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Active Walk (AW) is a paradigm for self-organization and pattern formation in simple and
complex systems, originated by Lam in 1992. In an AW, the walker changes the deformable
landscape as it walks, and is influenced by the changed landscape in choosing its next step.
Active walk models have been applied successfully to various biological, physical, geological and
economic systems from both the natural and social sciences. More recently, it has been used to
model human history. In Part I of this review, the birth of the AW paradigm, its basic concepts
and formulations, a solvable two-site model, and the experiments and AW modeling of surface-
reaction filamentary patterns are presented. Part II here continues with properties of AW, and
applications of AW in nonliving and living systems — including those from the social sciences
and human history. (In particular, unsuspected quantitative laws and a prediction about the
Chinese history are given.) A comment on the relationship between physics, social science and
complex systems is provided. The review concludes with open problems in the form of workable
research projects and general discussions.
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1. Introduction

Active Walk (AW) is a paradigm for self-
organization and pattern formation in complex sys-
tems, originated by Lam in 1992 [Lam et al., 1992;
Freimuth & Lam, 1992]. In an AW, the walker (a
particle with or without internal states) changes the
deformable landscape as it walks and is influenced
by the changed landscape in choosing its next step.
AW may be viewed from three different perspec-
tives, viz. as an organizing principle, as a new kind
of walk in modeling, and as agents used in simula-
tions [Lam, 2005a]. Active walk models have been

applied successfully to various systems from both
the natural and social sciences.

In Part I of this review [Lam, 2005a], the
birth of the AW paradigm, its basic concepts and
formulations, a solvable two-site model, and the
experiments and AW modeling of surface-reaction
filamentary patterns (induced by a chain of dielec-
tric breakdowns) are presented. Part II here contin-
ues with properties of AW (Sec. 2); and applications
in nonliving systems (Sec. 3) and living systems —
including those from social sciences and complex
systems (Sec. 4), as well as in human history
(Sec. 5). A comment on the relationship between
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physics, social science and complex systems is pro-
vided in Sec. 6. The review concludes with open
problems in the form of workable research projects
(Sec. 7) and general discussions (Sec. 8).

2. Properties of Active Walks

Analytical results for active walks are rare. An
example is shown in Sec. 4 of Part I for the case of a
two-site AW model. Most other results are obtained
from computer simulations or numerical solutions
of some coupled differential equations. An active
walker may have a finite size. However, in all the
studies published, the walker is treated as a point
particle.

2.1. Active walkers without
internal states

In this subsection, the point particle does not
possess any internal state.

2.1.1. Tracks and landscape surfaces

Being a walker, the characteristic of a single active
walker’s track is of primary interest. Unlike a ran-
dom walker which will walk forever, depending on
how the stepping rule of the active walker is speci-
fied, the active walker may be trapped forever and
“die” in a local minimum in the landscape poten-
tial V as in the case of the Probabilistic Active Walk
(PAW). On the other hand, the walker will walk for-
ever in the Boltzmann Active Walk (BAW), where
the probability for the walker to jump from site i
to adjacent site j is given by Pij ∝ exp{β[V (i) −
V (j)]}. Here V (i) is V at site i, and β is the inverse
“temperature.” (See Sec. 3.1 of Part I for the defi-
nition of PAW and BAW.)

Some tracks from the PAW are shown in Fig. 1.
More are given in Figs. 2 and 8 of Part I. For the
PAW, the end-to-end length Re and the radius of
gyration Rg of a two-dimensional (2D) walk as a
function of time are found to obey power laws. But
the exponent depends on the parameters used in
the walk, and is not universal [Lam et al., 1992;
Freimuth & Lam, 1992].

For the BAW, the 1D walk was studied by
Kayser et al. [1992] and Pochy et al. [1993], and
the 2D walk by Huang et al. [2002a], respectively,
whereas the landscaping rule used in these two stud-
ies differ from each other. In the 1D study on a
lattice, the landscaping function W (r) is given by
W (0) = W0, W (±1) = −1, and W = 0 otherwise.

Fig. 1. Some tracks of a single walker from the PAW model
[Freimuth & Lam, 1992].

The two parameters in this model are W0 and β.
Starting from a flat surface and after many steps
of walks by the walker, the landscape V transforms
into a fractal surface with its own unique scaling
laws [Pochy et al., 1993] (see Sec. 7.2). But the
statistics of the tracks are not studied. A rather
sharp localization-delocalization (LDL) transition
is observed when W0 is varied across the value of
2. For W0 < 2, more surface is depleted around the
walker than is being added to the walker’s site. A
groove of ever-increasing depth is formed and the
walker is eventually self-trapped and localized. For
W0 > 2, the opposite happens; the walk is extended
in space and the walker is delocalized. Scaling laws
are found. This LDL transition was first reported in
[Kayser et al., 1992; Pochy et al., 1993], and subse-
quently extended in [Lam, 1995a] and [Lam, 1997].

In the 2D study on a square lattice,

V (i) = −{1 − exp[−αn(i)]}, (1)

where α > 0; n(i) is the number of times site i has
been visited by the walker. Note that V (i) can vary
only between −1 and 0. Equation (1) represents the
empirical law that a soft medium such as soil will
deform under the impact of a load. This model also
has two parameters, β and the stiffness exponent α.
Typical morphology of the walks is shown in Fig. 2.
Simulations of this model give two power laws,

R2
e = 〈R2(t)〉 ∼ t2ν , (2)

and

〈S(t)〉 ∼ tk, (3)
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(a) (b)

(c)

Fig. 2. Patterns of sites visited by a single walker in the 2D
BAW model [Huang et al., 2002a]. α = 1 and β = (a) 0.5,
(b) 3, and (c) 6. The height of the landscape potential is rep-
resented by the gray scale, with darker gray indicating the
more negative in height.

where S(t) is the number of sites visited by the
walker at time t, and the average is over many runs
of the simulation. For a given α, as β increases from
zero, ν decreases from 1/2 to 1/3 and k decreases
from slightly above 0.9 to 2/3, as shown in Fig. 3,
where also shown is Df , the fractal dimension of the
spatial distribution of sites visited. Physically, these
results are easy to understand. The β = 0 limit of
the BAW is the simple random walk, in which the
walker does not feel the presence of the landscape,
and ν = 1/2 is expected. At β = ∞, the BAW
becomes a deterministic walk such that the adja-
cent site most visited before will be chosen. The
walk thus forms a compact cluster with Df = 2.
What is shown in Figs. 2 and 3 is thus a LDL tran-
sition, from an extended walk at β = 0 transiting
to a compact walk at β = ∞. As can be seen in
Fig. 3, the transition is not sharp. If somehow a βc

separating these two regions is defined (perhaps as
the middle point in the transition region on the β
axis), one finds βc = exp(α). All these results and
other scaling laws are nicely explained in [Huang
et al., 2002a].

Fig. 3. Dependence of the three exponents ν, k and Df on
parameters α and β [Huang et al., 2002a].

