Unveiling the Transformative Power of Unsupervised machine learning through Clustering

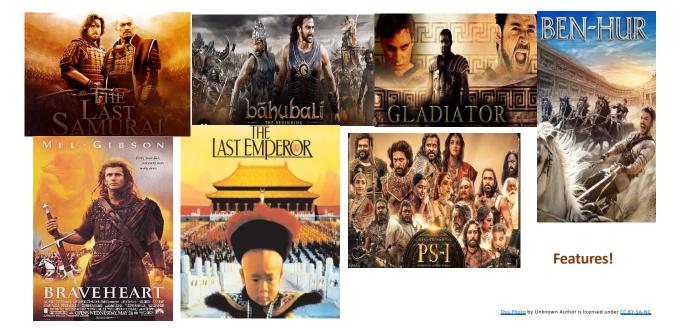
Vishnu S. Pendyala, Ph.D.

San Jose State University

To cite this presentation: Pendyala, V.S. (2025) "Unveiling the Transformative Power of Unsupervised machine learning through Clustering". IEEE Computer Society, Kitchener-Waterloo Chapter Technical Talk, March 31, 2025

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

How do Streaming services know that these movies can be grouped together?

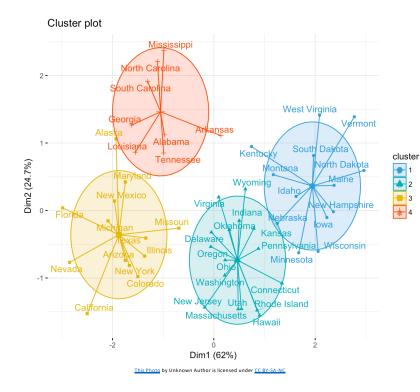


MEL-GIBSON	

Features are expressed as vectors

Feature	Value
Genre (Action)	8
Genre (Drama)	7
Genre (War)	6
Historical Accuracy	7
Heroism Level	9
Number of Battles	5
Emotional Depth	8
IMDB User Rating	8.4

Feature vector $x_i = [8, 7, 6, 7, 9, 5, 8, 8.4]$ ©Vishnu S. Pendyala This work is licensed under a <u>Creative Commons Attribution-NoDerivatives 4.0 International License</u>



Clustering relies on distances in the feature space
May not correspond to physical distance
Distance is a measure for similarity
Smaller distance => better similarity
Inter-cluster distances must be maximized
Intra-cluster distances must be minimized
No labels (unsupervised)
Labels => classification

Many applications of clustering

≡ Google Scholar

dbscan clustering

Articles About 64,000 results (0.06 sec)

Any time

Since 2025 Since 2024 Since 2021 Custom range...

DBSCAN clustering algorithm based on density

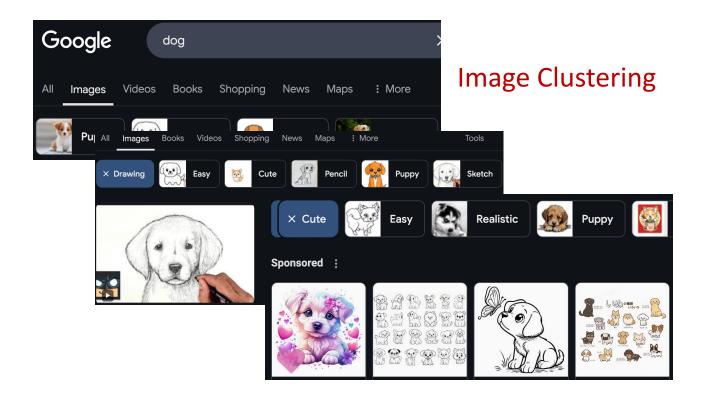
D Deng - 2020 7th international forum on electrical ..., 2020 - ieeexp ... In order to experiment the effect of **DBSCAN** algorithm, this pape **DBSCAN** algorithm **clustering** on three data sets. These three data $\stackrel{\frown}{\Delta}$ Save 55 Cite Cited by 245 Related articles All 2 versions

DBSCAN: Past, present and future

Sort by relevance Sort by date

Any type

<u>K Khan</u>, SU Rehman, K Aziz, <u>S Fong</u>... - The fifth international ..., 20 ... the **DBSCAN** for the purpose of effective **clustering** ... **clusterin** their advantages and limitations. Section IV outlines the critical revie $\stackrel{\frown}{tac}$ Save 55 Cite Cited by 795 Related articles All 6 versions



Classes are defined and data labeled manually (Supervised)

Clusters are deduced automatically, no labels (Unsupervised)

Hyperparameters: What can you choose for clustering data? Similarity metric: Cosine, Euclidean, Manhattan, Geodesic, ...

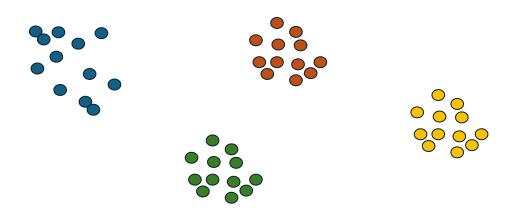
Type of clustering: partitioning (non-overlapping subsets), Hierarchical Clustering (tree-like), Density-Based, Fuzzy Clustering (points to belong to multiple clusters with varying degrees of membership), ...

Clustering algorithm: K-Means, Agglomerative Clustering, Divisive Clustering, DBSCAN,...

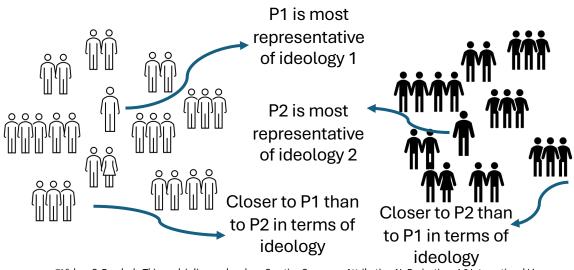
Number of clusters – some algorithms like K-Means need this

©Vishnu S. Pendyala This work is licensed under a <u>Creative Commons Attribution-NoDerivatives 4.0</u> International License

How can we detect and form these clusters of data points programmatically?

