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ABSTRACT

The extraction of a turbulence model for a small quadrotor UAS using flight test data is presented
and validated using simulation. The turbulence model is a control equivalent turbulence input (CETI)
model, which drives the controls of the aircraft to reproduce realistic motion caused by turbulence.
Since the quadrotor UAS is unstable, the extraction methodology must be done with a control system
engaged. Effects of signal length, noise in the feedback path, and model uncertainty on the extraction
methodology are quantified in simulation and recommendations are given to obtain high quality flight
test data for accurate extraction of turbulence models. The extracted turbulence model is shown to
have the same low-order form as existing turbulence models.

NOTATION

Symbols
Gc Control system
Gδt CETI Transfer function
Gxx Signal autospectrum, plotted in

power dB; 10log10 |Gxx|
J Model Cost: Error of fit between model

and truth data
qa Acutal aircraft pitch rate (rad/sec)
qm Measured pitch rate (rad/sec)
δa Bare-airframe input (mixer units: +/- 4500)
δc Commanded input (mixer units)
δl Commanded rate response (rad/sec)
δt Turbulence input (mixer units)
η Noise (units of bare-airframe output)
σ̄qm Signal-to-noise ratio
τ Time delay (seconds)
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Acronyms
ADD Aviation Development Directorate
GNC Guidance Navigation and Control
CETI Control Equivalent Turbulence Input
PSD Power Spectral Density

INTRODUCTION

The popularity of small unmanned aerial systems (UAS)
has continued to increase in both the military and commer-
cial markets. For the military, small VTOL UAS offer the
ability to dramatically increase the warfighter’s situational
awareness on the battlefield, while commercially they may
deliver packages or medicine to a company’s customers.
Quadrotors in particular have become popular due to their
mechanical simplicity over traditional single main rotor he-
licopters that have swashplates.

Due to the low cost of the aircraft themselves, small
UAS are generally developed with a “fly-crash-fix” cycle,
where engineering design and analysis methods may be
overlooked in favor of quickly getting in the air. However,



as the technology contained in a UAS becomes more ad-
vanced and the acquisition process becomes more rigorous,
properly vetted engineering methods will need to be uti-
lized. For example, more emphasis will need to be placed
on the control system design and validation effort.

System identification has long been used to develop ac-
curate bare-airframe models of fixed- and rotary-wing air-
craft (Refs. 1, 2). These identified models are often used
as the basis for control law design and development, espe-
cially when physics-based models are not available or re-
liable. Recently, frequency-domain system identification
methods have successfully been demonstrated on quadro-
tors in hover/low-speed flights (Refs. 3, 4). Low-order
state-space models are fit to the frequency responses to
get an accurate representation of aircraft dynamics over a
broad frequency range. The identification results show that
small VTOL UAS have unstable modes that are at much
higher frequency than manned size VTOL and require high-
bandwidth control systems to stabilize them.

Control systems for these UAS must provide good sta-
bility characteristics, closed-loop tracking performance,
and disturbances rejection capabilities. Realistic turbulence
models are important for successfully designing and val-
idating controller disturbance rejection performance in a
simulation environment. The Dryden turbulence model rep-
resents turbulence based on a “frozen-field” through which
the helicopter flies through. This type of model is very
common in fixed wing aircraft, but is not applicable to
hovering flight. Therefore, a turbulence model based on
the control equivalent turbulence inputs (CETI) is devel-
oped (Refs. 5, 6). The CETI model uses flight data taken
in turbulence to reproduce control inputs needed to gener-
ate the same levels of motion as were seen during the flight
in turbulence. The extraction process requires an accurate
model of the bare-airframe. While applied differently, both
the CETI and Dryden turbulence models capture low-order
representations of turbulence. Within control design, a sim-
ilar approach to the CETI model has been successfully used
to generate the required inputs to negate the effects of dis-
turbances based on estimated control equivalent disturbance
inputs (Ref. 7).

This paper will outline a frequency-domain based CETI
model extraction methodology and apply it to data extracted
from time histories taken in flight in turbulence. The ex-
traction methodology will first be validated in simulation
by investigating the effects of time history length, sensor
signal-to-noise ratio, and quadrotor bare-airframe uncer-
tainty. It will be shown that an accurate CETI model can
be extracted from the given time-history data, and that the
extracted CETI model in simulation exactly reproduces the
model derived from flight.

