
Journal of Economic Perspectives—Volume 28, Number 2—Spring 2014—Pages 3–28

C omputers are now involved in many economic transactions and can capture 
data associated with these transactions, which can then be manipulated 
and analyzed. Conventional statistical and econometric techniques such 

as regression often work well, but there are issues unique to big datasets that may 
require different tools.

First, the sheer size of the data involved may require more powerful data 
manipulation tools. Second, we may have more potential predictors than appro-
priate for estimation, so we need to do some kind of variable selection. Third, 
large datasets may allow for more fl exible relationships than simple linear models. 
Machine learning techniques such as decision trees, support vector machines, 
neural nets, deep learning, and so on may allow for more effective ways to model 
complex relationships.

In this essay, I will describe a few of these tools for manipulating and analyzing 
big data. I believe that these methods have a lot to offer and should  be more widely 
known and used by economists. In fact, my standard advice to graduate students 
these days is go to the computer science department and take a class in machine 
learning. There have been very fruitful collaborations between computer scien-
tists and statisticians in the last decade or so, and I expect collaborations between 
computer scientists and econometricians will also be productive in the future.
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Tools to Manipulate Big Data

Economists have historically dealt with data that fi ts in a spreadsheet, but that 
 is changing as new more-detailed data becomes available (see Einav and Levin 2013, 
for several examples and discussion). If you have more than a million or so rows 
in a spreadsheet, you probably want to store it in a relational database, such as 
MySQL. Relational databases offer a fl exible way to store, manipulate, and retrieve 
data using a Structured Query Language (SQL), which is easy to learn and very 
useful for dealing with medium-sized datasets.

However, if you have several gigabytes of data or several million observations, 
standard relational databases become unwieldy. Databases to manage data of this 
size are generically known as “NoSQL” databases. The term is used rather loosely, 
but is sometimes interpreted as meaning “not only SQL.” NoSQL databases are 
more primitive than SQL databases in terms of data manipulation capabilities but 
can handle larger amounts of data.

Due to the rise of computer-mediated transactions, many companies have 
found it necessary to develop systems to process billions of transactions per day. For 
example, according to Sullivan (2012), Google has seen 30 trillion URLs, crawls over 
20 billion of those a day, and answers 100 billion search queries a month. Analyzing 
even one day’s worth of data of this size is virtually impossible with conventional 
databases. The challenge of dealing with datasets of this size led to the development 
of several tools to manage and analyze big data.

A number of these tools are proprietary to Google, but have been described in 
academic publications in suffi cient detail that open-source implementations have 
been developed. Table 1 contains both the Google name and the name of related 
open-source tools. Further details can be found in the Wikipedia entries associated 
with the tool names.

Though these tools can be run on a single computer for learning purposes, real 
applications use large clusters of computers such as those provided by Amazon, Google, 
Microsoft, and other cloud-computing providers. The ability to rent rather than buy 
data storage and processing has turned what was previously a fi xed cost of computing 
into a variable cost and has lowered the barriers to entry for working with big data.

Tools to Analyze Data

The outcome of the big-data processing described above is often a “small” table 
of data that may be directly human readable or can be loaded into an SQL database, 
a statistics package, or a spreadsheet. If the extracted data is still inconveniently 
large, it is often possible to select a subsample for statistical analysis. At Google, for 
example, I have found that random samples on the order of 0.1 percent work fi ne 
for analysis of business data.

Once a dataset has been extracted, it is often necessary to do some explor-
atory data analysis along with consistency and data-cleaning tasks. This is something 
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of an art, which can be learned only by practice, but data-cleaning tools such as 
OpenRefi ne and DataWrangler can be used to assist in data cleansing.

Data analysis in statistics and econometrics can be broken down into four cate-
gories: 1) prediction, 2) summarization, 3) estimation, and 4) hypothesis testing. 
Machine learning is concerned primarily with prediction; the closely related 
fi eld of data mining is also concerned with summarization, and particularly with 
fi nding interesting patterns in the data. Econometricians, statisticians, and data 
mining specialists are generally looking for insights that can be extracted from 
the data. Machine learning specialists are often primarily concerned with devel-
oping high-performance computer systems that can provide useful predictions in 
the presence of challenging computational constraints. Data science, a somewhat 
newer term, is concerned with both prediction and summarization, but also with 
data manipulation, visualization, and other similar tasks. Note that terminology is 
not standardized in these areas, so these descriptions refl ect general usage, not 
hard-and-fast defi nitions. Other terms used to describe computer-assisted data anal-
ysis include knowledge extraction, information discovery, information harvesting, 
data archaeology, data pattern processing, and exploratory data analysis.

Table 1
Tools for Manipulating Big Data

Google name Analog Description

Google File System Hadoop File System This system supports fi les so large that they must be 
distributed across hundreds or even thousands  of 
computers.

Bigtable Cassandra This is a table of data that lives in the Google File 
System. It too can stretch over many computers.

MapReduce Hadoop This is a system for accessing and manipulating 
data in large data structures such as Bigtables. 
MapReduce allows you to access the data in parallel, 
using hundreds or thousands of machines to extract 
the data you are interested in. The query is “mapped” 
to the machines and is then applied in parallel to 
different shards of the data. The partial calculations 
are then combined  (“reduced”) to create the 
summary table you are interested in.

Sawzall Pig This is a language for creating MapReduce jobs.

Go None Go is fl exible open-source, general-purpose 
computer language that  makes it easier to do 
parallel data  processing.