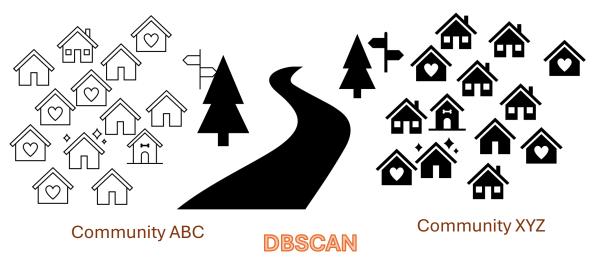


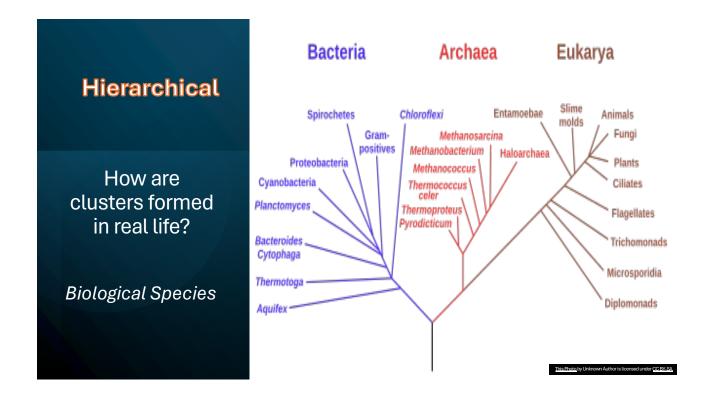
How are clusters formed in real life? *Political Parties*



©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

How are clusters formed in real life? *Neighborhoods*

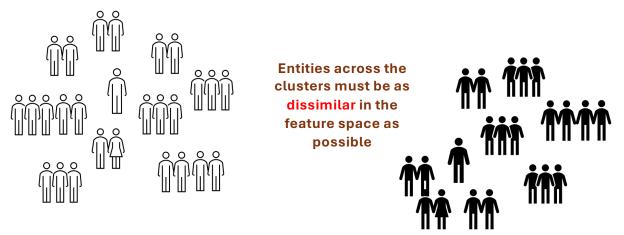




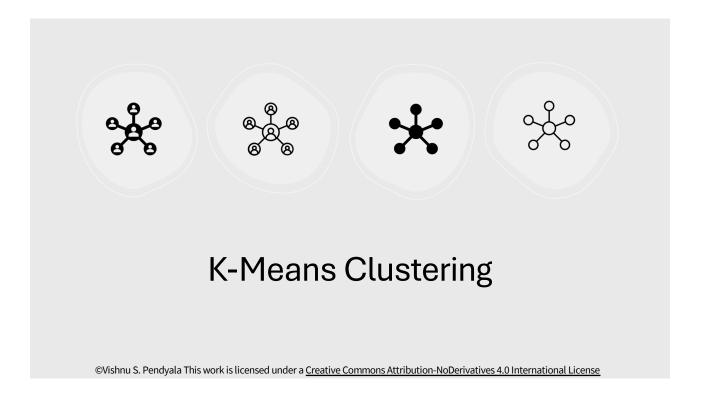
Clustering algorithms for today



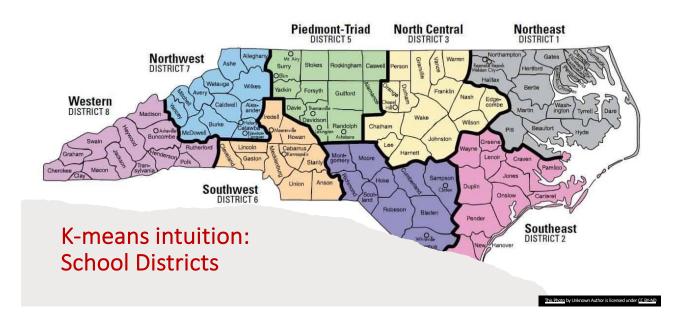
The Goal of Clustering

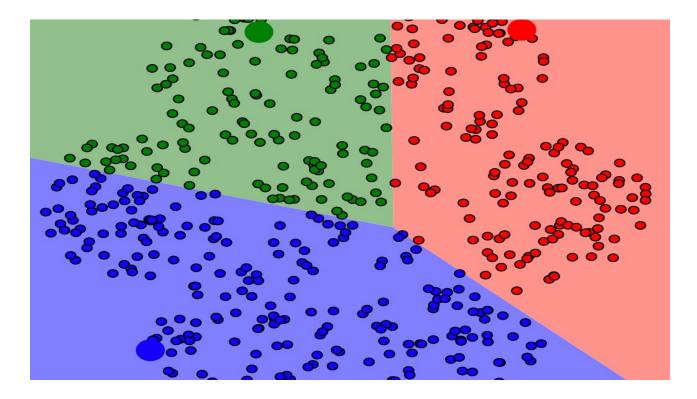


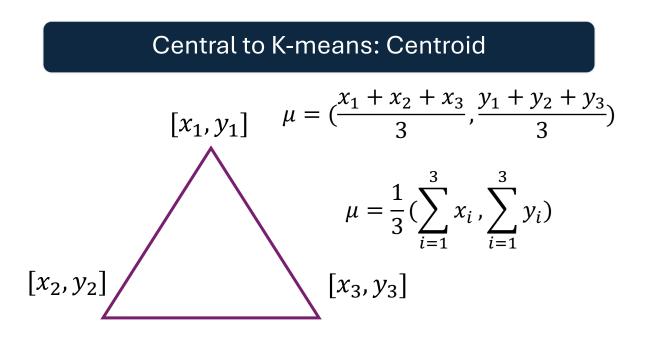
Entities within the clusters must be as similar in the feature space as possible



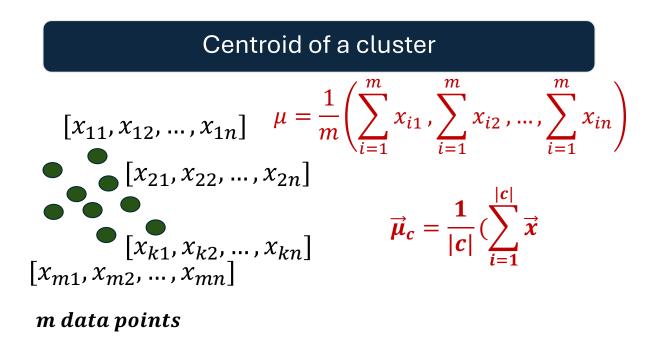
North Carolina State Board of Education Districts







©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License



Metric	Formula	Properties	Best Used For	Limitations	
Euclidean Distance	$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$	- Intuitive - Preserves original space	- Continuous data - Low-dimensional spaces	- Sensitive to outliers - Struggles with high dimensions	
Manhattan Distance	$\sum_{i=1}^n x_i - y_i $	 Less sensitive to outliers Computationally efficient 	- Grid-like path problems	 Less intuitive May not capture diagonal relationships 	
	$\left(\sum_{i=1}^{n} \mathbf{x}_i - \mathbf{y}_i ^p\right)^{1/p}$	 Generalizes Euclidean (p=2) and Manhattan (p=1) Flexible parameter p ed under a Creative Commons Attrib 	distance metric is unknown - Tuning to specific datasets	relationships - Parameter selection can be challenging - Computationally	

Clustering Hyperparameter: Similarity Metric

Distance metrics (continued)