The work in this paper falls under the Aviation Devel-
opment Directorate (ADD) Quadrotor Guidance, Naviga-
tion, and Controls (GNC) Project (Ref. 8). This project
aims to adapt the state-of-the-art modeling, guidance, and

controls technologies and methodologies used at ADD for
large-scale vehicles to small-scale UAS.

QUADROTOR AIRCRAFT DESCRIPTION

The aircraft used is the 3DR Iris+ (herein Iris) quadro-
tor shown in Fig. 1. The Iris weighs about 2.6 lbs, has
four twin bladed 10 inch propellers, and uses a Pixhawk
flight control processor, which runs the opensource Ardupi-
lot codebase. This software provides all sensor processing
and flight control, and runs at 400 Hz. The base code was
modified to include additional logging to track inputs go-
ing into the mixer. All logging data is generated at 200 Hz.
The ability to add inputs directly to the mixer was also in-
corporated. Direct mixer inputs were used during the bare-
airframe identification process to excite the bare-airframe
response of the quadrotor without the filtering of the con-
trol system.

Fig. 1. 3DR Iris+ quadcopter

Bare-Airframe System Identification

As part of the ADD Quadrotor GNC project, the frequency-
domain based system identification tool, CIFER R© (Ref. 1),
was used for both the state-space model identification, as
well as the generation of autospectra of CETI time histories
presented here.

The Iris longitudinal dynamics are dominated by an un-
stable mode between ω = 3− 4 rad/sec (Fig. 2). In order
to stabilize this mode, the crossover frequency in this axis
must be significantly higher, and it is near ω = 30 rad/sec
in the stock control system. This need for a high crossover
frequency drives the need to have an accurate model up to
at least 60-90 rad/sec (Ref. 1) for control system design.

The bare-airframe identification model structure and re-
sults align well with those previously published (Refs. 3,4).
A total of 15 states were required to model the full aircraft,
including the 9 rigid-body states as well as high-frequency
“lags”. The lags represent high-frequency roll off in mag-
nitude and phase that can be attributed to motor dynamics,
structural dynamics, and on-board sensor filtering. A time-
delay was also used in each axis that accounts for sensor
and processing delays.

The identified longitudinal dynamics are overlayed with
flight data in Fig. 2. The state-space longitudinal dynamics
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Fig. 2. Hover pitch rate response to longitudinal mixer
inputs

equations in hover are shown in Eqn. (1) and the parameters
are given in Table 1, along with their Cramer-Rao bounds
and insensitivities (Ref. 1). The implementation of the lag
puts the control derivative (Mδlon

) in the A matrix, which is
now driven by the lagged control input, δ ′lon. All param-
eters are well identified with low Cramer-Rao bounds and
insensitivities, giving a high confidence in the physical pa-
rameters of the model. The pitch rate damping derivative
(Mq) was found to have a negligible influence on the model
and was eliminated from the identification. Excellent fits to
flight data were also obtained for the lateral, direction, and
heave axes. This paper will demonstrate the CETI extrac-
tion method on the longitudinal axis, so figures are included
for that axis only. The average cost of the identification for
all axes, Jave = 43, is is well below the Jave ≤ 100 thresh-
old (Ref. 1), meaning an excellent fit has been obtained.


u̇
q̇
θ̇

˙δ ′lon

=


Xu 0 −32.174 0
Mu Mq 0 Mδlon
0 1 0 0
0 0 0 −lag
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δ ′lon


+


0
0
0

lag

{δlon(t− τ)
}

(1)

CETI EXTRACTION

Extraction Methodology

Since the Iris bare-airframe is highly unstable, all turbu-
lence data must be collected with the control system en-
gaged. The baseline Iris control system called “Stabilize”
mode provides attitude stabilization. Once in a hover, the

Table 1. Iris Longitudinal Identification Results
Engineering Value CR Insens.

Symbol (%) (%)
Mδlon

0.01362 3.62 1.36
Xu -0.1428 7.32 2.53
Mu 1.102 6.90 2.14
Mq 0.000 - -
laga 50.0 - -
τ 0.02811 6.47 3.22
a Fixed parameter
b Eliminated parameter

Fig. 3. Simplified block diagram of aircraft pitch rate
response including turbulence inputs

aircraft was kept in roughly the same location but was al-
lowed to drift to minimize additional inputs into the con-
trol system. Long time histories were used to ensure the
aircraft was adequately perturbed and to capture low fre-
quency dynamics. The use of closed-loop responses is in
contrast to the results in (Ref. 5), where only time histories
in which aircraft motion was uncorrelated with pilot inputs
were used. This meant the pilot input (δc) was uncorrelated
with the reconstructed bare-airframe input (δlon) and that
the aircraft motion was coming purely from excitation by
turbulence.