Multiwalkers were first studied in [Lam et al.,
1992; Freimuth & Lam, 1992]. The active walk-
ers coexist on a common landscape. They deform
the landscape individually, and communicate with
and influence each other indirectly through the
shared landscape. This scheme is able to repro-
duce and explain many of the patterns observed
in nature, such as those in dielectric breakdowns,
electrodeposits [Lam, 1995b] and retinal neurons.
(See [Lam, 1997] for a review.) More recently,
Huang et al. [2002b] extended their study of the 2D
BAW model from a single walker to multiwalkers
and obtained some interesting results. Initially, N
(= 1000) active walkers are placed randomly on a
flat surface, using a square lattice. They are ran-
domly picked and allowed to move to an adjacent
site according to the BAW stepping rule if that
adjacent site is not occupied by another walker;
otherwise the walker stays still. Every walker is
given the chance to try in one iteration step. In
the beginning, the landscape surface is essentially
flat at zero height and the walkers are still far
from each other. There is very little clustering of
walkers when time t is small. At very large t, the
whole area has been visited many times by the
walkers and the whole surface is flat again at
the lowest height of −1 everywhere. And the AW
becomes a random walk for each of the walkers, and
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there is no clustering. Only at some intermediate t
when the surface consists of valleys and hills that
clustering of the walkers will occur, mainly at the
valleys. Now let us define a clustering coefficient

Γ(t) ≡







∑
s

s2ns(t)

∑
s

sns(t)


 − 1




N − 1
, (4)

where ns(t) is the number of clusters with s parti-
cles at time t. Γ(t) = 0 corresponds to no clustering;
Γ(t) = 1, maximum clustering with all N particles
forming a single cluster. As shown in Fig. 4, the Γ(t)
versus t curve obtained from simulation results of
the BAW model indeed shows a single peak of value
Γ ∗ at t = t∗. Both Γ ∗ and t∗ are functions of α and
β. These functions and the roughness of the surface
are investigated in detail by Huang et al. [2002b].

2.1.2. Clustering of active walkers

In a multiwalker situation, clusters of active walkers
are sure to form if each walker is able to deplete the
landscape potential V (r, t) in its every step, and the
walker has the ability to move around — excited by
some noise, say — so that it will not be trapped per-
manently in some local minimum of V . Such a case
was demonstrated by Schweitzer and Schimansky-
Geier [1994] in a hybrid approach to the problem.
They simulated the movement of the active walkers
while a partial differential equation governing the

Fig. 4. Dependence of clustering coefficient Γ(t) on time t.
For all curves, α = 0.005; β is fixed for each curve, varying
from 3.16 to 10 from curve to curve [Huang et al., 2002b].
(See Fig. 2 in [Huang et al., 2002b] for more details.)

evolution of V was solved numerically. Of course,
these two components were coupled to each other
in the model.

Specifically, a 2D triangular lattice is used and
V = 0 initially. The walker likes to go from a high V
position to a low V position, but not absolutely. It
is a PAW of some sort. In the simulation, a walker
checks the V in its six nearest-neighboring sites and
compare with V at its present site, thus measuring
the local potential gradient. If there is no attrac-
tive potential around, it makes a random choice and
steps to one of these six neighboring sites. If there
is an attractive potential, it goes to the adjacent
site with the lowest potential, with a probability
1− η; and with probability η, it moves in a random
direction. In other words, because of the noise (rep-
resented by η), the walker sometimes ignores the
attraction of the potential and finds itself out of
the local potential minimum. After all the walkers
finish their one-step walk, V is updated by solving
the equation

∂V (r, t)
∂t

= D∇2V (r, t) − γV (r, t) − αp(r, t), (5)

where p(r, t) is the probability density of the
walkers, γ the damping coefficient, α a constant
parameter, and D the diffusion constant of V . The
negative sign on the last term on the right-hand side
of Eq. (5) corresponds to the depletion of V due to
the walkers. If the walkers are the ants, V will be the
negative density of the pheromone released by the
ants; an ant’s preference to go to high pheromone
density places corresponds to the walker going to
low V places, as is assumed here. Numerical results
indeed show clustering of the walkers, as depicted
in Fig. 5.

The clustering effect can be understood as
follows. Under the adiabatic approximation that
∂V (r, t)/∂t ≈ 0 and D → 0, Eq. (5) gives

V (r, t) = −
(

α

γ

)
p(r, t) (6)

Putting Eq. (6) into the Fokker–Planck equation
that presumably is obeyed by p,

∂p(r, t)
∂t

= Dw∇2p(r, t) + ∇[p(r, t)∇V (r, t)] (7)

we obtain

∂p(r, t)
∂t

= ∇[Deff (r, t)∇p(r, t)]. (8)
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(a) (d)

(b) (e)

(c) (f)

Fig. 5. Clustering of active walkers [Schweitzer &
Schimansky-Geier, 1994]. The positions of the walkers are
shown in (a)–(f), as time increases.

Here, the effective diffusion constant is given by

Deff(r, t) = Dw −
(

α

γ

)
p(r, t). (9)

When p(r, t) is large enough, we may have
Deff (r, t) < 0 — clustering at location r. Note that
in this case, approximations are made so that the
two coupled equations, Eqs. (5) and (7), are reduced
to a single equation, Eq. (8). The original coupled
equations are not really solved.

The clusters appear where V (r, t) has a large
dip. When −V is plotted in the 2D r space, these

dips show up as spikes. The spikes corresponding
to the clustering process of Fig. 5 go through two
stages. In the beginning, these spikes appear indi-
vidually; then as larger clusters appear, only a few
large spikes are left.

However, if Eq. (7) is modified to become

∂p(r, t)
∂t

= Dw∇2p(r, t) + ∇[ p(r, t)∇V (r, t)]

−Ap(r, t) + B, (10)

where the A and B terms represent desorption and
adsorption of the active walkers, respectively, due
to external influence, then stable coexistence of
spikes — almost periodically arranged in space —
is possible [Schimansky-Geier et al., 1995].1

2.1.3. Spirals and traveling spots

In excitable systems, coupled reaction–diffusion sys-
tems [Walgraef, 1997] are known to be able to pro-
duce spirals and traveling localized spots. The same
can be reproduced more efficiently by the use of
active walkers [Schimansky-Geier et al., 1995].

For example, the two coupled equations could
be given by Eq. (5) and

∂p(r, t)
∂t

= Dw∇2p(r, t) − kp(r, t)

+ C(1 + V (r, t))Θ(p − pc), (11)

where the Heaviside function is defined by Θ(x) = 1
if x > 0, and Θ(x) = 0 if x < 0. Here, in comparison
with the case in Eq. (7), the active walkers are no
longer influenced by the gradient of V , but repli-
cate if its population exceeds a threshold pc; and a
decay term is added. This is an activator–inhibitor
system, with the active walkers acting as activa-
tor, and V the density of an inhibitor. The hybrid
approach is again used, i.e. Eq. (5) is solved numer-
ically, but Eq. (11) is replaced by the simulation
of 104 active walkers. When pc is a constant, tar-
get waves, single and double spirals are obtained.
When pc is assumed to linearly increase with the
global number of active walkers, traveling spots are
formed instead.