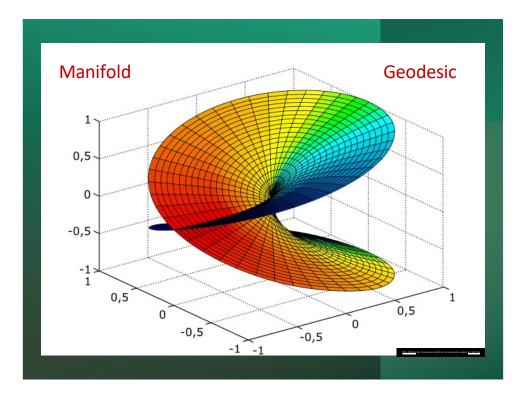
Metric	Formula	Properties	Best Used For	Limitations
Cosine Similarity	$\frac{\sum_{i=1}^n x_i \ y_i}{\sqrt{\sum_{i=1}^n x_i^2 \sqrt{\sum_{i=1}^n y_i^2}}}$	- Measures angle, not magnitude - Bounded between -1 and 1	 Recommender systems When direction matters more 	 Not a true metric (triangle inequality) Undefined for zero vectors
Mahalanobis Distance	$\sqrt{(x-y)^T \Sigma^{-1}(x-y)}$	 Accounts for correlations Scale-invariant 	features - Outlier detection - Classification	 Requires covariance matrix estimation Computationally expensive

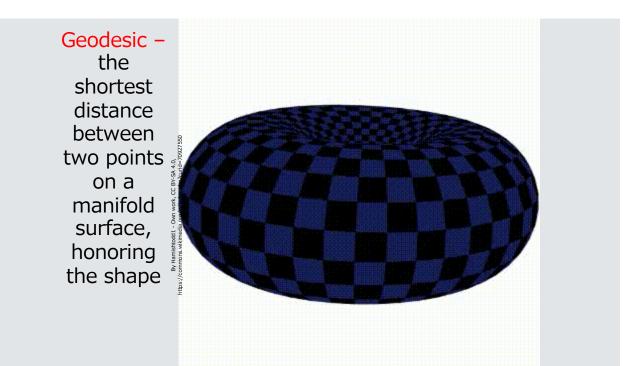
	Distant		linacaj				
Metric	Formula	Properties	Best Used For	Limitations			
		- Simple to	- Binary /	- Limited to same-			
Hamming	Count of positions	compute	categorical	length sequences			
Distance	where vectors differ	- Natural for	features	- No concept of			
		categorical data	- Error detection	magnitude			
		- Ratio-based	- Set-based	- Ignores			
Jaccard	$ A \cap B $	- Bounded between 0 and 1	problems	frequency			
Distance			- Document	- Sensitive to small			
			similarity	sets			
			- Warehouse/path	- Ignores			
		- Determined by	logistics	differences in			
Chebyshev	(shev $\max_{i}(x_i - y_i)$ maximum difference		- When worst-	other dimensions			
Distance	i	difference	case difference	- Sensitive to			
		- Fast to compute		outliers in single			
©\/ichnu \$	Pondvala This work is licensed und	er a Creative Commons Attrik	matters	dimension			
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License							

Distance metrics (continued)

What is the problem with Euclidean distance?

It assumes that the points are all on a hyperplane





The K-Means Algorithm

- Most popular unsupervised machine learning for partitioning data into K disjoint clusters based on features
- Goal: Minimize within-cluster variance (dissimilarity, measured by distance or sum of squares)

$$Z = \sum_{j=1}^{K} \sum_{n \in C_j} \left| x_n - \mu_j \right|^2$$

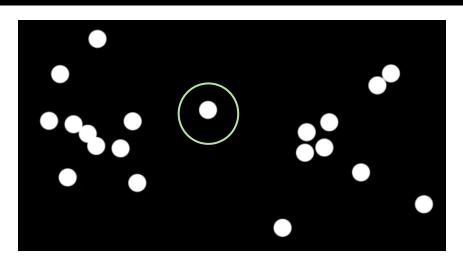
- x_n is a vector representing the nth data point, μ_j is the centroid of the data points in the cluster C_j, and $|x_n \mu_j|^2$ is the Euclidean distance between them.
- Widely used in segmentation problems, quantization, and hidden pattern (structure) recognition

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Why is μ_i the centroid?

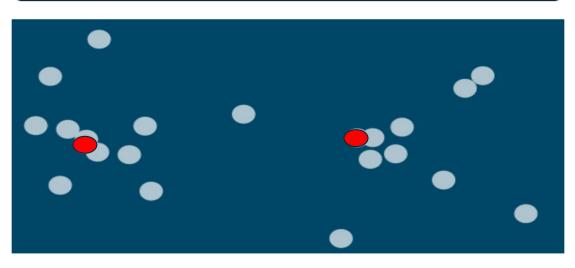
- •Intra-cluster distance L = $\Sigma (x_n \mu_i)^2$
- $\bullet \frac{\partial L}{\partial \mu} = 2\Sigma (\mathbf{x}_{\mathsf{n}} \mu_{\mathsf{j}}) = \mathbf{0}$
- •=> $\mu_j = \frac{\Sigma x_n}{P}$, which is the formula for the centroid, where P is the number of points in the cluster
- Proves centroid (or the mean) is the most representative point in the cluster

Initial Set of Points

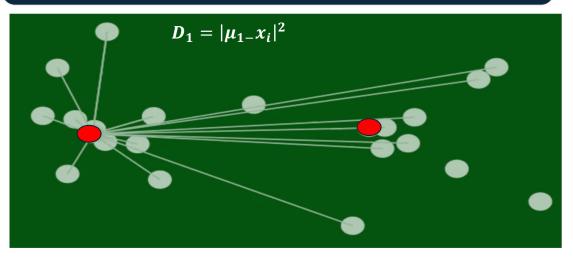


©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Pseudo-centroids are chosen randomly

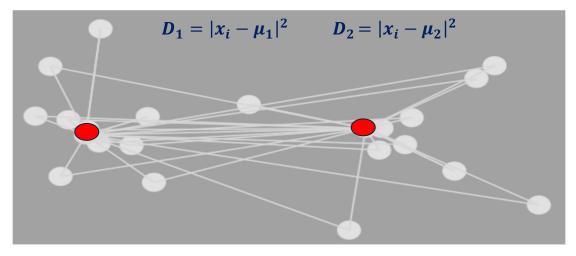


Distances from each data point to the 1st random pseudo-centroid are computed



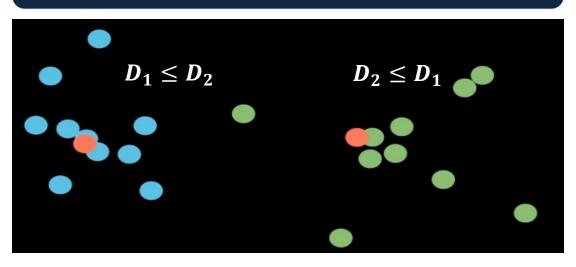
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Distances from each data point to the 2nd random pseudo-centroid are computed and compared with the distances from the 1st random centroid