The turbulence extraction and identification methodol-
ogy aims to identify an equivalent control input (δt ) which
excites the aircraft similarly to real turbulence. This is the
same approach used in Ref. 5. The concept is shown in
Fig. 3 for the longitudinal axis, where the measured aircraft
response (qm) is driven by the commanded inputs (δc) as
well as turbulence inputs (δt ) . In equation form the total
measured pitch rate is:

qm =
q

δlon
(δc +δt) (2)

Solving for the turbulence input gives:

δt =
δlon

q
qm−δc (3)

Measured aircraft rates are passed through the inverse
of the identified aircraft model, reconstructing the control
inputs needed to generate the rates. Measured commanded
inputs are then subtracted from these inputs, leaving control
equivalent turbulence inputs. The results generated here are
solely in the frequency domain, so a “stabilized inverse” is
not required, as was in Ref. 5, which used a time-domain



approach to reconstruct the bare-airframe inputs. In the fre-
quency domain, the arithmetic of Eqn. (3) (using a linear,
not logarithmic scale) is (Ref. 9):

Gδt δt =

∣∣∣∣δlon

q

∣∣∣∣2 Gqmqm −Gδcδc (4)

VALIDATION OF THE CETI EXTRACTION
METHOD USING SIMULATION

The block diagram in Fig. 3 is valid for an open-loop sys-
tem where there is no effect of feedback. Since the CETI
extraction process was done on a closed-loop system, it is
important to understand the effects of sensor noise and plant
modeling uncertainty on the resulting model. It is known
that for good signal-to-noise ratios, the bare-airframe model
extracted from closed-loop simulation is unbiased for out-
put measurement noise (Ref. 1), but the effect of measure-
ment noise on the CETI model extraction is unclear. It is
also important to investigate the required signal lengths. In
order to get adequate low frequency data, long time histo-
ries may be needed, and the exact length is unknown. An
analysis was conducted on a closed-loop simulation of an
Iris in order to clarify the effects of:

• Signal length

• Measurement noise

• Bare-airframe model uncertainty

Simulation Setup

The simulation model is shown in Fig. 4 and contains the
closed loop longitudinal axis attitude-hold dynamics similar
to the stock Iris. In order to provide a realistic model of the
Iris, the simulation uses the longitudinal dynamics from the
identified state-space Iris model (H = q/δlon) from Fig. 2
and a control system (Gc) which has a similar crossover
frequency to the stock “Stabilize” mode used in the flight
test. The CETI model used is a low-order turbulence model
(Eqn. 5) where the gain (K) and break frequency (a) were
set to generate meaningful levels of turbulence in the simu-
lation and to be consistent with results in Ref. 5. The CETI
model is driven by a white noise (wn) signal and the result-
ing turbulence input (δt ) enters the system at the mixer and
sums with the commanded inputs from the control system
(δc) to form the aircraft bare airframe input (δlon). The air-
craft pitch rate (q) is summed with sensor noise (η) to form
the total measured pitch rate (qm) which is used in the feed-
back. Pilot and outer loop control inputs (δl) are assumed
to be small and uncorrelated with the turbulence and noise
and so should not have a large effect on the extracted CETI
model.

Fig. 4. Block diagram of simulation dynamics
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Fig. 5. Simulation broken loop response

Gδt (s) =
K

s+a
(5)

The broken loop response for the loop broken at the ac-
tuators (GcH) is shown in Fig. 5. Also shown are the con-
trol system crossover frequency and stability margins. This
control system has been tuned to have a high disturbance re-
jection bandwidth and a crossover frequency similar to the
stock Iris. Details of the controller optimization process are
given in Ref. 10.