Dremel, BigQuery Hive, Drill, Impala This is a tool that allows data queries to be written in 
a simplifi ed form of of  Structured Query Language 
(SQL). With Dremel it is possible to run an SQL 
query on a petabtye of data (1,000 terabytes) in a 
few seconds.
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Much of applied econometrics is concerned with detecting and summarizing 
relationships in the data. The most common tool used for summarization is 
(linear) regression analysis. As we shall see, machine learning offers a set of tools 
that can usefully summarize various sorts of nonlinear relationships in the data. 
We will focus on these regression-like tools because they are the most natural for 
economic applications.

In the most general formulation of a statistical prediction problem, we are 
interested in understanding the conditional distribution of some variable y given 
some other variables x = ( x 1  , … ,  x P  ). If we want a point prediction, we can use the 
mean or median of the conditional distribution.

In machine learning, the x -variables are usually called “predictors” or 
“features.” The focus of machine learning is to fi nd some function that provides a 
good prediction of y as a function of x. Historically, most work in machine learning 
has involved cross-section data where it is natural to think of the data being inde-
pendent and identically distributed (IID) or at least independently distributed. 
The data may be “fat,” which means lots of predictors relative to the number of 
observations, or “tall” which means lots of observations relative to the number 
of predictors.

We typically have some observed data on y and x, and we want to compute a 
“good” prediction of y given new values of x. Usually “good” means it minimizes 
some loss function such as the sum of squared residuals, mean of absolute value 
of residuals, and so on. Of course, the relevant loss is that associated with new 
out-of-sample observations of x, not the observations used to fi t the model.

When confronted with a prediction problem of this sort an economist would 
think immediately of a linear or logistic regression. However, there may be better 
choices, particularly if a lot of data is available. These include nonlinear methods 
such as 1)  classifi cation and regression trees (CART); 2)  random forests; and 
3) penalized regression such as LASSO, LARS, and elastic nets. (There are also 
other techniques, such as neural nets, deep learning, and support vector machines, 
which I do not cover in this review.) Much more detail about these methods can 
be found in machine learning texts; an excellent treatment is available in Hastie, 
Tibshirani, and Friedman (2009), which can be freely downloaded. Additional 
suggestions for further reading are given at the end of this article.

 General Considerations for Prediction

Our goal with prediction is typically to get good out-of-sample predictions. Most 
of us know from experience that it is all too easy to construct a predictor that 
works well in-sample but fails miserably out-of-sample. To take a trivial example, 
n linearly independent regressors will fi t n observations perfectly but will usually 
have poor out-of-sample performance. Machine learning specialists refer to this 
phenomenon as the “overfi tting problem” and have come up with several ways to 
deal with it.
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First, since simpler models tend to work better for out-of-sample forecasts, 
machine learning experts have come up with various ways to penalize models 
for excessive complexity. In the machine learning world, this is known as 
“regularization,” and we will describe some examples below. Economists tend to 
prefer simpler models for the same reason, but have not been as explicit about 
quantifying complexity costs.

Second, it is conventional to divide the data into separate sets for the purpose 
of training, testing, and validation. You use the training data to estimate a model, 
the validation data to choose your model, and the testing data to evaluate how well 
your chosen model performs. (Often validation and testing sets are combined.)

Third,  if we have an explicit numeric measure of model complexity, we can 
view it as a parameter that can be “tuned” to produce the best out of sample predic-
tions.  The standard way to choose a good value for such a tuning parameter is to 
use k-fold cross-validation.

 1. Divide the data into k roughly equal subsets (folds) and label them by 
s = 1, … , k. Start with subset s = 1.

 2. Pick a value for the tuning parameter.
 3. Fit your model using the k − 1 subsets other than subset s.
 4. Predict for subset s and measure the associated loss.
 5. Stop if s = k, otherwise increment s by 1 and go to step 2.

Common choices for k are 10, 5, and the sample size minus 1 (“leave one out”). 
After cross-validation, you end up with k values of the tuning parameter and the 
associated loss which you can then examine to choose an appropriate value for 
the tuning parameter. Even if there is no tuning parameter, it is prudent to use 
cross-validation to report goodness-of-fi t measures since it measures out-of-sample 
performance, which is generally more meaningful than in-sample performance.

The test-train cycle and cross-validation are very commonly used in machine 
learning and, in my view, should be used much more in economics, particularly 
when working with large datasets. For many years, economists have reported 
in-sample goodness-of-fi t measures using the excuse that we had small datasets. 
But now that larger datasets have become available, there is no reason not to use 
separate training and testing sets. Cross-validation also turns out to be a very useful 
technique, particularly when working with reasonably large data. It is also a much 
more realistic measure of prediction performance than measures commonly used 
in economics.

Classifi cation and Regression Trees

Let us start by considering a discrete variable regression where our goal is 
to predict a 0 –1 outcome based on some set of features (what economists would 
call explanatory variables or predictors). In machine learning, this is known as a 
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classifi cation problem. A common example would be classifying email into “spam” or 
“not spam” based on characteristics of the email. Economists would typically use a 
generalized linear model like a logit or probit for a classifi cation problem.

A quite different way to build a classifi er is to use a decision tree. Most econo-
mists are familiar with decision trees that describe a sequence of decisions that results 
in some outcome. A tree classifi er has the same general form, but the decision at the 
end of the process is a choice about how to classify the observation. The goal is to 
construct (or “grow”) a decision tree that leads to good out-of-sample predictions.

Ironically, one of the earliest papers on the automatic construction of deci-
sion trees (Morgan and Sonquist 1963) was coauthored by an economist. However, 
the technique did not really gain much traction until 20 years later in the work of 
Breiman, Friedman, Olshen, and Stone (1984). Nowadays this prediction technique 
is known as “classifi cation and regression trees,” or “CART.”