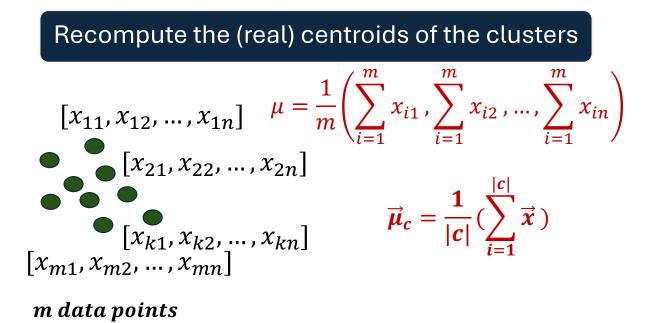


©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

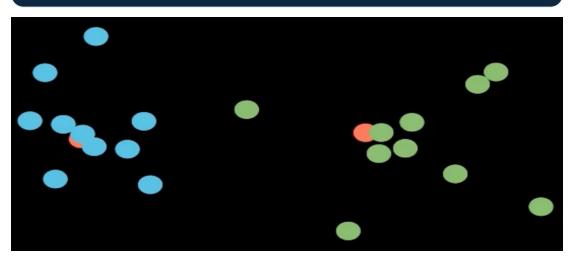
The point in the middle is green since it is closer to the pseudo-centroid representing the green cluster



©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

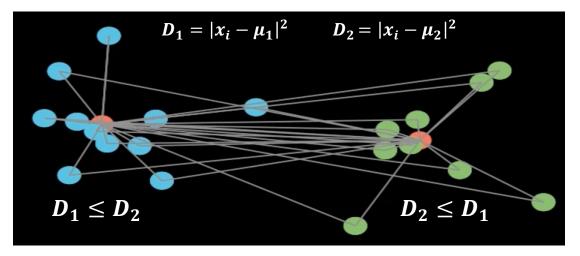


The pseudo-centroids move inside the clusters toward their real centers to become real centroids



©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Distances are again computed from both (real) centroids and compared => point in the middle now changes to blue



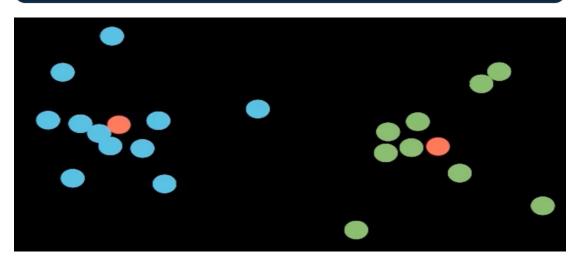
What happens to the objective function with this change to the point in the middle?

$$Z = \sum_{j=1}^{K} \sum_{n \in \mathcal{C}_j} \left| x_n - \mu_j \right|^2$$

It reduces!

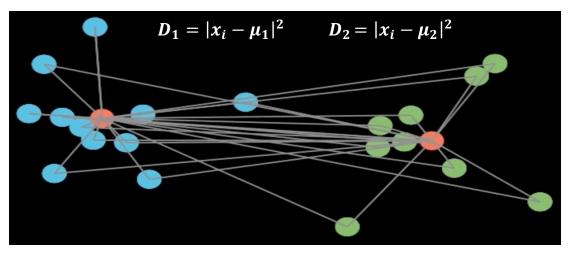
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

New centroids move further inside



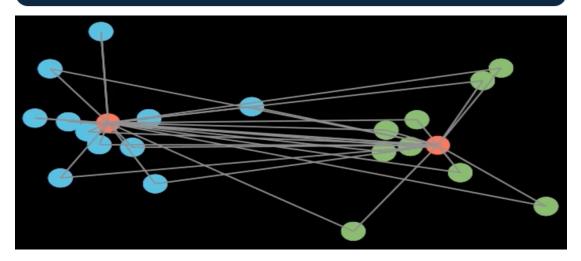
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Distances from the new centroids are computed

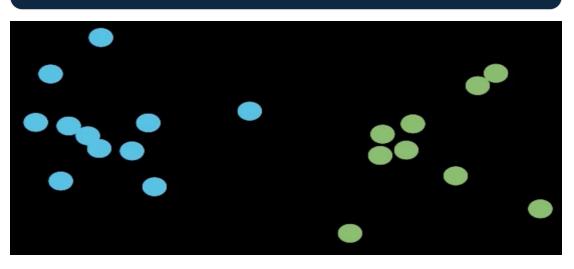


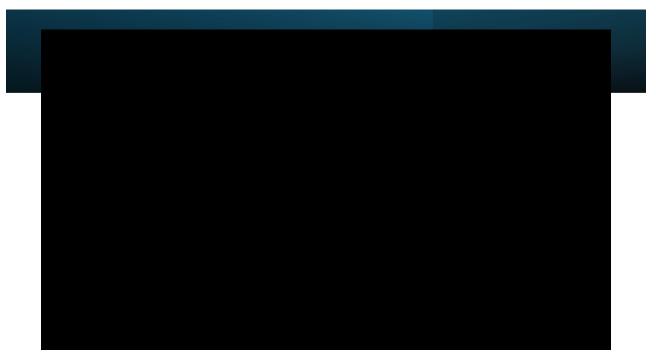
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Based on the distances, the points do not change clusters => convergence



Final clusters after convergence





©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

K-Means Algorithm

Initialization

- Randomly select K initial centroids: $\mu_1, \mu_2, ..., \mu_K$
- Initial selection critically impacts final clustering

Repeat

1. Assignment Step

For each data point x:

Assign to closest centroid: $argmin_i ||x - \mu_i||^2$

2. Update Step

Recalculate centroids:

$$\mu_i = \left(\frac{1}{|C_i|}\right) \Sigma_{x \in C_i} x$$

Until

Stopping Conditions:

Centroids no longer move significantly $||\mu_{t+1} - \mu_t|| < \varepsilon$ (or) No change in cluster assignments

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Illustration; 3 Features, k=2; Iteration 1, Step 1: Assignment

Random Centroids: Centroid 1: (0, 0, 0) Centroid 2: (10, 10, 10								, 10, 10)		
x1	x2	x3								
1	2	3		x1	x2	x3		D ₁	$D_2 =$	
-		-			~2	~~	Cluster	$ = x_i-\mu_1 ^2$	$ x_i - \mu_2 ^2$	
1.5	1.8	2.5		1	2	3	1	3.742	13.928388	
5	8	9		1.5	1.8	2.5	1	3.426368	13.990711	
8	8	7		5	8	9	2	13.038405	5.477226	
1	0.6	1		8	8	7	2	13.304135	4.123106	
9	11	12		1	0.6	1	1	1.536229	15.822768	
				9	11	12	2	18.601075	2.449490	

$$D_1 = \sqrt{(0-1)^2 + (0-2)^2 + (0-3)^2} = \sqrt{14} = 3.742$$
$$D_2 = \sqrt{(10-1)^2 + (10-2)^2 + (10-3)^2} = \sqrt{81+64+49} = \sqrt{194} = 13.928$$

Iteration 1: Update Step: Recalculate centroids.

