
1

- OpenMP Focus is on Optimization of Loops

 But be careful about:

Shared vs. Private Variables

Loop Carried Dependencies

2

Example of Backward Loop Dependency

T1: V[1] = V[1] - 2V[0] T2: V[5] = V[5] - 2V[4] RAW

V[2] = V[2] - 2V[1] V[6] = V[6] - 2V[5]

V[3] = V[3] - 2V[2] V[7] = V[7] - 2V[6]

V[4] = V[4] - 2V[3] V[8] = V[8] - 2V[7]

3

Example of Forward Loop Dependency

T1: V[1] = V[1] - 2V[2] T2: V[5] = V[5] - 2V[6] WAR

V[2] = V[2] - 2V[3] V[6] = V[6] - 2V[7]

V[3] = V[3] - 2V[4] V[7] = V[7] - 2V[8]

V[4] = V[4] - 2V[5] V[8] = V[8] - 2V[9]

4

5

6

7

8

9

10

11

12

13

- OpenMP Focus is on Optimization of Loops

 But be careful about:

Shared vs. Private Variables

Loop Carried Dependencies

[image: image1.png]Why Do We Care?

Loops are the favorite control structures of High Performance
Computing, because compilers know how to optimize their
performance using instruction-level parallelism:
superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.

Example of Backward Loop Dependency

[image: image2.png]Loop Dependencies

Loops often introduce real, or apparent, dependencies.
doi=1,n
VI[i]=VI[i] — 2*V[i-1]
enddo
Backward dependency: cannot be parallelized because
each value depends upon value from previous iteration.

\

Must be before This can be
computed computed

T1:
V[1] = V[1] - 2V[0]

T2:
V[5] = V[5] - 2V[4]

RAW

V[2] = V[2] - 2V[1]

V[6] = V[6] - 2V[5]

V[3] = V[3] - 2V[2]

V[7] = V[7] - 2V[6]

V[4] = V[4] - 2V[3]

V[8] = V[8] - 2V[7]

Example of Forward Loop Dependency

[image: image3.png]Forward Dependency

To parallelize

doi=1,n
VII=VIi] = 2*V[i+1]
enddo
\%
Race Must be before This is

computed updated

T1:
V[1] = V[1] - 2V[2]

T2:
V[5] = V[5] - 2V[6]

WAR

V[2] = V[2] - 2V[3]

V[6] = V[6] - 2V[7]

V[3] = V[3] - 2V[4]

V[7] = V[7] - 2V[8]

V[4] = V[4] - 2V[5]

V[8] = V[8] - 2V[9]

[image: image4.png]The bag of programming tricks
that has served us so well
for the last 50 years
is
the wrong way to think
going forward and

must be thrown out.

[image: image5.png]Why?

o Good sequential code minimizes total number of operations

> Clever tricks to reuse previously computed results.

> Good parallel code often performs redundant operations

to reduce

o Good sequen

communication.

ial algorithms minimize space usage.

> Clever tricks to reuse storage.

> Good para

lel code often requires extra space to permit

temporal decoupling.

o Sequential idi

> Process on

> Good para

oms stress linear problem decomposition.
e thing at a time and accumulate results.

lel code usually requires multiway problem

decomposi

ion and multiway aggregation of results.

[image: image6.png]Let’s Add a Bunch of Numbers

DO I =1, 1000000
SUM = SUM + X(I)
END DO

Can it be parallelized?

[image: image7.png]Sequential Computation Tree

SUM = 0

DO I =1, 1000000
SUM = SUM + X(I)

END DO X(1000000)

X(999999)

[image: image8.png]Parallel Computation Tree

What sort of code
should we write

to get a computation
tree of this shape? N

What sort of code
would we like
to write?

v
N,
RN VRN

X (1) X(2) X(3) X(4) --- X(999999) X(1000000)

+

[image: image9.png]The Parallel Future

o We need new strategies for problem decomposition.
> Data structure design/object relationships
> Algorithmic organization
> Don't split a problem into “the first” and “the rest.”
> Do split a problem into roughly equal pieces.
Then figure out how to combine general subsolutions.
> Often this makes combining the results a bit harder.
o We need programming languages and runtime
implementations that support parallel strategies
and hybrid sequential /parallel strategies.

o We must learn to manage new space-time tradeoffs.

[image: image10.png]Conclusion

o A program organized according to linear problem
decomposition principles can be really hard to parallelize.

o A program organized according to parallel problem
decomposition principles is easily run either in parallel or
sequentially, according to available resources.

The new strategy has costs and overheads. They will be
reduced over time but will not disappear.

This is our only hope for program portability in the future.

Better language design can encourage better parallel
programming.

[image: image11.png]LLessons

 Actual performance of a simple program can
be a complicated function of the architecture

— Slight changes in the architecture or program
change the performance significantly

— To write fast programs, need to consider
architecture
* True on sequential or parallel processor

— We would like simple models to help us design
efficient algorithms

[image: image12.png]What does this mean to you?

* Intheory, the compiler understands all of this

— When compiling, it will rearrange instructions to get

a good “schedule” that maximizes pipelining, uses
FMAs and SIMD

— It works with the mix of instructions inside an inner
loop or other block of code

* Butin practice the compiler may need your help
— Choose a different compiler, optimization flags, etc.
— Rearrange your code to make things more obvious

— Using special functions (“intrinsics”) or write in
assembly ®

[image: image13.png]Conclusions

e Era of programmers not caring about what is under
the hood is over

o A lot of variations/choices in hardware

e Many will have performance implications

e Understanding the hardware will make it easier to
make programs get high performance

e A note of caution: If program is too closely tied to
the processor > cannot port or migrate
= back to the era of assembly programming

13