2.1.4. Other properties

Chance versus necessity is an important issue in
growth problems. Chance, in the form of noise or
the series of random numbers used in a computer

1In [Schimansky-Geier et al., 1995], active walkers are called “active Brownian particles.”
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Fig. 6. Morphogram in the (η, ρ) plane from the active-walk
aggregation model [Lam et al., 1995]. η and ρ are two control
parameters in the probabilistic model. The pie chart at each
point represents the percentage of each type of five possible
morphologies obtained from 30 runs of the algorithm. Within
the “sensitive zone” in the middle region — where chance
plays a dominant role — the outcome is unpredictable.

algorithm, is shown to be important sometimes
but not always, as demonstrated in the active-walk
aggregation model [Lam et al., 1995; Lam et al.,
1996]. (See Fig. 6.)

The two types of intrinsic abnormal growth —
transformational growth and irreproducible growth,
as illustrated by AW models, are summarized in
[Lam, 1997].

2.2. Active walkers with
internal states

Let the active walker possess an internal state θ so
that θ = 0 or 1 (like particles with two possible col-
ors). And let us say that only those walkers with
θ = 1 can interact with the potential V , identified
as a temperature distribution. Assume a constant
number of walkers present, but the two kinds of
walkers can interchange into each other with given
rates — the change rate from θ = 1 type to θ = 0
type is temperature dependent, while the reverse
change rate is a constant. Under suitable conditions,

a traveling wave in 1D is found [Schimansky-Geier
et al., 1997]. This example shows the interesting
possibilities of active walkers with internal states.
More examples are given in [Schweitzer, 2003].2

3. Applications of Active Walks in
Nonliving Systems

A few important applications of AW in nonliving
systems are given here; those in living systems will
be presented in the next section. Unlike those in
Sec. 2, the AW models studied here and in Sec. 4
are closely linked to real experimental data.

3.1. Filamentary patterns in
electrodeposits and surface
reactions

Filamentary patterns are naturally modeled by AW,
since the track of an active walker is a filament.
Applications of AW to experiments in electrode-
posits and in surface-reaction filaments induced by
dielectric breakdowns are reviewed in [Lam, 1995b,
1997] and Sec. 5 of Part I.

3.2. Compaction in granular matter

Granular matter is in the forefront of research today
[Duran, 2000; Chen et al., 2002]. They are neither
fluids nor solids; a proper theory for these strange
materials is still lacking [Kadanoff, 1999]. The con-
nection between AW and granular matter is dis-
cussed in [Lam, 1997].

In a compaction process, the granular medium
reorganizes into “domains.” After an initial tran-
sient, compaction proceeds as a coarsening for the
domains and a progressive reduction of domain
boundaries. A model of active walkers moving on
active substrates is proposed by Baldassarri et al.
[2001] to explain the coarsening process. Assuming
that the system is uniform in the direction of grav-
ity, the medium is described by a 1D density profile
ρ(x, t), in which the domain wall — treated as an
overdamped active walker located at x = X(t) —
moves. The coupled equations are
dX

dt
= −

∫
dxδ(x − X(t))

∂V [ρ(x, t)]
∂x

+ Γ(t), (12)

and
∂ρ(x, t)

∂t
= f(ρ(x, t))δ(x − X(t)), (13)

2Active walkers in [Schweitzer, 2003], except those in Chapter 5, are called “Brownian agents.” Note that active particles in
Chapter 2 there are particles with one internal state; they are not coupled to a landscape, and hence are not active walkers.
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where Γ(t) is an uncorrelated Langevin force. The
potential V attracts the walker to regions where
activity has been intense, and repels it from unvis-
ited regions. Physical considerations lead to the
form f(ρ) = (1−ρ)a, and V (ρ) behaving linearly in
ρ as ρ → 1. Under these conditions, Eqs. (12) and
(13) are recast as

dX

dt
= F−1−b∇F + Γ(t), (14)

and

dF

dt
= δ(x − X(t)), (15)

where b = 1/(a−1), and F (ρ) = (a−1)−1(1−ρ)1−a.
As it stands, the landscape in Eqs. (14) and (15) is
represented by F . The consequence of this model
is that the high density regions (i.e. the potential
wells) tend to trap the walkers that, in turn, are
able to change the environment, the local density,
though their efficiency in doing so decreases with
the increase of the density — resulting in a dras-
tic slowing down. The way the walker escapes from
the potential well is to progressively carve their way
out by pushing the potential barrier and so enlarg-
ing the compactified region.

3.3. Applications in geology

Geological systems provide a fertile land for study-
ing self-organizing processes that, quite often, man-
ifest themselves in the form of spatiotemporal pat-
terns. Some of these patterns are fractals [Turcotte,
1997; Rodriquez-Iturbe & Rinaldo, 1997]; some are
not. In many cases, the formation process involves
the change of the geological landscape. Active walk
consists of particles sculpturing a deformable land-
scape, and is the natural choice in modeling the
dynamics of these geological phenomena.

Cold production in oil recovery is a nonthermal
process in which sand production is encouraged and
high permeability channels are formed. These chan-
nels grow into a branched wormhole network when
water is forced into the ground in a shaft. A mixture
of sand and oil moves up the channels to the ground
surface, with the proportion of oil increasing at later
stages. The wormhole tip grows as the liquid flux
erodes the soil, a local process appropriately mod-
eled by AW. Indeed, assuming that the diameter of
the wormhole channel decreases with a power law
as it grows, the AW model does describe excellently
this oil recovery process [Yuan et al., 1999].

River basins are formed when rain falls, runs
downhill and erodes the landscape. River channels
emerge and branch due to the original topology of
the landscape but also the erosion process caused
by the flowing water. The erosion process can be
represented by the action of an active walker [Lam
& Pochy, 1993].

3.4. Active walk model for
experimental parameter-tuning
networks

In a large apparatus made up of many components,
each component needs be tested and tuned sep-
arately and then collectively, before experiments
using the apparatus as a whole can be conducted.
And there are a large number of parameters to be
tuned. How can we model the adjustment process of
these parameters and make some sense out of it? In
this subsection, the ideas, formulations and results
due to Han [2005] are reported.

In a Tokamak in plasma physics, in the ion
source segment of the neutral-beam injector sys-
tem alone, there are eight major parameters to be
adjusted. The experimenter sets the parameter val-
ues, turns on the equipment, and measures the out-
come of a certain quantity Q. If the Q obtained
does not meet the mark Q0, say, the whole pro-
cess is repeated, with a new set of parameters.
The adjustment process stops when Q is equal or
very close to Q0. The simultaneous adjustment of
a large number of parameters is a complicated pro-
cess, which is based on the feedback from previous
Q values obtained, the experimenter’s experience,
and the limitation of the hardware that control the
parameters.