•Centroid 1: Mean of (1, 2, 3), (1.5, 1.8, 2.5), (1, 0.6, 1)
= ((1+1.5+1)/3, (2+1.8+0.6)/3, (3+2.5+1)/3) = (1.167, 1.467, 2.167)
•Centroid 2: Mean of (5, 8, 9), (8, 8, 7), (9, 11, 12) = (7.333, 9, 9.333)

x1	x2	х3		D ₁	$D_2 =$	
			Cluster	$ = x_i-\mu_1 ^2$	$ x_i - \mu_2 ^2$	
1	2	3	1	3.742	13.928388	
1.5	1.8	2.5	1	3.426368	13.990711	
5	8	9	2	13.038405	5.477226	
8	8	7	2	13.304135	4.123106	
1	0.6	1	1	1.536229	15.822768	
9	11	12	2	18.601075	2.449490	

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Iteration 2: Assignment Step

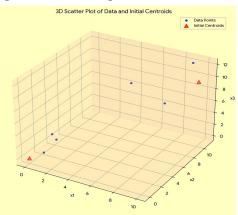
From Iteration 1 •Centroid 1: (1.167, 1.467, 2.167) •Centroid 2: (7.333, 9, 9.333)

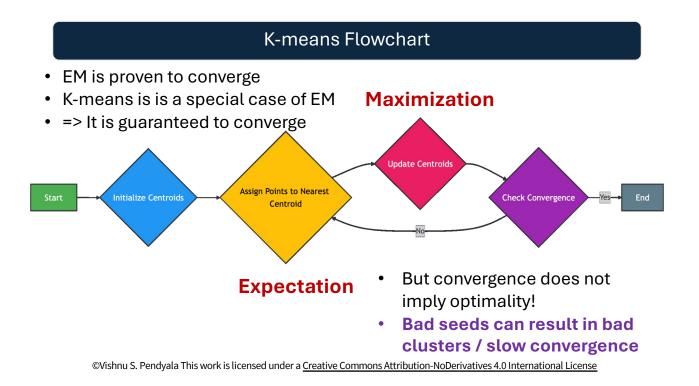
x1	x2	x3	С	D ₁	D ₂
				$ x_i - \mu_1 ^2$	$= x_i - \mu_2 ^2$
1.0	2.0	3.0	1	1.003328	11.367595
1.5	1.8	2.5	1	0.577350	11.513567
5.0	8.0	9.0	2	10.201634	2.560382
8.0	8.0	7.0	2	10.617909	2.624669
1.0	0.6	1.0	1	1.462874	13.420714
9.0	11.0	12.0	2	15.777833	3.726780

From Iteration 2

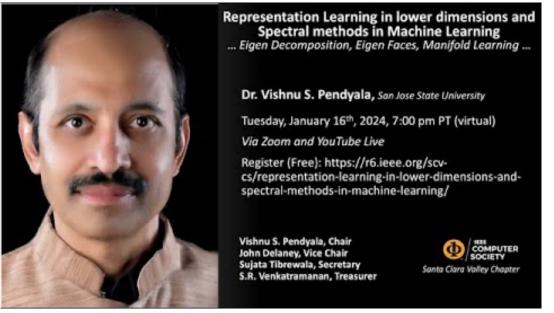
•Centroid 1: (1.167, 1.467, 2.167) •Centroid 2: (7.333, 9, 9.333)

Centroids do not change => algorithm converges

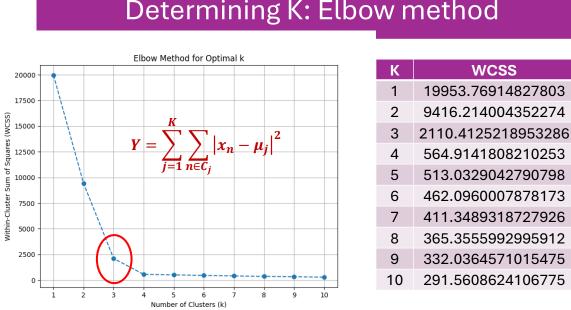




How do we know how many clusters?



©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License



Determining K: Elbow method

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Computational complexity of K-Means

Computationally intensive steps:

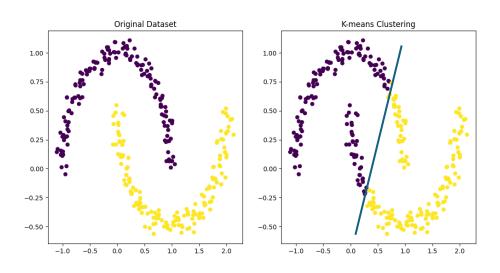
The algorithm loops for

- i: #iterations until convergence
 - K: #clusters for each cluster
 - n: #datapoints to compute distance of each point from k centroids
 - d: #dimensions for computing Euclidean distance from centroid

E.g.:
$$\sqrt{(10-1)^2 + (10-2)^2 + (10-3)^2}$$

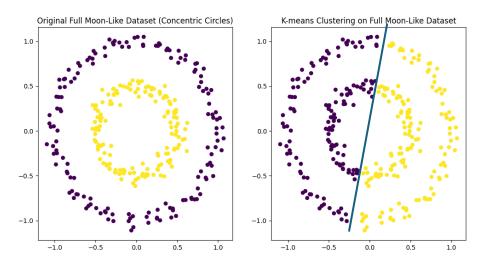
Therefore, time complexity: O(n * K * d * i)

K-Means can only draw linear boundaries!

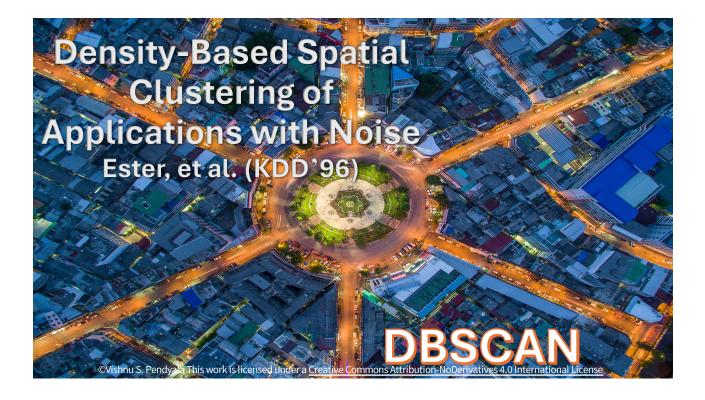


©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

K-Means can only draw linear boundaries!



