331%) 

32.136 

(+354%) 

0.549 

(-91.89%) 

0.115 

(-98.50%) 
 

Table 8. Hovering Turn in turbulence with re-optimized gains. 

Configuration 
Lon. Track 

𝝈(𝑿𝒆𝒓𝒓) (ft) 

Lat. Track 

𝝈(𝒀𝒆𝒓𝒓) (ft) 

Roll Att. Track 

𝝈(𝝓𝒆𝒓𝒓) (deg) 

Pitch Att. Track 

𝝈(𝜽𝒆𝒓𝒓) (deg) 

eRSF 1.562 1.061 5.076 3.701 

eRSF with KFa 

(% Change from eRSF) 

1.179 

(-24.53%) 

0.933 

(-12.12%) 

4.075 

(-19.72%) 

3.092 

(-16.43%) 

eRSF with KFb 

(% Change from eRSF) 

1.181 

(-24.37%) 

1.048 

(-1.21%) 

3.963 

(-21.93%) 

3.319 

(-10.31%) 
 

Table 9. Hovering Turn in turbulence with re-optimized gains and faults. 

Configuration 
Lon. Track 

𝝈(𝑿𝒆𝒓𝒓) (ft) 

Lat. Track 

𝝈(𝒀𝒆𝒓𝒓) (ft) 

Roll Att. 

𝝈(𝝓𝒆𝒓𝒓) 

(deg) 

Pitch Att. 

𝝈(𝜽𝒆𝒓𝒓) 

(deg) 

𝝈(𝜷𝟏𝒔𝒆𝒓𝒓
) 

(deg) 

𝝈(𝜷𝟏𝒄𝒆𝒓𝒓
) 

(deg) 

eRSF 1.690 1.540 5.634 4.179 10.60 16.75 

eRSF with KFa 

(% Change from eRSF) 

1.313 

(-22.32%) 

1.172 

(-23.88%) 

5.586 

(-0.85%) 

3.142 

(-24.82%) 

1.280 

(-87.93%) 

1.483 

(-91.14%) 

eRSF with KFb 

(% Change from eRSF) 

0.999 

(-40.87%) 

0.844 

(-45.23%) 

3.877 

(-31.19%) 

2.846 

(-31.90%) 

0.725 

(-93.16%) 

1.314 

(-92.16%) 

 

 

 
Figure 17. Comparison of controller position error 

during Hovering Turn MTE with turbulence and faults. 
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during faults.” When faults were injected, the 

performance between the two Kalman filter designs 

was more evident. From Table 9, KFb was the better 

design option. The eRSF with KFb, more reliant on 

sensor measurements, likely had higher disturbance 

rejection capabilities during faults because overall it 

also had slightly higher eRSF gains.  

Final selection of the level of aggression of 

the KF design from the family of optimized KFs 

should be based on pilot preference along with the 

expected regularity or likelihood of occurrence and 

severity of faults to the system. Overall, both Kalman 

filter designs were robust to faults and produced 

flapping estimates with no time delay. The key 

advantage to the KFb is that the eRSF could be 

optimized to higher gains, which resulted in better 

tracking performance.  

 

CONCLUSIONS 

This study evaluated optimizing the process 

covariance matrix of a Kalman filter (KF) using 

frequency domain specifications. A family of KF 

designs for estimation of lateral and longitudinal 

rotor blade flapping signals were designed to 

minimize measurement noise, sensor error, and 

eliminate time delay. These estimated KF flapping 

signals were fedback in the explicit rotor-state 

feedback (eRSF) control laws. The eRSF control 

gains were re-optimized in CONDUIT® using the 

estimated KF flapping signals in place of 

conventionally filtered flapping signals. This led to a 

system more robust to rotor blade sensor faults and 

increased handling qualities, while maintaining 

desired stability margins.  This optimization based 

methodology is generic in nature, so the KF could be 

useful for any measurement system that measures 

blade motion. Conclusions from this research are: 
  

1. Optimization of the process noise 

covariance matrix based on frequency 

domain specifications allowed the KF to be 

tuned to a customized performance index. 

This increased transparency of tuning for 

desired behaviors, in this case maintaining 

low and mid-range frequency content and 

filtering high frequency signal content.  
 

2. Using a KF to estimate blade flapping 

measurements provides sensor fault tolerant 

robustness and improved signal quality. 

Both KF designs could mitigate worst-case 

rotor blade sensor fault scenarios, which 

included simultaneous spikes and dropouts 

on all four blades.  The KF estimated signals 

had increased signal-to-noise ratio by a 

factor of 3.5 and improved time delay from 

a lag of approximately 0.05 seconds to a lead 

of 0.04 seconds.   
 

3. Explicit rotor-state feedback utilizing KF 

estimated flapping provide improvements in 

disturbance rejection and crossover 

frequency, resulted in improved tracking 

performance, while maintaining sufficient 

stability margins. Tracking performance was 

improved during the Hovering Turn MTE 

during moderate turbulence, on the order of 

15% without blade faults and on the order of 

40% when faults were present.  
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