3.4.1. Construction of parameter-tuning
networks

To quantify this complicated process, a parameter-
tuning network can be constructed as follows.
To illustrate the idea in detail, we assume here
that only three parameters u1, u2 and u3 are
involved. The experimenter’s serial adjustment of
u[≡ (u1, u2, u3)] can be represented by a sequence
of connected dots in the 3D u space, as shown in
Fig. 7. For each choice of u, Q is measured, so that
Q = Q(u) but the functional form is unknown due
to the complexity of the equipment, which is like a
black box.
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Fig. 7. The sequence of three tuning parameters created
through the action of an experimenter who changes the
parameters in some order, in a sequence of imagined experi-
ments using the same piece of equipment. The red lines link-
ing the dots show the sequence, with the direction of the
sequence suppressed in this drawing. The blue lines are the
projection of the red lines on the (u1, u2) plane. The green
lines show how the red lines are projected.

The sequence of u dots is then projected onto
the (u1, u2) plane. The dots on the same verti-
cal line along the u3 direction are allowed to col-
lapse to one point, called a node. There are 12
such nodes in Fig. 7. A line connecting two nodes
is called an edge [Albert & Barabási, 2002]. Since
in real situations, the parameters selected by the
experimenter in different adjustments may partially
overlap with each other, there may be more than
one edge connecting two nodes, as indicated in
Fig. 8(a). These edges are directed. For simplicity,

Fig. 8. Simplifications adopted in forming the parameter-
tuning network. The first step is from (a) to (b), with edges
of the same direction collapsed into a single directed one,
resulting in a directed network. The second step is to collapse
the two edges in (b) into one in (c) and ignore the directions,
leading to a nondirected network. [Note that occasionally, we
may have only one set of edges with same direction in (a)
and (b).]

we make the approximation of going from (a) to
(b) in Fig. 8 by collapsing all the edges between
two nodes that have the same direction as one
single edge with the same direction. Consequently,
between two nodes, there are at most two edges
with opposite directions, as indicated in Fig. 8(b),
resulting in a directed parameter-tuning network.
The directed network thus formed from Fig. 7 is
shown in Fig. 9.

A nondirected network is formed from the
directed one, by going through (b) to (c) in Fig. 8.
Figure 10 shows the nondirected network derived
from that in Fig. 9.

3.4.2. Counting the edges

In Fig. 9, for node j(j = 1, 2, . . . , Nn, with Nn =
12), let N+(j) be the number of in-going edges, and
N−(j) the number of out-going edges. In Fig. 10,
let N(j) be the number of edges at node j. The
results are given in Table 1. Note that N(j) =
N+(j) + N−(j) is not always true; the untrue cases
are j = 3 and 5.

3.4.3. Degree distribution functions

Now count the number of N+ in Table 1 that has
the value k, and call it p+(k); similarly for p−(k)

1 2 3 4 5

1

2

3

4

5

12

11

10 9

8

7

6

5

4

3

2

1

Fig. 9. The directed network formed by projecting the red
segments in Fig. 7 onto the (u1, u2) plane, after the simplifi-
cation of going from (a) to (b) in Fig. 8. Each arrow indicates
a directed edge. There is an edge connecting node 3 directly
to node 11, in the direction shown by the long arrow. This
edge is treated as a separate edge, and should not be confused
with the two short edges from node 11 to node 9, and from
node 9 to node 3, respectively. The total number of nodes in
this diagram is Nn, which is equal to 12.
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Fig. 10. The nondirected network as derived from the
directed network of Fig. 9.

Table 1. Counting the edges. N+

and N− are read from Fig. 9, N from
Fig. 10.

j N+(j) N−(j) N(j)

1 0 1 1
2 2 2 4
3 3 3 5
4 1 1 2
5 2 2 3
6 1 1 2
7 1 1 2
8 1 1 2
9 3 3 6

10 1 1 2
11 1 1 2
12 1 0 1

Table 2. Degree distributions and cumulative
degree distributions.

k p+(k) p−(k) p(k) P+(k) P−(k) P (k)

1 7 7 2 11 11 12
2 2 2 6 4 4 10
3 2 2 1 2 2 4
4 0 0 1 0 0 3
5 0 0 1 0 0 2
6 0 0 1 0 0 1

and p(k). k is called the “degree” of a node. p+(k) is
called the “in-degree distribution,” p−(k) the “out-
degree distribution,” and p(k) the “degree distribu-
tion.” The results are shown in Table 2.

Next define the corresponding “culmulative
degree distributions” P+(k), P−(k) and P (k) by

P+(k) ≡
km∑

k′=k

p+(k′) (16)

P−(k) ≡
km∑

k′=k

p−(k′) (17)

P (k) ≡
km∑

k′=k

p(k′) (18)

Here km is the maximum k that the p function is
nonzero. km = 3 for Eqs. (16) and (17), and km = 6
for Eq. (18). The results are shown in Table 2. Note
that by definition, the P ’s are monotonic decreas-
ing functions, while the p’s may not be monotonic
at all. The reason for introducing the P ’s is that we
want to fit them to monotonic decreasing functions
such as stretched exponents or power laws. We are
not going to plot the data from Table 2; instead, we
will do that for data from real experiments and an
AW model.

3.4.4. Experimental results

In real experiments studying the ion source of neu-
tral beam injector system for HT-7 Tokamak, eight
control parameters are involved. These include the
filament current, magnet current, arc voltage, cath-
ode gas valve voltage, anode gas valve voltage,
etc. Each of the parameters has 10 to 30 discrete,
adjustable setting values. The aim of the experi-
ment is to find out which set of parameters will
give a strong and stable discharge, measured by the
arc current intensity Q. Each parameter is set by
a dial which can be turned left or right between
two extreme positions. When the extreme position
is reached, the experimenter has to turn the dial
back, reversing the direction of turning.

From the experimental data, diagrams like
Figs. 7, 9 and 10 are generated, except the u space
now assumes eight dimensions. The P ’s are plotted
and fitted nicely with stretched exponent functions
(Fig. 11) such that

P (k) ∼ exp(−akγ), (19)

or, equivalently,

ln P (k) = −akγ + b, (20)

and similarly for P+(k) and P−(k).
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Fig. 11. Experimental curves of P+(k), P−(k) and P (k), fit-
ted to stretched exponent functions. The two corresponding
(directed and nondirected) parameter-tuning networks exist
on the (V, I) plane, where V is the cathode gas valve voltage
and I the filament current.