Baseline CETI Model Extraction

The baseline model extraction uses the arithmetic in
Eqn. (4) to re-identify a known CETI model using an ex-
actly known plant and CETI model with no sensor noise and
so represents a best case scenario. Time signals of 300 sec-
onds were used to align the extraction with signal lengths
obtained in flight. The autospectra of the truth CETI model
and PSD as well as the extracted CETI model are shown in
Fig. 6. The truth CETI PSD curve represents the PSD of
the truth CETI model (Eqn. 5) using the 300 second gener-
ated white noise signal. The extracted CETI model (using
Eqn. (4)) aligns nearly exactly with the truth CETI PSD at
low freqeuncies up to ω = 7 rad/sec, validating the extrac-
tion in perfect conditions. The extraction process then oscil-
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Fig. 6. Extraction of CETI model using simulation
lates around the true response at frequencies near the con-
trol system crossover. Well above crossover (not shown),
the extracted CETI response aligns again with the truth data.

The CETI turbulence is obtained by subtracting the
mixer input (δc) from the reconstructed bare-airframe in-
put (δlon), both of which are plotted in Fig. 7. The con-
troller input dominates at low frequency up to about ω = 5
rad/sec, and the reconstructed bare-airframe input is nearly
two orders of magnitude (30 dB) lower. At these frequen-
cies, the aircraft does not move and the control system takes
out all turbulence through the feedback of pitch rate. The
mixer input is exactly opposite of the CETI turbulence in-
put. At ω > 5 rad/sec, the broken loop response (Fig. 5),
shows a dramatic drop; the control system is becoming less
effective at removing turbulence and the aircraft begins to
move. Signal autospectra contain only magnitude informa-
tion, so the relative phasing of the control system input and
bare-airframe input signals are not known, and the extrac-
tion process breaks down. At frequencies much higher than
crossover (not shown), the control system is ineffective and
the turbulence input directly drives aircraft motion, and the
CETI model is again cleanly extracted from the data.

This simple analysis shows that if the crossover fre-
quency is high enough, the CETI model is able to be cleanly
identified using the extraction process.

Length of Required Flight Data

White noise has a PSD of unity across all frequencies and
for infinite time scales. However, the PSD at low frequency
for short signal lengths might not equal exactly one. This
section identifies the signal durations necessary to accu-
rately identify low frequency dynamics when driven in the
time domain by white noise. White noise is driven through
the CETI model from Eqn. (5) and the corresponding PSDs
(Gδt δt ) are shown in Fig. 8 for a range of time histories be-
tween 100 to 1200 seconds. For short time histories, the
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Fig. 8. PSD of white noise of different lengths being
passed through CETI model

PSD at low frequency shows considerable variability from
the truth data, and the PSD converges on top of the model
for very long time histories.

The cost based on the error between the autospectrum
of the time signals and the model (see Ref. 1) is shown in
Fig. 9. As the signal length increases, enough averages of
the white noise are achieved and the cost approaches 0, an
exact fit to the model. Guidelines from Ref. 1 indicate a cost
of less than 50 gives an excellent match to truth data. For
the turbulence to achieve a good fit to the model, more than
200 seconds of data are required. This indicates that the Iris
must be flown for at least 200 seconds in a turbulence field
to achieve adequate spectral content to extract an accurate
CETI model. The time histories obtained in turbulence in
flight meet this criteria.
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Convergence of Autospectra

The simulations are driven by random white-noise pro-
cesses. If time histories are generated with different noise
seeds, they will form slightly different autospectra. This is
true for flight data as well, as different time histories taken
right after one another will have different spectral content.
Figure 10 shows the band within which the real turbulence
model will fall into when driven by 300 seconds of white
noise with different noise seeds.

CIFER R© can average multiple time histories to produce
a single autospectrum (Ref. 1). As the number of time his-
tories used increases, they will average to produce the exact
CETI turbulence model. The cost decreases from J = 20 to
6 just by using two, 300 second time histories. Two time
histories were obtained for all flights in turbulence, so an
excellent representation of the CETI dynamics should be
extracted from the flight data.

Influence of Measurement Noise

In a closed-loop system, measurement noise is correlated
around the loop and may be amplified, degrading the ac-
curacy of the extracted CETI model. To better understand
the affects of output noise, various levels of measurement
noise (η) are added to the system in Fig. 4 and the result-
ing models are overlayed with each other. In transfer func-
tion form, the effect of measurement noise on the measured
bare-airframe output signal as shown in Fig. 4 is:

qm =− 1
1+GcH

η +
H

1+GcH
δt (6)

Solving for the turbulence input:

δt =
1+GcH

H
qm +

1
H

η (7)
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Fig. 10. Envelope of upper and lower bounds of CETI
autospectra that may be obtained from different time
histories
The two components that characterize the predicted tur-
bulence are the measured rate (qm) as well as noise (η),
both easily measurable in this simulation case. Figure 11
shows the magnitude component of the two transfer func-
tions from Eqn. (7) that multiply the measured pitch rate
and noise input, respectively. At frequencies well below
crossover (ω = 24 rad/sec), the noise signal is attenuated
by nearly 40 dB when compared to the pitch rate signal.
At these frequencies, noise will have a small impact on the
extraction of the CETI model. Near and above crossover,
the noise signal is the same as, or amplified more than, the
measured rate signal, meaning an accurate representation of
turbulence will not be obtained at these frequencies if there
is high signal to noise. This simple analysis demonstrates
that for a closed loop CETI extraction, a high bandwidth
control system is needed as reasonable results cannot be ex-
pected above crossover frequency if there is any noise in the
measurements.

To provide further insight, the simulation in Fig. 4 was
run for 300 seconds with varying levels of sensor noise.
Based on the results from Fig. 9, this signal length should
allow for excellent identification results close to the known
CETI model. Noise levels were chosen to give a broad
range of signal-to-noise ratio, defined as the the signal root-
mean-square (RMS) value divided by the noise RMS value.
Large signal-to-noise ratios signify high quality, low noise
data.

Figure 12 shows PSDs of the varying simulated mea-
surement noise levels plotted along with the simulated
measured aircraft rates, qm. At low frequencies below
crossover, all aircraft rates align well with each other and
the no noise case. The noise is well attenuated by the con-
trol system when compared to turbulence inputs, as pre-
dicted by Fig. 11, and the simulated measured rate does not
change. At around ω = 10 rad/sec for the highest noise
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Fig. 11. Frequency responses comparing the scaling of
measured output and measurement noise on CETI ex-
traction

case, the measured response begins to be fully dominated
by the noise and the control system is becoming ineffective
at removing it. Well above crossover, the noise is directly
fed into the measured rate for all cases.

Figure 13 shows the extracted CETI model for the vary-
ing measurement noise cases as well as the truth CETI
model and PSD signal. It is clear that as the signal-to-noise
ratio increases, the CETI extraction procedure breaks down.
This figure also clearly shows where the identification of the
CETI model from flight data would need to take place and
that a max frequency of about 10 rad/sec should be used in
the identification.

The CETI costs are determined by using the autospectra
of the extracted CETI model and the truth CETI model and
are plotted in Fig. 14. The costs is determined between ω =
0.4 and 10 rad/sec (beyond which CETI extraction breaks
down). Minimum signal-to-noise ratios of σ̄qm = 2.5 are
needed in order to accurately extract a model from turbu-
lence. This is consistent with recommended signal-to-noise
ratio σ̄qm > 3 that is needed to accurately (< 10% bias er-
ror) extract a bare-airframe model from a closed loop re-
sponse (Ref. 1).

To quantify the signal-to-noise ratio from flight data,
two time histories taken during flight in turbulence were
analyzed. Two additional time histories taken from indoor
flights were also analyzed, where the turbulence was char-
acterized as minimum. The measured pitch rate autospectra
are shown in Fig. 15. Ref. 11 defines the signal-to-noise
ratio from flight data (σ̄qm ) as a ratio of the RMS of two
portions of the autospectrum. The autospectrum is assumed
to be noise once it plateaus at high frequency. This plateau
occurs at ω = 30 rad/sec for the data in Fig. 15 and an addi-
tional on-board filter around ω = 50 rad/sec filters the noise
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Fig. 13. Extracted CETI models with varying measure-
ment noise

out completely. The autospectrum is considered to be signal
at frequencies below the noise plateau.

Following this analysis, the flight data for the Iris has a
signal to noise ratio of σ̄qm = 2.6 for the outdoor data and
a better σ̄qm = 3.9 for the indoor data. Based on Fig. 14,
the Iris data is adequate for accurate extraction of the CETI
model.