©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License



DBSCAN – Key insights

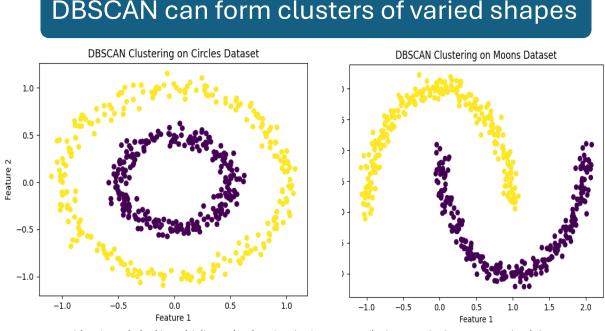
- Clusters data points that are closely packed (density).
- Points that are in low-density regions are flagged as noise.

Simple algorithm based on two hyperparameters to define "dense"

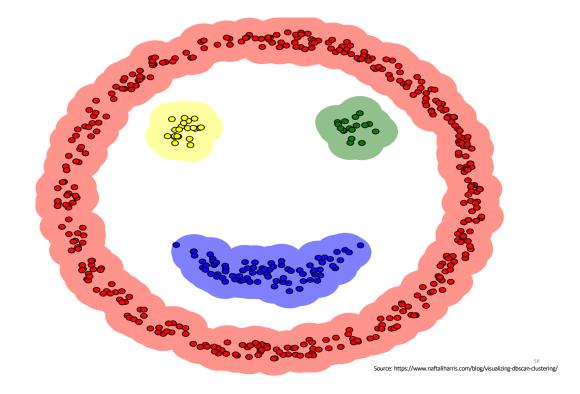
- Epsilon (ε): Maximum distance between two points for them to be considered as neighbors.
- MinPts: Minimum number of points required to form a dense region within a radius **ε**.

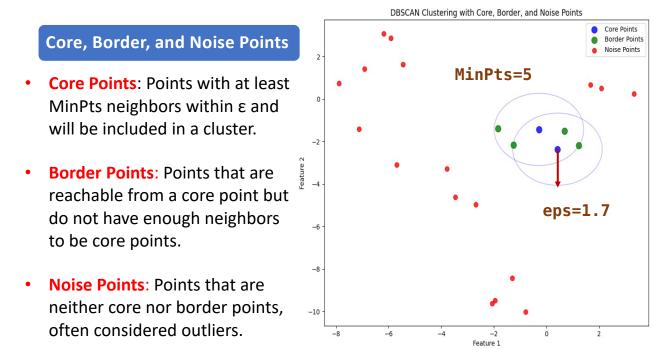
Some Applications:

- Geospatial Data: Identifying regions with high population density.
- Anomaly Detection: Detecting fraud or irregular patterns in data.
- Image Segmentation: Identifying regions of interest in images.

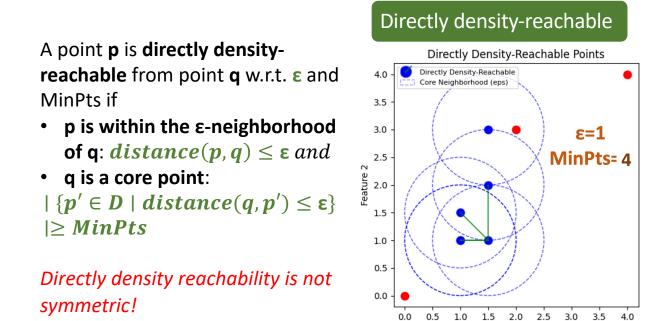


DBSCAN can form clusters of varied shapes





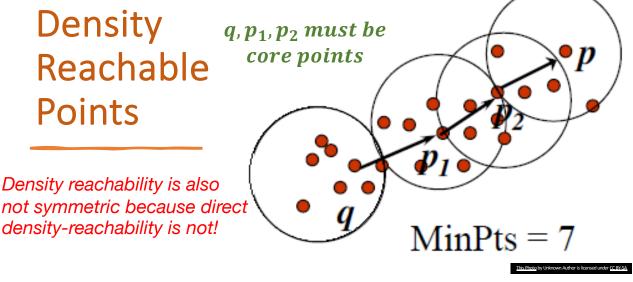
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

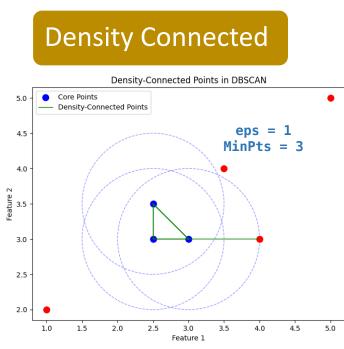


©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Feature 1

There is a chain of points that are directly densityreachable, starting from **q** and ending at **p** => p is density reachable from q w.r.t. ε and MinPts





p and q are said to be **density-connected** w.r.t. eps and MinPts if there exists a point v such that:

- p is directly densityreachable from v
- q is directly densityreachable from v

Density connected is symmetric!

DBSCAN – the algorithm - initialization

Input: A set of data points, along with two key parameters:

- ϵ (epsilon): The maximum radius of the neighborhood around a point.
- minPts: The minimum number of points required to form a dense region (cluster).

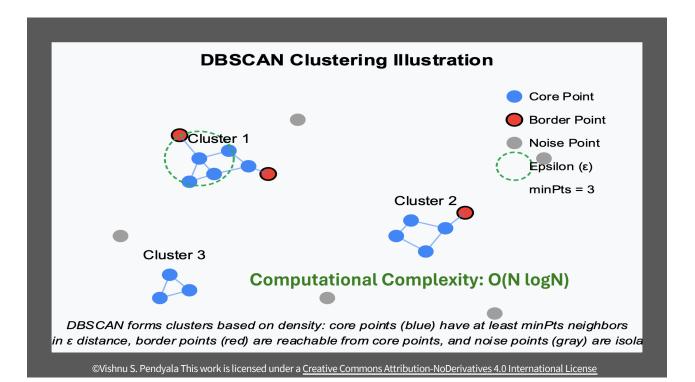
Output: A set of clusters, with some points possibly marked as noise.

For each data point, DBSCAN classifies it into one of three categories:

- Core Point: A point that has at least minPts points (including itself) within its ε-neighborhood.
- Border Point: A point that has fewer than minPts points within its ϵ -neighborhood but is within the ϵ -neighborhood of a core point.
- Noise Point: A point that is neither a core point nor a border point.