3.4.5. Active walk modeling

The adjustment of the parameters is kind of cor-
related by the experimenter, and the process is
modeled by an AW model. For demonstration,
we assume the simplest case of three parameters,
u = (u1, u2, u3). Each ui has adjustable values of
1, 2, . . . , 20, say. The adjustment of the ith param-
eter is represented by the movement of an active
walker on a 1D landscape potential Vi(xi) (i =
1, 2, 3). The allowable xi for the ith walker are the
integers, (1, 2, 3, . . . , 100), the same for all i. These
100 numbers are mapped to the ui, such that if the
ith walker ends in the region [1, 5] on the xi axis,
ui will assume the value of 1. Similarly, the region
of [6, 10] is mapped to ui = 2, etc. This mapping
can be attained by

ui(t) = Int
[
Xi(t) − 1

5

]
+ 1, (21)

where Xi(t) is the position of the ith walker on the
x axis at time t, and Int means taking the inte-
gral part of the number. This mapping of xi to
ui has the effect of making two consecutive sets of
adjusted parameters more likely to partially over-
lap with each other, and ensures the occurrence of
smooth Vi versus xi curves. The xi could be taken
simply as ui if the ui range is large.

In the simulations, all Vi start flat at time
t = 0, and are updated simultaneously at each time
step t(=1, 2, . . .), according to a rule to be speci-
fied below. But between two consecutive time steps,
each walker moves a few steps in a subwalk on its
own Vi, independent of other walkers. In a subwalk,
the walker does not change Vi. The subwalk is like
a particle rolling on a landscape with friction, with
the following rules (with the subscript i removed for
the sake of clarity). The subwalk time is labeled by
τ(= 0, 1, 2, . . .).

1. At time t = 0, the particle is arbitrarily placed
on the x axis.

2. At time t, the particle is given energy K0 at
τ = 0. (K0 is a parameter fixed in the model.)

3. At subwalk time τ , the particle moves left or
right with equal probability. However, after each
move, the particle loses energy ε, and the energy
difference V (x(τ + 1))− V (x(τ)) — which could
be positive or negative — is added to its energy.
Consequently, at time τ , the particle already
moves τ steps, and its energy becomes

K(τ) = V (x(τ)) − V0 + K0 − τε, (22)
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where V0 ≡ V (x(0)), the potential at the initial
position of the particle at τ = 0.

4. The particle can get over a potential barrier in
V that is lower than K, and can rebound if the
barrier is higher than K.

5. When the particle reaches the left boundary
(x = 1) or the right boundary (x = 100), it
reverses direction and continues its subwalk.

6. The particle stops when it walks into a potential
well and cannot get out with its energy K, or
exhausts its energy on a plateau.

These possibilities are sketched in Fig. 12. The
reflecting boundary condition in item 5 corresponds
to the real experimental situation where a dial with
a limited range is used.

After all three particles stop, the time clock
increases from t to t + 1; the particle’s position at
the end of its subwalk is taken to be X(t+1), which
is the starting position of the subwalk at time t+1.
(The subwalks of the particles may not stop after
the same number of subwalk steps; those stop first

(a) (b)

(c) (d)

(e)

Fig. 12. Sketch of possible subwalks of a particle. The solid
dot, gray dot and open circle represent the initial position,
final position and some intermediate position of the parti-
cle, respectively; the arrow indicates the initial direction of
the particle. (a) The particle moves and stops on a plateau.
(b) The particle gets over a low potential barrier or a shallow
well. (c) The particle stops in a deep well. (d) The particle
rebounds on a high potential barrier. (e) The particle moves
on a general landscape, and ends up in a deep well after many
steps.

will sit there and wait for the last particle to stop.)
The landscape Vi(xi) is updated by the landscaping
rule:

Vi(xi; t + 1)

=
{

Vi(xi; t) + W (xi − Xi(t + 1)), E(t) ≥ Ea(t)
Vi(xi; t) − W (xi − Xi(t + 1)), E(t) < Ea(t)

(23)

where t = 0, 1, 2, . . . For example, in numerical
simulations below, the (i-independent) landscaping
function W is given by W (0) = 4, W (±1) = 3,
W (±2) = 1, and W = 0 otherwise. In Eq. (23), the
error function E(t) is assumed to be

E(t) = |Q(u(t)) − Q0| (24)

where u(t) is obtained from Eq. (21); Ea(t) is
the average error counting the last n time steps,
given by

Ea(t) ≡ 1
n

t∑
t′=t−n+1

E(t′). (25)

In computer simulations, we pretend that we know
Q0 and the Q(u) function. In reality, the former
is known to the experimenter; the latter can be
roughly inferred from experimental data. Note that
while the subwalks of the particles are indepen-
dent of each other, the updating of their landscapes
is affected by their collective effort through Q(u)
in E(t).

3.4.6. Simulation results and discussion

The three-parameter AW model is simulated with
t going from 0 to 1000. The function Q is assumed
to be

Q(u) = |u1 − 10| + |u2 − 10| + |u3 − 10|. (26)

The parameters used are: K0 = 23, ε = 1, n = 5
and Q0 = 0. This means that u = (10, 10, 10) is the
one and only optimal parameter set.

The landscape functions at various time t are
given in Fig. 13. The error function E(t) is dis-
played in Fig. 14, which shows that the optimal u
is first obtained at t0 = 122. The last 700 u(t) dots
(with t > 300) in the u space are projected onto
the (u1, u2) plane to obtain the directed and nondi-
rected networks; the latter is shown in Fig. 15. The
corresponding cumulative degree distributions are
given in Fig. 16. Good stretched-exponent fits are
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Fig. 13. Time evolution of the landscape potentials.
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Fig. 14. Dependence of the error function on time.

obtained, in agreement with the experimental find-
ings in Fig. 11.

The subwalks somewhat mimick the action of
the experimenter — that is why the AW model and
the experiments give similar P functions. Stretched
exponent distributions exist in other networks
[Xulvi-Brunet & Sokolov, 2002; Holanda et al.,

0 5 10 15 20
0

5

10

15

20

u 2

u
1

Fig. 15. The nondirected parameter-tuning network
obtained from the simulation of a three-parameter active
walk model. The two (directed and nondirected) networks
exist on the (u1, u2) plane.

2004]. The important problem is to understand the
mechanisms that give rise to these stretched expo-
nents, and what they mean. By modifying the sub-
walks and tuning their parameters one may shorten
t0, the shortest time to find the optimal parameters,
which would be of interest to the experimenters. In
fact, the AW model here could be developed into a
general method to tackle optimization problems in
many other systems.

3.5. Other applications

Anomalous ionic transport in glasses is an interest-
ing application of AW (see [Lam, 1997]). Another
example is the self-consistent coupling of laser with
a dielectric in nonlinear optics.

When a light beam propagates in a nonlinear
medium, the photon’s path is influenced by the
local refractive index of the medium, which in turn
is changed by the photon as it propagates [Shen,
2002]. The photon is thus an active walker; the land-
scape is the distribution of the refractive index. But
one need not start from the photons. For instance,
in a photorefractive medium, spatial screening soli-
tons can be treated as rays using geometrical optics
[Belić et al., 2000]. The ray picture is transformed
into a classical mechanics picture, within which soli-
tons move self-consistently as particles in a poten-
tial created by the induced change in the refractive
index.
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Fig. 16. Numerical curves of P+(k), P−(k) and P (k)
obtained from the parameter-tuning networks from a three-
parameter active walk model simulation, fitted to stretched
exponent functions.