To illustrate the use of tree models, I used the R package rpart to fi nd a tree 
that predicts Titanic survivors using just two variables: age and class of travel.1 The 
resulting tree is shown in Figure 1, and the rules depicted in the tree are shown in 
Table 2. The rules fi t the data reasonably well, misclassifying about 30 percent of the 
observations in the testing set.

This classifi cation can also be depicted in the “partition plot” (Figure 2), which 
shows how the tree divides up the space of age and class pairs into rectangular 

1 All data and code used in this paper can be found in the online Appendix available at http://e-jep.org.

Figure 1
A Classifi cation Tree for Survivors of the Titanic

Note: See text for interpretation.
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regions. Of course, the partition plot can only be used for two variables, while a tree 
representation can handle an arbitrarily large number.

It turns out that there are computationally effi cient ways to construct classifi cation 
trees of this sort. These methods generally are restricted to binary trees (two branches 

Table 2
Tree Model in Rule Form

Features Predicted Actual/Total

Class 3 Died 370/501
Class 1–2, younger than 16 Lived 34/36
Class 2, older than 16 Died 145/233
Class 1, older than 16 Lived 174/276

Figure 2
The Simple Tree Model Predicts Death in Shaded Region
(empty circles indicate survival; circles with x’s indicate death)
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at each node). They can be used for classifi cation with multiple outcomes (“classifi ca-
tion trees”) or with continuous dependent variables (“regression trees”).

Trees tend to work well for problems where there are important nonlinearities 
and interactions. As an example, let us continue with the Titanic data and create a 
tree that relates survival to age. In this case, the rule generated by the tree is very 
simple: predict “survive” if age < 8.5 years. We can examine the same data with a 
logistic regression to estimate the probability of survival as a function of age, with 
results reported in Table 3. 

The tree model suggests that age is an important predictor of survival, while the 
logistic model says it is barely important. This discrepancy is explained in Figure 3 
where we plot survival rates by age bins. Here we see that survival rates for the 
youngest passengers were relatively high, and survival rates for older passengers 
were relatively low. For passengers between these two extremes, age didn’t matter 
very much. So what mattered for survival is not so much age, but whether the 
passenger was a child or elderly. It would be diffi cult to discover this pattern from a 
logistic regression alone.2

Trees also handle missing data well. Perlich, Provost, and Simonoff (2003) 
examined several standard datasets and found that “logistic regression is better for 
smaller data sets and tree induction for larger data sets.” Interestingly enough, trees 
tend not to work very well if the underlying relationship really is linear, but there are 
hybrid models such as RuleFit (Friedman and Popescu 2005) that can incorporate 
both tree and linear relationships among variables. However, even if trees may not 
improve on predictive accuracy compared to linear models, the age example shows 
that they may reveal aspects of the data that are not apparent from a traditional 
linear modeling approach.

Pruning Trees
One problem with trees is that they tend to overfi t the data. Just as a regression 

with n observations and n variables will give you a good fi t in-sample, a tree with 
many branches will also fi t the training data well. In either case, predictions using 
new data, such as the test set, could be very poor.

2 It is true that if you knew that there was a nonlinearity in age, you could use age dummies in the logit 
model to capture this effect. However the tree formulation made this nonlinearity immediately apparent.

Table 3
Logistic Regression of Survival versus Age

Coeffi cient Estimate Standard error t value p value

Intercept 0.465 0.0350 13.291 0.000
Age − 0.002 0.001 − 1.796 0.072

Note: Logistic regression relating survival (0 or 1) to age in years.
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The most common solution to this problem is to “prune” the tree by 
imposing a cost for complexity. There are various measures of complexity, but a 
common one is the number of terminal nodes (also known as “leafs”). The cost of 
complexity is a tuning parameter that is chosen to provide the best out-of-sample 
predictions, which is typically measured using the 10-fold cross-validation proce-
dure mentioned earlier.

A typical tree estimation session might involve dividing your data into ten folds, 
using nine of the folds to grow a tree with a particular complexity, and then predict 
on the excluded fold. Repeat the estimation with different values of the complexity 
parameter using other folds and choose the value of the complexity parameter that 
minimizes the out-of-sample classifi cation error. (Some researchers recommend 
being a bit more aggressive and advocate choosing the complexity parameter that is 
one standard deviation lower than the loss-minimizing value.)

Of course, in practice, the computer program handles most of these details 
for you. In the examples in this paper, I mostly use default choices to keep things 
simple, but in practice these defaults will often be adjusted by the analyst. As with any 
other statistical procedure, skill, experience, and intuition are helpful in coming up 
with a good answer. Diagnostics, exploration, and experimentation are just as useful 
with these methods as with regression techniques.

Figure 3
Titanic Survival Rates by Age Group

Notes: The fi gure shows the mean survival rates for different age groups along with confi dence intervals. The 
age bin 10 means “10 and younger,” the next age bin is “older than 10 through 20,” and so on.
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There are many other approaches to creating trees, including some that are 
explicitly statistical in nature. For example, a “conditional inference tree,” or ctree 
for short, chooses the structure of the tree using a sequence of hypothesis tests. 
The resulting trees tend to need very little pruning (Hothorn, Hornik, and Zeileis 
2006). An example for the Titanic data is shown in Figure 4.