Bare-Airframe Uncertainty

Variability of the bare-airframe model could also impact the
CETI extraction. The exact Iris dynamics are not known.
The identified state-space model parameters have Cramer-
Rao bounds, which give a measure of 1σ uncertainty of the
parameters. In the proceeding analysis, each parameter is
varied by ±2σ to capture a 95% probability of capturing
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sure signal-to-noise ratio

the correct value of the parameter. This is done for all pos-
sible combinations of parameters from Table 1. Time his-
tories of 300 seconds are used, as is a signal-to-noise ra-
tio of σ̄qm = 2.6, to closely match the Iris flight data. The
CETI extraction method remains the same for each case.
The nominal bare-airframe model is used for the inverse
in Eqn. (4). The resulting CETI models are plotted along
side the truth data in Fig. 16. The parameters from Table 1
are relatively well identified, with Cramer-Rao percentages
generally below 7%, so large changes to the extracted CETI
model were not anticipated between the original and per-
turbed results. The cost of fitting the perturbed models did
not vary by more than ∆J = 5 from the cost of fitting the
original extracted CETI model.

Since the bare-airframe model is well identified, it is not
anticipated that uncertainty will have an impact the CETI
extraction using flight data.
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Guidelines

The simulation model of the Iris was used to validate the
extraction methodology and develop requirements for ac-
curate CETI extraction from flight. These guidelines are as
follows:

1. Around crossover, the CETI extraction process breaks
down. It is important that the control system crossover
either be sufficiently high (around ω = 30 rad/sec), or
the flights in turbulence are done with the controller off
and the pilot stabilizes the vehicle with small inputs.

2. Time histories of at least 200 seconds are required to
provide adequate spectral content at low frequency.

3. Signal-to-noise ratios of σ̄qm > 2.5 are needed to pro-
vide clean data with low CETI model extraction costs.

4. Bare-airframe uncertainty was not shown to have a
large impact. However, all parameters in the state-
space model were accurately identified and the result-
ing model matched well with the non-parametric fre-
quency response. If an accurate model is not know
there will certainly be effects on the CETI extraction.

CETI MODEL EXTRACTION USING FLIGHT
DATA

Time histories taken in the same turbulence level were pro-
cessed to determine the equivalent turbulence input using
Eqn. (4). An anemometer was not available during the test-
ing, so the exact variation in wind-speeds is not know. The
resulting extracted CETI autospectrum is shown in Fig. 17,
along with a corresponding first-order transfer function fit
of the response.
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Fig. 17. Extraction of a CETI model in the longitudinal
axis from flight data

Gδt (s) =
264

s+0.351
(8)

This transfer function represents the control equivalent
turbulence input for the turbulence level from flight. The
fit tracks well up to around ω = 4 rad/sec and is consistent
with the first-order of the CETI model given in Refs. 5, 6.

The extracted CETI autospectrum is nearly identical to
the ones generated during the simulation analysis. Im-
pacts from the control system and noise are seen near the
crossover frequency just as they were in simulation. This
figure also shows robustness to variations in the control
laws since the extracted CETI model from flight data has
the same shape as in simulation even though the control
systems were different.

SAMPLE APPLICATION OF CETI MODEL

The CETI model developed has two primary uses.

• Direct control system design in the frequency domain.
There is no need to run time marching simulations to
determine the effects of flying in turbulence. Quanti-
ties like aircraft attitude or position RMS due to vary-
ing levels of turbulence can be directly calculated in
the frequency domain.

• Real-time simulation, piloted or not, to assess the air-
craft response in turbulence. For a piloted aircraft,
handling quality ratings could be taken in varying lev-
els of turbulence.

In this sample application, two control systems will be
simulated and compared to each other and flight data taken
in the stock onboard “Stabilize” mode in both the frequency
and time domains. The first control system is the same as
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Fig. 18. Comparisons of the broken-loop response of
two different Iris control systems and flight data
was used in the simulation analysis. This optimized con-
trol system has been tuned to have a high crossover fre-
quency and high disturbance rejection bandwidth. An ad-
ditional baseline control system was designed that more
closely resembles the stock Iris “Stabilize” control system,
and should perform worse than the more optimized one.
The turbulence levels will be forced to be the same in sim-
ulation as in flight by using the identified CETI model of
Eqn. (8). An output noise level giving a signal-to-noise ra-
tio of σ̄qm = 2.6 was used in simulation to match the flight
data, and 300 second time simulations were generated.

Figure 18 shows the comparison of the broken loop re-
sponse for the two control system in simulation as well as
flight data using the stock “Stabilize” mode. While both
have similar crossover frequencies, the optimized control
system has much higher magnitude at low frequency, mean-
ing the control system is more active at attenuating turbu-
lence than the baseline control system at those frequencies.
Also, the flight “Stabilize” mode data and baseline control
system are very similar and so should behave similarly in
the presence of turbulence.