4. Applications of Active Walks in
Living Systems

Living systems include ants, bacteria and humans.
Humans are studied in social science and in history.
Applications of AW in social science3 are included
in this section, while those in history are delayed to
the next section.

4.1. Spontaneous formation of
human trails and ant trails

Human trails, either on soft soil or grass, are formed
spontaneously, not purely by chance, but by a com-
bination of the locations of places the pedestrians
want to go, from where, and practical considerations
of duration and convenience. In the AW model of
Helbing et al. [1997a],

1. Deformation of grass (in a campus or an urban
park) due to footsteps of pedestrians is assumed
to stay for a finite amount of time.

2. The landscape is a potential function V (r, t)
determined by the depth of footprints within a
circle around space point r.

3. The walker chooses the next step according to
the combined effect of taking the shortest dis-
tance to the destination and the affinity to exist-
ing footprints around it (by going to where V is
lower).

In this work, a set of coupled partial-differential
equations is written down and solved numerically,
even though the simulation can be done without
them. The results match qualitatively and impres-
sively well with what are observed in the real world.
An example is shown in Fig. 17.

Ants as active walkers are pointed out by
Lam and Pochy [1993]. Ant trails with sponta-
neous branching laid down by ants foraging for
food are successfully simulated with active walkers
[Schweitzer et al., 1997]. More details are given in
[Helbing et al., 1997b].

4.2. Bacteria pattern formation

The growth of bacteria by migration and division in
“friendly” conditions yield colonies of simple com-
pact patterns. Under hostile conditions created in
a petri dish with very low nutrients, a hard sur-
face, or both, complex patterns are often observed

3The applicability of active walk in modeling social systems is recognized by Batty [1997], among others.
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Fig. 17. Pedestrian trails [Helbing et al., 1997a]. Active walk
simulation result (left) and the trail system on the university
campus of Brasilia (right).

[Ben-Jacob et al., 2000]. Some examples are shown
in Fig. 18. Bacteria patterns similar to those
found in nonliving systems were first reported by
Matsushita’s group in 1989 [Matsushita et al.,
1995].

Bacteria are sophisticated entities that can
detect the nutrient concentration near it, receive
and send out chemical signal, and move accordingly.
They are best modeled as active walkers with inter-
nal states, moving in a 2D space. In the work of
Kessler and Levine [1993], the nutrient concentra-
tion c(r, t), the landscape, is given by

∂c

∂t
= D∇2c − γc + (sources), (27)

which is solved numerically. Here, the source term
represents contributions from the active walkers,
called “bions” by the authors. Each walker at loca-
tion R has internal states such that

1. The walker remains in state 0 until it detects
c(R) > cT , a fixed threshold.

2. Once c(R) > cT , the walker changes to excited
state 1 and emits an amount ∆c over τ time
units. ∆c contributes to the source term in
Eq. (27) — the landscaping action due to the
walker.

3. After time τ , the walker changes to quiescent
state 2 and counts until time tR units before it
reverts to state 0. Until it reverts, it is immune
to further excitation.

Fig. 18. Examples of bacteria patterns formed under hostile
conditions [Ben-Jacob et al., 2000].
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The stepping rule of the walker is specified as
follows.

1. The gradient of c is computed in the ±x and ±y
directions for each walker at state 1 and com-
pared to a motion threshold m.

2. If any directional gradient is above m, the
walker tries to move one lattice spacing in that
direction.

3. It will not move onto a site already occupied, and
will continue attempting to move either until it
succeeds or until it progresses back to state 2.

Starting with walkers randomly distributed in space
and a central pacemaker giving out signals peri-
odically, simulations of the model show that the
walkers move and aggregate to form highly rami-
fied radial network, in agreement with experimental
observations.

Another AW model is provided by Ben-Jacob
et al. [1994], in which the active walkers perform
random-walk motion within a flexible boundary on
a triangular lattice. Equation (27) is replaced by

∂c(r, t)
∂t

= D∇2c(r, t)

−
∑

i

δ(r − Ri)min[cr, c(r, t)], (28)

where Ri is the location of the ith walker. The last
term implies that each walker consumes nutrients
at a fixed rate cr if sufficient food is available, and
otherwise consumes the whole available amount.

Walker i has an internal energy wi which
evolves according to

dwi

dt
= min[cr, c(r, t)] − e (29)

where e is a constant. For wi = 0, the walker does
not move; for wi > wT , a threshold, the walker
divides into two. Compared to the previous model,
the action of the walker here is simpler; also, the
walker always decreases c, never adding to it. Repro-
duction is a new feature here, too.

When a segment of the boundary confining the
walkers is hit by walkers Nc times, that segment is
moved one lattice spacing forward while the bound-
ary remains unbroken. (Nc represents the sub-
strate’s degree of hardness.) Thus the length of the
boundary can only increase with time. Simulations
of the model give ramified patterns, with the degree
of ramification depending on the two parameters

Nc and P [≡ c(r, 0) = const]. The pattern becomes
denser as P increases or Nc decreases, in agreement
with experiments.

4.3. Intelligent swarms

Much can be learned from ants as active walkers.
When taken seriously and applied to social and
business problems, many surprising and beneficial
results are obtained [Bonabeau & Théraulaz, 2000].

Take the traveling salesman problem as an
example, i.e. to find the shortest route to visit all N
cities without visiting any city more than once. It
is a computing heavy problem: For 15 cities, there
are billions of route possibilities. An AW solution is
to use a virtual ant to visit all cities, randomly at
first. The path is laid down with virtual pheromone,
such that the amount of the chemical is inversely
proportional to the overall length of the tour. The
process is repeated with a colony of ants. Since the
pheromone evaporates (a negative feedback), links
in short routes will eventually contain significant
more pheromone than those in long routes. The
pheromone concentration along the routes repre-
sents the landscape, and the ants, as active walkers,
prefer to go through those links with high concen-
tration of pheromone (a positive feedback). This
AW approach, when combined with local search
methods, out performs other heuristic methods in
solving the problem, even though it may not always
find the shortest route [Bonabeau et al., 1999]. The
same technique can be applied to other networking
problems, like the optimization problem in cargo
shipping business — for example, it did help South-
west Airlines to save money [Mucha, 2002].

4.4. Artificial societies

Active walk computer models were developed by
Epstein and Axtell [1996] to show that social struc-
tures and collective behaviors — such as group for-
mation, cultural transmission, combat and trade —
can arise spontaneously from simple interaction
of individuals. Unfortunately, no real data are
included in their book. The landscape in their mod-
els is called “sugarscape,” and the active walk-
ers, “agents.” ASCAPE is the platform to perform
such modeling [Inchiosa & Parker, 2002], which
can be downloaded from the Brookings Institution
website.4 Another platform is SWARM.5 Both are
free for noncommercial use.