The fi rst node divides by gender. The second node then divides by class. In 
the right-hand branches, the third node divides by age, and a fourth node divides 
by the number of siblings plus spouse aboard. The bins at the bottom of the fi gure 
show the total number of people in that leaf and a graphical depiction of their 
survival rate. One might summarize this tree by the following principle: “women 
and children fi rst . . . particularly if they were traveling fi rst class.” This simple 
example again illustrates that classifi cation trees can be helpful in summarizing 
relationships in data, as well as predicting outcomes.3

An Economic Example Using Home Mortgage Disclosure Act Data
Munnell, Tootell, Browne, and McEneaney (1996) examined mortgage lending 

in Boston to see if race played a signifi cant role in determining who was approved 
for a mortgage. The primary econometric technique was a logistic regression where 

3 For two excellent tutorials on tree methods that use the Titanic data, see Stephens and Wehrley (2014). 

Figure 4
A ctree for Survivors of the Titanic
(black bars indicate fraction of the group that survived)

Note: See text for interpretation.
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race was included as one of the predictors. The coeffi cient on race showed a statis-
tically signifi cant negative impact on probability of getting a mortgage for black 
applicants. This fi nding prompted considerable subsequent debate and discussion; 
see Ladd (1998) for an overview.

Here I  examine this question using the tree-based estimators described in 
the previous section. The data consists of 2,380  observations of 12  predictors, 
one of which was race. Figure  5 shows a conditional tree estimated using the 
R package party.

The tree fi ts pretty well, misclassifying 228 of the 2,380  observations for 
an error rate of 9.6  percent. By comparison, a simple logistic regression does 
slightly better, misclassifying 225 of the 2,380  observations, leading to an error 
rate of 9.5  percent. As you can see in Figure  5, the most important variable is 
“dmi” = “denied mortgage insurance.” This variable alone explains much of the 
variation in the data. The race variable (“black”) shows up far down the tree and 
seems to be relatively unimportant.

One way to gauge whether a variable is important is to exclude it from the 
prediction and see what happens. When this is done, it turns out that the accu-
racy of the tree-based model doesn’t change at all: exactly the same cases are 
misclassifi ed. Of course, it is perfectly possible that there was racial discrimination 

Figure 5
Home Mortgage Disclosure Act (HMDA) Data Tree

Notes: Figure 5 shows a conditional tree estimated using the R package party. The black bars indicate 
the fraction of each group who were denied mortgages. The most important determinant of this is 
the variable “dmi,” or “denied mortgage insurance.” Other variables are: “dir,” debt payments to total 
income ratio; “hir,” housing expenses to income ratio; “lvr,” ratio of size of loan to assessed value of 
property; “ccs,” consumer credit score; “mcs,” mortgage credit score; “pbcr,” public bad credit record; 
“dmi,” denied mortgage insurance; “self,” self-employed; “single,” applicant is single; “uria,” 1989 
Massachusetts unemployment rate applicant’s industry; “condominium,” unit is condominium; “black,” 
race of applicant black; and “deny,” mortgage application denied.
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elsewhere in the mortgage process, or that some of the variables included are 
highly correlated with race. But it is noteworthy that the tree model produced by 
standard procedures that omits race fi ts the observed data just as well as a model 
that includes race.

Boosting, Bagging, Bootstrap 
There are several useful ways to improve classifi er performance. Interestingly 

enough, some of these methods work by adding randomness to the data. This seems 
paradoxical at fi rst, but adding randomness turns out to be a helpful way of dealing 
with the overfi tting problem.

Bootstrap involves choosing (with replacement) a sample of size n from a dataset 
of size n to estimate the sampling distribution of some statistic. A variation is the 
“m out of n bootstrap” which draws a sample of size m from a dataset of size n > m. 

Bagging involves averaging across models estimated with several different boot-
strap samples in order to improve the performance of an estimator.

Boosting involves repeated estimation where misclassifi ed observations are given 
increasing weight in each repetition. The fi nal estimate is then a vote or an average 
across the repeated estimates.4

Econometricians are well-acquainted with the bootstrap but rarely use the 
other two methods. Bagging is primarily useful for nonlinear models such as trees 
(Friedman and Hall 2007). Boosting tends to improve predictive performance of 
an estimator signifi cantly and can be used for pretty much any kind of classifi er or 
regression model, including logits, probits, trees, and so on.

It is also possible to combine these techniques and create a “forest” of trees that 
can often signifi cantly improve on single-tree methods. Here is a rough description 
of how such “random forests” work.

Random Forests
Random forests is a technique that uses multiple trees. A typical procedure uses 

the following steps.
 1. Choose a bootstrap sample of the observations and start to grow a tree.
 2. At each node of the tree, choose a random sample of the predictors to make 

the next decision. Do not prune the trees.
 3. Repeat this process many times to grow a forest of trees.
 4. In order to determine the classifi cation of a new observation, have each tree 

make a classifi cation and use a majority vote for the fi nal prediction.

This method produces surprisingly good out-of-sample fi ts, particularly with 
highly nonlinear data. In fact, Howard and Bowles (2012) claim “ensembles of 
decision trees (often known as ‘Random Forests’) have been the most successful 
general-purpose algorithm in modern times.” They go on to indicate that 

4 Boosting is often used with decision trees, where it can dramatically improve their predictive performance.
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“the  algorithm is very simple to understand, and is fast and easy to apply.” See 
also Caruana and Niculescu-Mitzil (2006) who compare several different machine 
learning algorithms and fi nd that ensembles of trees perform quite well. There are 
a number of variations and extensions of the basic “ensemble of trees” model such 
as Friedman’s “Stochastic Gradient Boosting” (Friedman 2002).

One defect of random forests is that they are a bit of a black box—they don’t 
offer simple summaries of relationships in the data. As we have seen earlier, a single 
tree can offer some insight about how predictors interact. But a forest of a thou-
sand trees cannot be easily interpreted. However, random forests can determine 
which variables are “important” in predictions in the sense of contributing the 
biggest improvements in prediction accuracy.