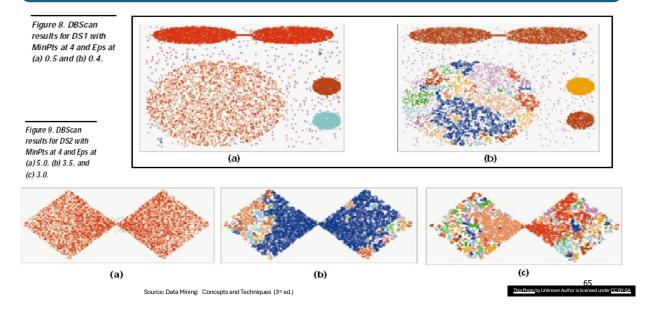
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

DBSCAN Algorithm - Forming clusters								
	If a point is a core point, a new cluster is started, and all points in its ε- neighborhood are added to this cluster.		If any of those neighboring points are core points themselves, their ε-neighborhoods are recursively processed.		For each core point's ε- neighborhood, recursively expand the cluster by checking whether the neighboring points are core points or border points.			
	Border points are assigned to the cluster of the core point that expanded them.		Points that are neither core points nor border points are labeled as noise.		The algorithm stops when all points have been processed (either assigned to a cluster or marked as noise).			



<text>

DBSCAN is sensitive to hyperparameters and it is hard to choose the right ones

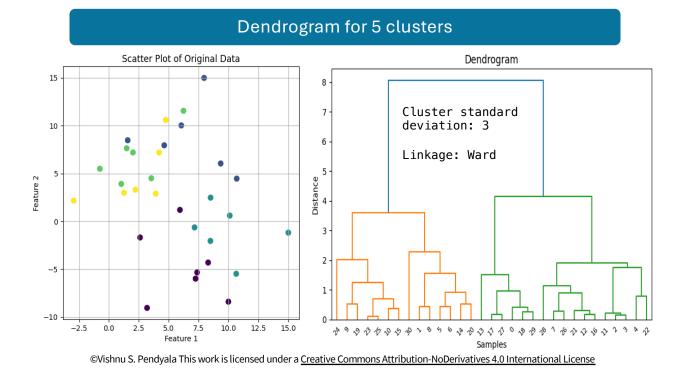


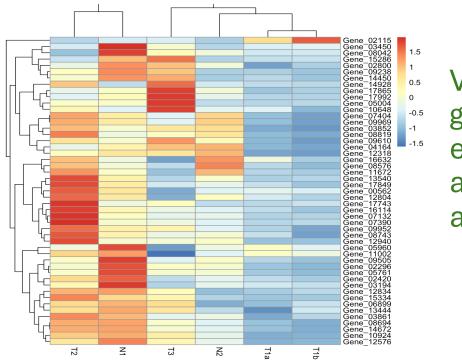
Hierarchical Clustering – Key Insights

- Hierarchical clustering organizes data into a hierarchy of nested clusters, visualized as a dendrogram.
- Widely used in Biological sciences, Gene clustering, and Taxonomy creation such as in web catalogs.
- No need to predefine the number of clusters.
- Flexible: Any number of clusters can be obtained by cutting the dendrogram at the desired level.
- Quadratic complexity => Computationally intensive for large datasets

Agglomerative (Bottom-Up):

- Start with each point as its own cluster.
- Iteratively merge the closest clusters until one cluster remains.
- **Divisive (Top-Down):**
- Start with one all-inclusive cluster.
- Recursively split clusters into smaller groups based on dissimilarity.





Visualizing gene expression analysis using a heatmap

Divisive Clustering Algorithm

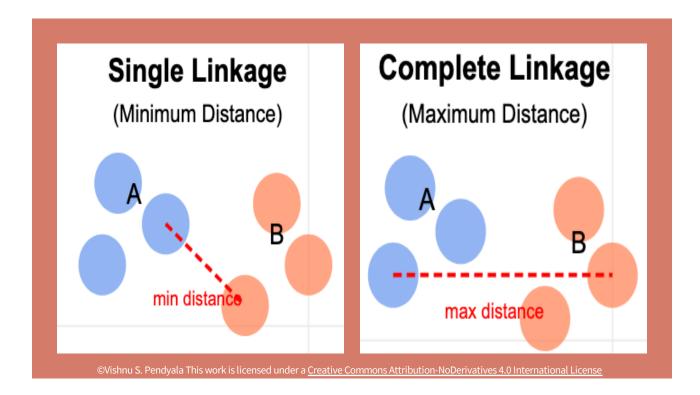
- Start with all points in one cluster.
- Recursively split clusters based on dissimilarity.
- The sequence of splits can be shown using a dendrogram.
- Horizontal cuts to the dendrogram define the number of clusters desired

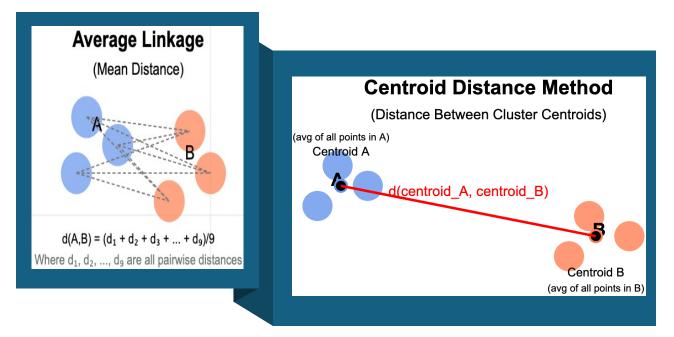
 Less commonly used due to higher computational demands

Agglomerative Clustering Algorithm

- 1.Compute the distance matrix between data points.
- 2.Let each point be a cluster.
- 3.Repeat:
 - 1.Merge the two closest clusters.
 - 2.Update the distance matrix.
- 4.Stop when only one cluster remains

- Distance Metrics:
 - Single linkage (minimum distance).
 - Complete linkage (maximum distance).
 - Average linkage
 - Distance between centroids
 - Ward's method

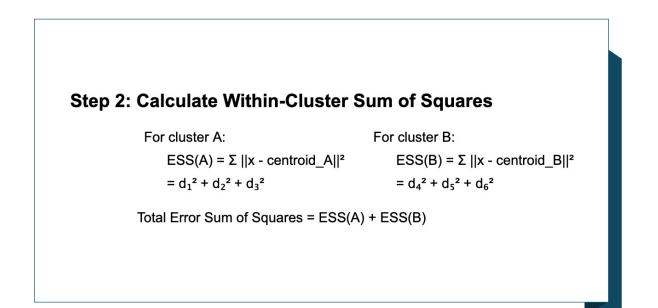




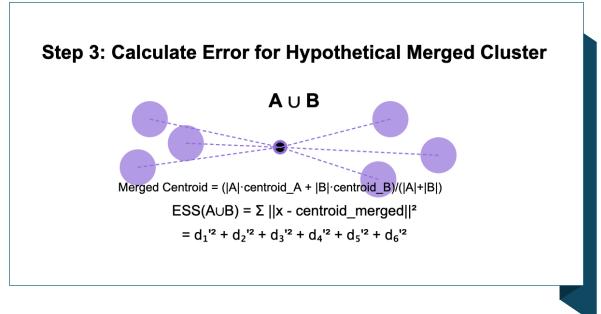
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