4http://www.brook.edu/es/dynamics/models/ascape
5http://www.swarm.org
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4.5. Serial decision making
processes

Decision making is usually done serially. The pos-
sible choices (y) available at each decision step
(n) may assume different fitness (z), where n =
0, 1, 2, . . . But once a decision is made at a certain
step, the fitness of the options that come later could
be affected and hence modified, so that z = z(y(n)).
This process can be modeled by AW in a 3D dis-
crete space, (n, y, z). For simplicity, we assume that
only one option is actually picked at each decision
step. Arrange the options at each step along the y
direction, as a function of n; plot the correspond-
ing fitness along z; an active walker moves on the
(n, y) plane, with n increasing by one each time. As
the walker moves forward, the fitness landscape is
changed, affecting how the walker chooses its next
step. The walker’s location at step n in the 3D space
is given by (n, y(n), 0). In this model, the walker
actually jumps from one (y, z) plane to the next
(y, z) plane, and may have y(n + 1) �= y(n). Of
course, if needed, the option y could be generalized
to a multidimensional vector y.

Active walk models like this are those used
in the study of adaptive competition [Savit et al.,
1999] and evolution of financial market [Friedman,
2001]. Another example occurs in literature trans-
lation, suggested by Lu [1999]. Lu observes that
there is more than one way to translate a certain
sentence in a piece of literature such as Jane Eyre,
from English to Chinese. However, the choice is nar-
rowed and affected by the particular translation of
the previous sentence. The process is like that in
an AW.

4.6. Other applications

Active walk is employed by Lam et al. [1998] to
model increasing returns in economics. Schweitzer
[1998] uses AW to model the migration and eco-
nomic agglomeration in a system of employed and
unemployed workers, which respond to local wage
gradients. The spatiotemporal distribution of work-
ers is studied both analytically and by computer
simulations.

A recent interesting application of AW is due to
White and Harary [2004]. They construct graphs to
study mathematically how active walkers, such as
ants, can find the shortest paths in a maze by hav-
ing only local knowledge of the maze, which they
call “collective geodesics” property.

The applicability of active walks to educational
reforms in the European Union is discussed by Pyla
[2005].

5. Active Walks in History

History is the most important discipline of study
[Lam, 2002]. Yet, the link between history and
science is underdeveloped.

5.1. What really is history?

Science is the study of nature and a means to under-
stand it in a unified way. Nature, of course, includes
all material systems. The system investigated in his-
tory is a (biological) material system consisting of
Homo sapiens. Consequently, history is a legitimate
branch of science, like physics, biology, paleontology
and so on. In other words, history is not a subject
that is beyond the domain of science. History can
be studied scientifically [Lam, 2002].

By definition, history is about past events and
is irreproducible. In this regard, it is like the other
“historical” sciences such as cosmology, astronomy,
paleontology and archeology. The way historical
sciences advance is by linking them to systems
presently exist, which are amenable to tests. For
example, in astronomy, the color spectra of light
emitted in the past from the stars and received on
earth can be compared with those observed in the
laboratory; the identity of the elements existing in
stars is then identified. Similarly, the psychology,
thoughts and behaviors of historical players can be
inferred from those of living human beings, which
can be learned by observations, experimentations
and neurophysiological probes [Feder, 2005].

The system under study in history is a many-
body system. In this system, each “body” is a
human being, called a “particle” here; these par-
ticles have internal states (due to thinking, mem-
ory, etc.) which sometimes can be ignored. Each
constituent particle is a (nonquantum mechanical)
classical object and is distinguishable, i.e. each par-
ticle in the system can be identified individually.
This many-body system is a heterogeneous system,
due to the different sizes, ages, races . . . of the
particles.

A historical process, expressed in the physics
language, is the time development of a subset or
the whole system of Homo sapiens that existed dur-
ing a time period of interest in the past. History
is therefore the study of the past dynamics of this
system. Historical processes are stochastic, resulting
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256 L. Lam

(a) (b)

Fig. 19. (a) Statistical distribution of war intensities. Eighty-two wars from 1820 to 1929 are included; the dot on the hor-
izontal axis comes from World War I. The graph is a log–log plot; a straight line indicates a power law. (b) Distribution of
earthquake sizes in the New Madrid zone in the United States from 1974 to 1983 [Johnston & Nava, 1985]. The points show
the number of earthquakes with magnitude larger than a given magnitude m.

from a combination of contingency and necessity. In
modeling, contingency shows up as probability and
necessity is represented by rules in the model. The
situation is like that in a chess or soccer game. There
are a few basic rules that the players have to obey,
but because of contingency, the detail play-by-play
of each game is different. In principle, someone with
sufficient skills and patience can guess the rules gov-
erning historical processes, like those in a chess or
soccer game.

In some cases, these two ingredients of contin-
gency and necessity, through self-organization, may
combine to give rise to discernable historical trends
or laws. In other cases, either no laws exist at all
or the laws are not recognized by whoever is study-
ing them. Whether there actually exist historical
laws cannot be settled by speculations or debates,
no matter how good these speculations or debates
are. A historical law exists only when it is found
and confirmed. Furthermore, any historical law —
like that in physics — has its own range of validity,
which may cover only a limited domain of space and
time.

Yet most people, including many historians,
do not believe that any historical law could exist
[Gardiner, 1959]. They are wrong. Figure 19(a)
shows a historical law; it does exist. This power
law on the statistics of war deaths is due to

Richardson [1960]. Similar power laws are found
in the distribution of earthquake intensities, called
Gutenberg–Richter law [Fig. 19(b)], in the rank-
ing of city populations, and in many other sys-
tems [Zipf, 1949]. The fact that human events
like wars obey the same statistical law as inan-
imate systems indicates that the human sys-
tem does belong to a larger class of dynam-
ical systems in nature, beyond the control
of human intentions and actions, individually
or collectively. More historical laws are given
below.

5.2. Two quantitative laws and a
quantitative prediction in
Chinese history

China has a long, unbroken history, which is proba-
bly the best documented [Huang, 1997]. The dynas-
ties from Qin to Qing ranges from 221 B.C. to 1912,
with 31 dynasties and 231 regimes spanning a total
of 2133 years [Morby, 2002]. (A regime is the reign
of one emperor; a dynasty may consist of several
regimes.) Some of these dynasties overlap with each
other in time.

Let τR be the regime lifetime, and τD the
dynasty lifetime; both are integers measured in
years. The histogram of τR is found to obey a power
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Fig. 20. Log–log plot of the histogram of regime lifetime τR,
from 221 B.C. to 1912 in the Chinese history. The exponent
of the straight-line fit is −1.3. (Bin width of the histogram is
4 years.)

law (Fig. 20), with an exponent equal to −1.3. This
result implies that the dynamics governing regime
changes is not completely up to the emperors, sta-
tistically speaking, but share some common traits
with other complex systems such as those displayed
in Fig. 19. This is the first quantitative law about
Chinese history.