Figure 19 shows the disturbance rejection plot for dis-
turbances to measured aircraft pitch attitude. The baseline
control system and the stock “Stablize” mode do not atten-
uate disturbances to as high a degree as the optimized one
below the bandwidth frequency. The baseline control sys-
tem has the lowest disturbance rejection bandwidth (DRB),
while the optimized and “Stabilize” mode have high DRBs.

Figure 20 shows the pitch rate autospectra of the flight
data and the two control systems in the example. The flight
data has a slightly higher pitch rate response to turbulence
than the baseline control system. The similarity between
the flight test data and baseline control system was antici-
pated by the similarity of the broken-loop response. As was
seen in the disturbance rejection figure, the optimized con-
trol system does an excellent job at rejecting the turbulence
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Fig. 19. Comparison of pitch attitude disturbance rejec-
tion response of two different Iris control systems

Table 2. RMS values of pitch rate due to turbulence
from simulation and flight data between 0.3 and 30
rad/sec

Pitch Rate RMS [deg/sec]
Optimized Simulation 2.72
Baseline Simulation 3.90
Flight in “Stabilize” mode 5.15

levels, however there is a peak above 50 rad/sec. RMS val-
ues are taken between 0.3 and 30 rad/sec and are given in
Table 2. This table quantifies the trends seen in the plot of
the pitch rate autospectra as well as the disturbance rejec-
tion and broken loop figures. The optimized control system
produces about half the RMS as the stock “Stabilize” mode.

To get a better sense for the oscillation that can be seen
in flight, the pitch attitude is plotted for 20 seconds in
Fig. 21. The flight data shows larger low frequency oscilla-
tions which are similar to the baseline controller. The opti-
mized controller has small, high frequency excursions from
the trim pitch attitude.

This sample application showed that the CETI model is
clearly able to reproduce an accurate turbulence level for the
Iris. Additionally, frequency domain metrics such as signal
RMS are able to capture the predicted trends in aircraft re-
sponse due to turbulence.

TOWARDS A GENERALIZABLE TURBULENCE
MODEL

In addition to the CETI model carried through the sample
application, an additional outdoor set of time histories were
taken on a less windy day. A set of data was also taken in-
doors to provide a baseline. Since actual wind data was not
available, the resulting autospectra can only be compared
to each other, and cannot be associated with specific tur-
bulence levels. The autospectra for the two outdoor days
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Fig. 20. Comparisons of pitch rate PSD in CETI turbu-
lence between two simulated control systems and flight
data
and the indoor data set are shown in Fig. 22. All three au-
tospectra have the same characteristic first order form at low
frequency and are separated only by a gain, K.

Gδt (s) =
K

s+a
(9)

In future work the gain and break frequency will be a
function of turbulence RMS, mean velocity, or a length
scale as in Ref. 5. Multiple quadrotors of varying sizes will
be tested to develop length scales suitable for this configu-
ration and make the CETI model generic. The turbulence
levels will also be directly measured using an anemometer,
and a larger array of turbulence data will be collected.

CONCLUSIONS

This work described and validated a methodology to extract
a control equivalent turbulence input (CETI) model from
closed-loop flight of a quadrotor UAS in turbulence. The
key conclusions from this paper are:

1. A CETI model may be extracted from closed-loop
flight test. The extraction process is effective for a con-
trol system crossover frequency that is well above the
CETI dynamics.

2. Time histories greater than 200 seconds and signal-to-
noise ratios σ̄qm > 2.5 are needed to extract an accurate
CETI model. This required signal-to-noise ratio was
obtained even for the low-cost sensors that are used in
the Iris.

3. The methodology is robust to plant modeling uncer-
tainty in the Iris. A cost difference of ∆J < 5 was
obtained for all variations of 2σ perturbations to the
bare-airframe parameters.
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Fig. 21. Comparisons of pitch attitude time histories be-
tween two simulated control systems and flight data
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Fig. 22. Comparisons of CETI autospectra in different
outdoor wind conditions as well as indoors

4. Using flight extracted noise levels and similar length
time histories, a simulation was able to produce the
shape of the extracted CETI autospectrum as seen in
flight test.

5. A sample application verified that the CETI model
produces realistic levels of turbulence in the time do-
main. A control system similar to the one on-board
the Iris generated nearly the same oscillations as were
seen in flight.
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