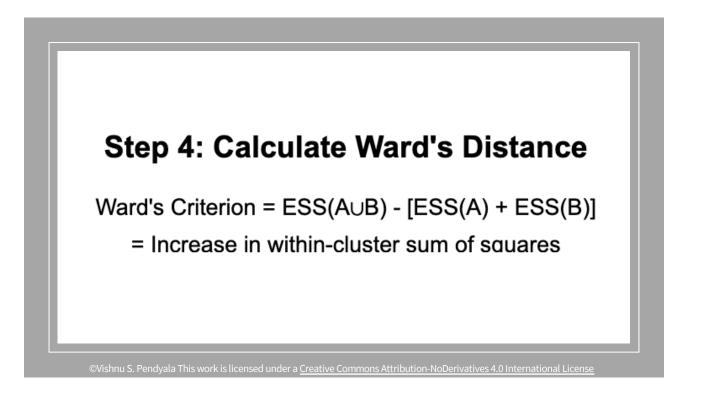
Ward's method

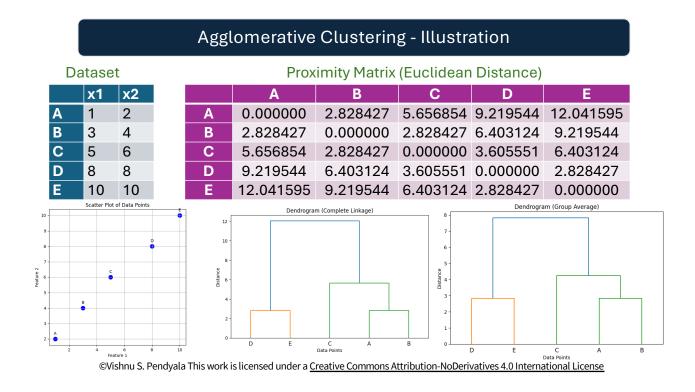
Step 1: Original Clusters

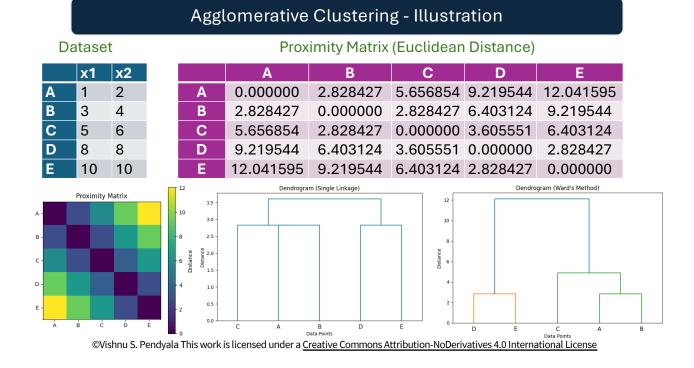


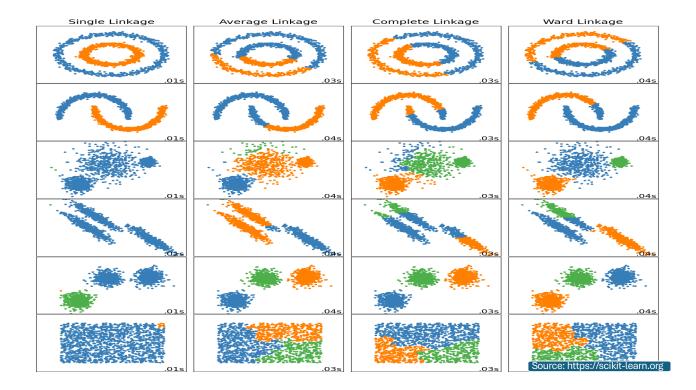
©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

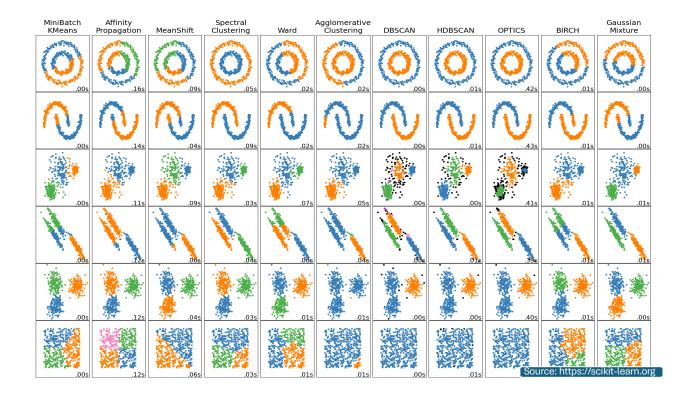


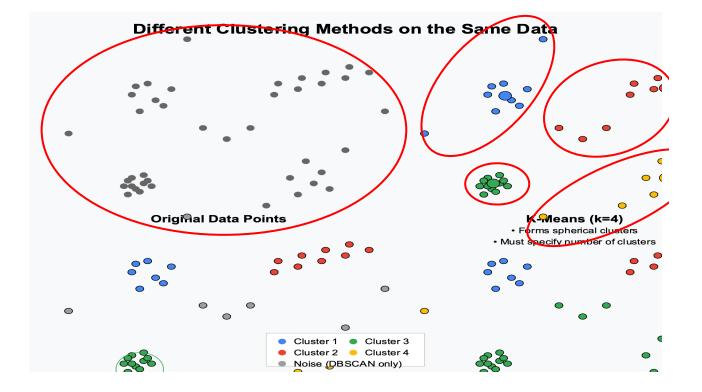












How do we know which cluster arrangement is the best?

No evaluation metric is perfect; need to depend on heuristics

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Evaluating clusters

Metrics: Sum of intracluster distances

But what matters is the impact of the clustering on business / application needs!

Final authority in evaluation is the human user

Silhouette Score to evaluate the quality of clustering

Silhouette score 's' = $\frac{b-a}{\max(a,b)}$ where range is [-1, 1] and

- **a:** The average distance between a point and all other points in its own cluster (intra-cluster distance).
- **b:** The average distance between a point and all the points in the nearest cluster it does not belong to (inter-cluster distance).
- Often used for selecting the optimal number of clusters
- S close to 1: Data point is well-clustered, far from other clusters.
- S close to 0: Data point is on the border of clusters, unclear which cluster it belongs to.
- S close to -1: Data point is probably in the wrong cluster.
- Sensitive to the shape of clusters. May not perform well for non-convex clusters.

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Stay in touch!

https://twitter.com/VishnuPendyala https://www.facebook.com/vishnu.pendyala https://www.instagram.com/vishnupendyala/ https://www.threads.net/@vishnupendyala https://www.linkedin.com/in/pendyala/

Questions

and answers