Note that random forests involves quite a bit of randomization; if you want to 
try them out on some data, I  strongly suggest choosing a particular seed for the 
random number generator so that your results can be reproduced. (See the online 
supplement for examples.)

I ran the random forest method on the HMDA data and found that it misclassi-
fi ed 223 of the 2,380 cases, a small improvement over the logit and the ctree. I also 
used the importance option in random forests to see how the predictors compared. 
It turned out that “dmi” was the most important predictor and race was second 
from the bottom, which is consistent with the ctree analysis.

Variable Selection

Let us return to the familiar world of linear regression and consider the 
problem of variable selection. There are many such methods available, including 
stepwise regression, principal component regression, partial least squares, Akaike 
information criterion (AIC) and Bayesian information criterion (BIC) complexity 
measures, and so on. Castle, Qin, and Reed (2009) describe and compare 
21 different methods.

LASSO and Friends
Here we consider a class of estimators that involves penalized regression. 

Consider a standard multivariate regression model where we predict  y t  as a linear 
function of a constant,  b  0  , and P predictor variables. We suppose that we have stan-
dardized all the (nonconstant) predictors so they have mean zero and variance one. 

Consider choosing the coeffi cients ( b 1 , … , b P  ) for these predictor variables by 
minimizing the sum of squared residuals plus a penalty term of the form

 λ  ∑  
p =1

  
P

   [(1 − α) |  b p  | + α |  b p   | 2  ].

This estimation method is called elastic net regression; it contains three other 
methods as special cases. If there is no penalty term (λ = 0), this is ordinary least 
squares. If α = 1, so that there is only the quadratic constraint, this is ridge regression. 
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If α = 0, this is called the LASSO, an acronym for “least absolute shrinkage and 
selection operator.”

These penalized regressions are classic examples of regularization. In this 
case, the complexity is the number and size of predictors in the model. All of these 
methods tend to shrink the least squares regression coeffi cients towards zero. The 
LASSO and elastic net typically produces regressions where some of the variables 
are set to be exactly zero. Hence this is a relatively straightforward way to do 
variable selection.

It turns out that these estimators can be computed quite effi ciently, so doing 
variable selection on reasonably large problems is computationally feasible. They 
also seem to provide good predictions in practice .

Spike-and-Slab Regression
Another approach to variable selection that is novel to most economists is 

spike-and-slab regression, a Bayesian technique. Suppose that you have P possible 
predictors in some linear model. Let γ be a vector of length P composed of 
zeros and ones that indicate whether or not a particular variable is included in 
the regression.

We start with a Bernoulli prior distribution on γ; for example, initially we might 
think that all variables have an equally likely chance of being in the regression. 
Conditional on a variable being in the regression, we specify a prior distribution 
for the regression coeffi cient associated with that variable. For example, we might 
use a Normal prior with mean 0 and a large variance. These two priors are the 
source of the method’s name: the “spike’” is the probability of a coeffi cient being 
nonzero; the “slab” is the (diffuse) prior describing the values that the coeffi cient 
can take on.

Now we take a draw of γ from its prior distribution, which will just be a list of vari-
ables in the regression. Conditional on this list of included variables, we take a draw 
from the prior distribution for the coeffi cients. We combine these two draws with 
the likelihood in the usual way, which gives us a draw from posterior distribution on 
both probability of inclusion and the coeffi cients. We repeat this process thousands 
of times using a Markov Chain Monte Carlo (MCMC) technique which gives us a 
table summarizing the posterior distribution for γ (indicating variable inclusion), 
β (the coeffi cients), and the associated prediction of y. We can summarize this table 
in a variety of ways. For example, we can compute the average value of γp which 
shows the posterior probability that the variable p is included in the regressio ns.

An Economic Example: Growth Regressions
We illustrate these different methods of variable selection using data from 

Sala-i-Martín (1997). This exercise involved examining a dataset of 72 counties and 
42 variables in order to see which variables appeared to be important predictors of 
economic growth. Sala-i-Martín (1997) computed at all possible subsets of regres-
sors of manageable size and used the results to construct an importance measure he 
called CDF(0). Ley and Steel (2009) investigated the same question using Bayesian 
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model averaging, a technique related to, but not identical with, spike-and-slab. 
Hendry and Krolzig (2004) examined an iterative signifi cance test selection method.

Table 4 shows ten predictors that were chosen by Sala-i-Martín (1997) using 
his two million regressions, Ley and Steel (2009) using Bayesian model averaging, 
LASSO, and spike-and-slab. The table is based on that in Ley and Steel (2009) but 
metrics used are not strictly comparable across the various models. The “Bayesian 
model averaging” and “spike-slab” columns show posterior probabilities of inclu-
sion; the “LASSO” column just shows the ordinal importance of the variable or 
a dash indicating that it was not included in the chosen model; and the CDF(0) 
measure is defi ned in Sala-i-Martín (199 7).

The LASSO and the Bayesian techniques are very computationally effi cient 
and would likely be preferred to exhaustive search. All four of these variable selec-
tion methods give similar results for the fi rst four or fi ve variables, after which they 
diverge. In this particular case, the dataset appears to be too small to resolve the 
question of what is “important” for economic growt h.

Variable Selection in Time Series Applications
The machine learning techniques described up until now are generally 

applied to cross-sectional data where independently distributed data is a plausible 
assumption. However, there are also techniques that work with time series. Here we 

Table 4
Comparing Variable Selection Algorithms: Which Variables Appeared as Important 
Predictors of Economic Growth?

Predictor Bayesian model averaging CDF(0) LASSO Spike-and-Slab

GDP level 1960 1.000 1.000 - 0.9992
Fraction Confucian 0.995 1.000 2 0.9730
Life expectancy 0.946 0.942 - 0.9610
Equipment investment 0.757 0.997 1 0.9532
Sub-Saharan dummy 0.656 1.000 7 0.5834
Fraction Muslim 0.656 1.000 8 0.6590
Rule of law 0.516 1.000 - 0.4532
Open economy 0.502 1.000 6 0.5736
Degree of capitalism 0.471 0.987 9 0.4230
Fraction Protestant 0.461 0.966 5 0.3798

Source: The table is based on that in Ley and Steel (2009); the data analyzed is from Sala-i-Martín (1997).
Notes: We illustrate different methods of variable selection. This exercise involved examining a dataset 
of 72 counties and 42 variables in order to see which variables appeared to be important predictors 
of economic growth. The table shows ten predictors that were chosen by Sala-i-Martín (1997) using 
a CDF(0) measure defi ned in the 1997 paper; Ley and Steel (2009) using Bayesian model averaging, 
LASSO, and spike-and-slab regressions. Metrics used are not strictly comparable across the various 
models. The “Bayesian model averaging” and “Spike-and-Slab” columns are posterior probabilities 
of inclusion; the “LASSO” column just shows the ordinal importance of the variable or a dash 
indicating that it was not included in the chosen model; and the CDF(0) measure is defi ned in 
Sala-i-Martín (1997).
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describe an estimation method that we call Bayesian Structural Time Series (BSTS) 
that seems to work well for variable selection problems in time series applications.

Our research in this area was motivated by Google Trends data, which provides 
an index of the volume of Google queries on specifi c terms. One might expect 
that queries on “fi le for unemployment” might be predictive of the actual rate of 
fi lings for initial claims, or that queries on “Orlando vacation” might be predictive 
of actual visits to Orlando. Indeed, in Choi and Varian (2009, 2012), Goel, Hofman, 
Lahaie, Pennock, and Watts (2010), Carrière-Swallow and Labbé (2011), McLaren 
and Shanbhoge (2011), Artola and Galan (2012), Hellerstein and Middeldorp 
(2012), and other papers, many researchers have shown that Google queries do 
have signifi cant short-term predictive power for various economic metrics.

The challenge is that there are billions of queries so it is hard to determine 
exactly which queries are the most predictive for a particular purpose. Google 
Trends classifi es the queries into categories, which helps a little, but even then we 
have hundreds of categories as possible predictors so that overfi tting and spurious 
correlation are a serious concern. Bayesian Structural Time Series is designed to 
address these issues. We offer a very brief description here; more details are avail-
able in Scott and Varian (2013a, 2013b).

Consider a classic time series model with constant level, linear time trend, and 
regressor components:

  y t  = ) + bt + β  x t  +  e t  . 

The “local linear trend” is a stochastic generalization of this model where the 
level and time trend can vary through time.

 Observation:  y t  =  ) t  +  z t  +  e 1t  = level + regression

 State variable 1:  ) t  =  ) t−1  +  b t−1  +  e 2t  = random walk + trend

 State variable 2:  z t  =  βx t  = regression

 State variable 3:  b t  =  b t−1  +  e 3t  = random walk for trend

It is easy to add an additional state variable for seasonality if that is appropriate. 
The parameters to estimate are the regression coeffi cients β and the variances of 
( e it ) for i = 1, … 3. We can then use these estimates to construct the optimal forecast 
based on techniques drawn from the literature on Kalman fi lters.

For the regression, we use the spike-and-slab variable choice mechanism 
described above. A draw from the posterior distribution now involves a draw of 
variances of ( e 1t  ,  e 2t  ,  e 3t  ) a draw of the vector γ that indicates which variables are in 
the regression, and a draw of the regression coeffi cients β for the included variables. 
The draws of  ) t  ,  b t  , and β can be used to construct estimates of  y t  and forecasts for  
y t+1  . We end up with an (estimated) posterior distribution for each parameter of 
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interest. If we seek a point prediction, we can average over these draws, which is 
essentially a form of Bayesian model averaging.

As an example, consider the nonseasonally adjusted data for new homes sold 
in the United States, which is (HSN1FNSA) from the St. Louis Federal Reserve 
Economic Data. This time series can be submitted to Google Correlate, which 
then returns the 100 queries that are the most highly correlated with the series. 
We feed that data into the BSTS system, which identifi es the predictors with the 
largest posterior probabilities of appearing in the housing regression; these are 
shown in Figure  6A.In these fi gures, black bars indicate a negative relationship 
and white bars indicate a positive relationship. Two predictors, “oldies lyrics” and 
“www.mail2web” appear to be spurious so we remove them and re-estimate, yielding 
the results in Figure 6B.

The fi t is shown in Figure 7, which shows the incremental contribution of the 
trend, seasonal, and two of the regressors. Even with only two predictors, queries on 
“appreciation rate” and queries on “irs 1031,” we get a pretty go o d fi t.5

5 IRS section 1031 has to do with deferring capital gains on certain sorts of property exchange.

Figure 6
An Example Using Bayesian Structural Time Series (BSTS)
(fi nding Google queries that are predictors of new home sales)

Source: Author using HSN1FNSA data from the St. Louis Federal Reserve Economic Data.
Notes: Consider the nonseasonally adjusted data for new homes sold in the United States, which is 
(HSN1FNSA) from the St. Louis Federal Reserve Economic Data. This time series can be submitted 
to Google Correlate, which then returns the 100 queries that are the most highly correlated with the 
series. We feed that data into the BSTS system, which identifi es the predictors with the largest posterior 
probabilities of appearing in the housing regression; these are shown in Figure 6A. In these fi gures, black 
bars indicate a negative relationship, and white bars indicate a positive relationship. Two predictors, 
“oldies lyrics” and “www.mail2web” appear to be spurious so we remove them and re-estimate, yielding 
the results in Figure 6B.
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Econometrics and Machine Learning

There are a number of areas where there would be opportunities for fruitful 
collaboration between econometrics and machine learning. I mentioned above that 
most machine learning uses independent and identically distributed data. However, 
the Bayesian Structural Time Series model shows that some of these techniques 
can be adopted for time series models. It is also possible to use machine learning 
techniques to look at panel data, and there has been some work in this direction.

However, the most important area for collaboration involves causal infer-
ence. Econometricians have developed several tools for causal inference such as 

Figure 7
Fit for the Housing Regression: Incremental Contribution of Trend, Seasonal, and 
Two Regressors

Source: Author using (HSN1FNSA) data from the St. Louis Federal Reserve.
Notes: The plots show the impact of the trend, seasonal, and a few individual regressors. Data has been 
standardized to have mean zero and variance 1. The residuals are shown on the bottom. The abbreviation 
“mae” stands for “mean absolute error.”

1) Trend (mae = 0.51911) 2) Add seasonal (mae = 0.5168)

4) Add irs.1031 (mae = 0.1529) 3) Add appreciation.rate (mae = 0.24805)
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instrumental variables, regression discontinuity, difference-in-differences, and 
various forms of natural and designed experiments (Angrist and Krueger 2001). 
Machine learning work has, for the most part, dealt with pure prediction. In a way, 
this is ironic, since theoretical computer scientists, such as Pearl (2009a, b) have 
made signifi cant contributions to causal modeling. However, it appears that these 
theoretical advances have not as yet been incorporated into machine learning prac-
tice to a signifi ca nt degree.

Causality and Prediction
As economists know well, there is a big difference between correlation and 

causation. A classic example: there are often more police in precincts with high 
crime, but that does not imply that increasing the number of police in a precinct 
would increase crime.

The machine learning models we have described so far have been entirely 
about prediction. If our data were generated by policymakers who assigned police 
to areas with high crime, then the observed relationship between police and crime 
rates could be highly predictive for the historical data but not useful in predicting 
the causal impact of explicitly assigning additional police to a precinct.

To enlarge on this point, let us consider an experiment (natural or designed) 
that attempts to estimate the impact of some policy, such as adding police to 
precincts. There are two critical questions.

 1) How will police be assigned to precincts in both the experiment and the pol-
icy implementation? Possible assignment rules could be 1) random, 2) based 
on perceived need, 3) based on cost of providing service, 4) based on resi-
dent requests, 5) based on a formula or set of rules, 6) based on asking for 
volunteers, and so on. Ideally the assignment procedure in the experiment 
will be similar to that used in the policy. Developing accurate predictions 
about which precincts will receive additional police under the proposed 
policy based on the experimental data can clearly be helpful in predicting 
the expected impact of the policy.

 2)  What will be the impact of these additional police in both the experiment 
and the policy? As Rubin (1974) and many subsequent authors have empha-
sized, when we want to estimate the causal impact of some treatment we need 
to compare the outcome with the intervention to what would have happened 
without the intervention. But this counterfactual cannot be observed, so it 
must be predicted by some model. The better predictive model you have for 
the counterfactual, the better you will be able to estimate the causal effect, a 
rule that is true for both pure experiments and natural experiments.

So even though a predictive model will not necessarily allow one to conclude 
anything about causality by itself, such models may help in estimating the causal 
impact of an intervention when it occurs.
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To state this in a slightly more formal way, consider the identity from Angrist 
and Pischke (2009, p. 11):

 observed difference in outcome = average treatment effect on the treated 
  + selection bias.

If you want to model the average treatment effect as a function of other vari-
ables, you will usually need to model both the observed difference in outcome and 
the selection bias. The better your predictive model for those components, the 
better your estimate of the average treatment effect will be. Of course, if you have a 
true randomized treatment–control experiment, selection bias goes away and those 
treated are an unbiased random sample of the population.

To illustrate these points, let us consider the thorny problem of estimating the 
causal effect of advertising on sales (Lewis and Rao 2013). The diffi culty is that 
there are many confounding variables, such as seasonality or weather, that cause 
both increased ad exposures and increased purchases by consumers. For example, 
consider the (probably apocryphal) story about an advertising manager who was 
asked why he thought his ads were effective. “Look at this chart,” he said. “Every 
December I increase my ad spend and, sure enough, purchases go up.” Of course, in 
this case, seasonality can be included in the model. However, generally there will be 
other confounding variables that affect both exposure to ads and the propensity of 
purchase, which make causal interpretations of observed relationships problematic. 

The ideal way to estimate advertising effectiveness is, of course, to run a 
controlled experiment. In this case the control group provides an estimate of the 
counterfactual: what would have happened without ad exposures. But this ideal 
approach can be quite expensive, so it is worth looking for alternative ways to predict 
the counterfactual. One way to do this is to use the Bayesian Structural Time Series 
(BSTS) method described earlier.

Suppose a given company wants to determine the impact of an advertising 
campaign on visits to its website. It fi rst uses BSTS (or some other technique) to build 
a model predicting the time series of visits as a function of its past history, seasonal 
effects, and other possible predictors such as Google queries on its company name, 
its competitors’ names, or products that it produces. Since there are many possible 
choices for predictors, it is important to use some variable selection mechanism 
such as those described earlier.

It next runs an ad campaign for a few weeks and records visits during this 
period. Finally, it makes a forecast of what visits would have been in the absence 
of the ad campaign using the model developed in the fi rst stage. Comparing the 
actual visits to the counterfactual visits gives us an estimate of the causal effect 
of advertising.

Figure 8, shows the outcome of such a procedure. It is based on the approach 
proposed in Brodersen, Gallusser, Koehler, Remy, and Scott (2013), but the covari-
ates are chosen automatically from Google Trends categories using Bayesian 
Structural Time Series (BSTS). Panel A shows the actual visits and the prediction 
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of what the visits would have been without the campaign based on the BSTS fore-
casting model. Panel B shows the difference between actual and predicted visits, 
and Panel C shows the cumulative difference. It is clear from this fi gure that there 
was a signifi cant causal impact of advertising, which can then be compared to the 
cost of the advertising to evaluate the campaign.

This procedure does not use a control group in the conventional sense. Rather it 
uses a general time series model based on trend extrapolation, seasonal effects, and 
relevant covariates to forecast what would have happened without the ad campaign.

A good predictive model can be better than a randomly chosen control group, 
which is usually thought to be the gold standard. To see this, suppose that you run 

Figure 8
Actual and Predicted Website Visits

Source: This example is based on the approach proposed in Brodersen, Gallusser, Koehler, Remy, and 
Scott (2013), but the covariates are chosen automatically from Google Trends categories using Bayesian 
Structural Time Series (BSTS).
Notes: Suppose a given company wants to determine the impact of an advertising campaign on its website 
visits. Panel A shows the actual visits and the prediction of what the visits would have been without 
the campaign based on the BSTS forecasting model. Panel B shows the difference between actual and 
predicted visits, and Panel C shows the cumulative difference.
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an ad campaign in 100 cities and retain 100 cities as a control. After the experiment 
is over, you discover the weather was dramatically different across the cities in the 
study. Should you add weather as a predictor of the counterfactual? Of course! If 
weather affects sales (which it does), then you will get a more accurate prediction 
of the counterfactual and thus a better estimate of the causal effect of ad  vertising.

Model Uncertainty
An important insight from machine learning is that averaging over many small 

models tends to give better out-of-sample prediction than choosing a single model. 
In 2006, Netfl ix offered a million dollar prize to researchers who could provide 

the largest improvement to their existing movie recommendation system. The 
winning submission involved a “complex blending of no fewer than 800 models,” 
though they also point out that “predictions of good quality can usually be obtained 
by combining a small number of judiciously chosen methods” (Feuerverger, He, 
and Khatri 2012). It also turned out that a blend of the best- and second-best submis-
sions outperformed either of them.

Ironically, it was recognized many years ago that averages of macroeconomic 
model forecasts outperformed individual models, but somehow this idea was rarely 
exploited in traditional econometrics. The exception is the literature on Bayesian 
model averaging, which has seen a steady fl ow of work; see Steel (2011) for a survey. 

However, I think that model uncertainty has crept into applied econometrics 
through the back door. Many papers in applied econometrics present regression 
results in a table with several different specifi cations: which variables are included in 
the controls, which variables are used as instruments, and so on. The goal is usually 
to show that the estimate of some interesting parameter is not very sensitive to the 
exact specifi cation used.

One way to think about it is that these tables illustrate a simple form of model 
uncertainty: how an estimated parameter varies as different models are used. In 
these papers, the authors tend to examine only a few representative specifi ca-
tions, but there is no reason why they couldn’t examine many more if the data 
were available.

In this period of “big data,” it seems strange to focus on sampling uncertainty, 
which tends to be small with large datasets, while completely ignoring model uncer-
tainty, which may be quite large. One way to address this is to be explicit about 
examining how parameter estimates vary with respect to choices of control variables 
and in struments.

Summary and Further Reading

Since computers are now involved in many economic transactions, big data 
will only get bigger. Data manipulation tools and techniques developed for small 
datasets will become increasingly inadequate to deal with new problems. Researchers 
in machine learning have developed ways to deal with large datasets and economists 
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interested in dealing with such data would be well advised to invest in learning 
these techniques.

I have already mentioned Hastie, Tibshirani, and Friedman (2009), who 
provide detailed descriptions of all the methods discussed here but at a relatively 
advanced level. James, Witten, Hastie, and Tibshirani (2013) describe many of the 
same topics at an undergraduate-level, along with R code and many examples. 
(There are several economic examples in the book where the tension between 
predictive modeling and causal inference is apparent.) Murphy (2012) examines 
machine learning from a Bayesian point of view.

Venables and Ripley (2002) offer good discussions of these topics with emphasis 
on applied examples. Leek (2013) presents a number of YouTube videos with gentle 
and accessible introductions to several tools of data analysis. Howe (2013) provides a 
somewhat more advanced introduction to data science that also includes discussions 
of SQL and NoSQL databases. Wu and Kumar (2009) give detailed descriptions and 
examples of the major algorithms in data mining, while Williams (2011) provides 
a unifi ed toolkit. Domingos (2012) summarizes some important lessons including 
“pitfalls to avoid, important issues to focus on and answers to common questions.” 

■ Thanks to Jeffrey Oldham, Tom Zhang, Rob On, Pierre Grinspan, Jerry Friedman, Art Owen, 
Steve Scott, Bo Cowgill, Brock Noland, Daniel Stonehill, Robert Snedegar, Gary King, Fabien 
Curto-Millet, and the editors of this journal for helpful comments on earlier versions of this paper. 
The author works for Google, and Google had the right to review this paper before publication.
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