The second quantitative law is shown in Fig. 21,
where the lifetimes of 26 dynasties are arranged in
a monotonic decreasing order. Figure 21 is a Zipf
plot, with the largest τD assigned rank 1, the sec-
ond largest rank 2, etc. The same rank is assigned to
separate τD that is identical to each other, to ensure
that the curve is monotonic decreasing, i.e. no hor-
izontal parts, and hence there are less than 31 data
points in Fig. 21. They fall on two straight lines,
which I name the bilinear effect. What it means is
that (1) the “curse of history”, as Chinese dynasties

y = -25.63x + 328.87

y = -3.4779x + 94.191
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Fig. 21. The bilinear effect: Data points in a Zipf plot fall
on two straight lines, with a transition point at the crossing.
The data here are the lifetime of Chinese dynasties τD, from
Qin to Qing. The transition occurs at around τD = 59 years.
The longest τD = 290 years, the lifetime of Tang.

are concerned, does exist. (2) A dynasty can survive
every 3.5 years if it lasts 59 years or less; beyond
that, every 25.6 years — dynasty lifetime is discrete,
or “quantized.” (3) There is a transition point, at
around τD = 59 years, separating these two differ-
ent behaviors.

This is the phenomenon that a human entity, a
dynasty in this case, becomes stronger after exist-
ing for a period of time. The mere fact of survival
reinforces its strength, through adaptive learning,
restructuring or other means. Similar behavior is
known to exist in the lifetime of corporations or
biological species. What is surprising here is the
presence of two linear lines and a sharp transition
point.

The bilinear effect, exemplified in a Zipf plot,
is a general phenomenon found also in other human
affairs and complex systems. It constitutes a new
class of behavior in Zipf plots, apart from the two
well-known classes of power laws [Zipf, 1949] and
stretched exponents [Laherrère & Sornette, 1998].

Here is a quantitative prediction derived from
Fig. 21: Any dynasty after Qing, if exists, either (1)
would last 290 years or less, and fall more or less on
the two lines in Fig. 21, or (2) would end definitely
and exactly in the year 329.

Note that Fig. 21, in contrast to Fig. 20, is
not a statistical plot, and this prediction is not a
statistical prediction.6 As far as I know, no other
quantitative nonstatistical historical laws and pre-
dictions are known, to the historians or others. Note
that these two laws and the prediction concerning
Chinese history are model independent.

5.3. Modeling history by active walks

An important step towards the scientific study of
any subject is to pick the right tool to tackle it.
Historical processes are stochastic (i.e. with proba-
bility involved somewhere), resulting from necessity
and contingency. The kind of physics suitable for
handling many-body systems ingrained with con-
tingency is statistical physics. Furthermore, the his-
torical system is an open system with constant
exchange of energy and materials with the envi-
ronment and is never in equilibrium. Thus, for
history, the appropriate tool is the stochastic meth-
ods developed in the statistical physics of nonequi-
librium systems [Lam, 1998; Paul & Baschnagel,

6These two laws and the prediction in Chinese history were first presented by Lui Lam at the March meeting of APS, Montreal,
2004, and summarized in [Lam, 2006].
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258 L. Lam

1999; Sornette, 2000]. In particular, AW can be used
to model history. In fact, a common metaphor for
history is that it is like a river flowing; people talk
about the “river of history.” This metaphor is not
so off mark if the water flowing in the river is able
to reshape the landscape as it flows and the river
is allowed to branch from time to time under cer-
tain conditions. Active walk is a natural in match-
ing such a metaphor. It is then no surprise that a
whole class of probabilistic AW models are found to
be relevant in studying history [Lam, 2002].

For example, (1) the two-site AW model (see
Sec. 4 of Part I) is able to explain the real case in
economic history that an inferior product such as
the QWERTY keyboard [David, 1986] can actually
win out in the market [Lam, 2002]. Other examples
are the competition between Apple computers and
PC’s, as well as VHS and Beta videotapes.

(2) The active-walk aggregation (AWA) model
is able to shed light on the debate in evolu-
tionary history, initiated by Stephen Gould. The
question raised by Gould [1989] is that if life’s
“tape” is replayed, will history repeat itself and
humans still be found on earth? Gould’s answer
is “yes”; the AWA model says “maybe” [Lam,
1998]. It is “maybe” because if the world lies in
the sensitive zone (see Fig. 6), then the growth
outcome may not be repeatable; otherwise, it is
repeatable.

(3) An intriguing prediction in social history
was given by Fukuyama [1989], which asserts that
every human being needs two kinds of satisfac-
tion, namely, economic well-being and “recogni-
tion,” with the latter meaning respect by others.
Since only liberal democratic society can provide
these two satisfactions, argued Fukuyama, all soci-
eties will end up as liberal democratic societies,

Economical level (body)

Recognition (soul)

Liberal democracy

communism

military dictatorship

parental
free market

Fig. 22. Sketch of an active walk model for the evolution of
political systems.

given enough time. And that will be the end of
history, if history is understood to be directional
change in societal forms. A phenomenological AW
model with multiwalkers can be used to test this
prediction [Lam, 2002]. In this model, each country
is represented as an active walker, a particle, moving
on a common deformable landscape in a 2D space.
The problem will be to find out, under what condi-
tions, if any, all the particles will cluster together at
the location corresponding to a liberal democratic
society (Fig. 22). It is thus a problem of clustering
of active walkers on a 2D landscape. (See Sec. 7.4
for more details.)

5.4. History in the future

The importance of history can be seen, for example,
through its negative impact on human lives. Pow-
erful political leaders could mistake an unproven
historical hypothesis as firm theory, apply it to a
confined population and cause millions of death in
a few short years [Lam, 2002]. Another example is
the recent massive protests in China due to different
interpretation of past history involving two coun-
tries (Fig. 23). Yet, in spite of its importance, the
physical basis of history is unrecognized by most
historians. For instance, in the historiography text-
book The New Nature of History [Marwick, 2001]
the alleged “fundamental” differences between his-
tory and the sciences are listed:

1. Fundamental difference in the subject of study:
natural sciences concern natural and physi-
cal worlds; history concerns human beings and
human society, very different in character.

2. No controlled experiments by historians.
3. Historians develop theories and theses, but are

not concerned with developing laws and theories
like that in sciences.

4. History studies do not have prediction power.
5. Relations and interactions in history studies are

not expressed mathematically.
6. Historians report their findings in prose (articles

or books), not in terse research articles.

Unfortunately, all six points are wrong, for the fol-
lowing reasons.

1. As explained in Sec. 5.1, human beings and thus
human society are material systems, which are
part of the natural sciences. Human society share
same characteristics as other inanimate complex
systems, as demonstrated in Figs. 19–21.
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(a)

(b)

Fig. 23. Protests in China, April 2005. (a) “FACE HIS-
TORY” is the slogan on the left placard. (b) “PROTECT
DIAOYUDAO” is a historical issue also raised in the protests.
Diaoyudao, or diaoyutai, is a group of tiny islands in the East
China Sea. The “protect diaoyutai” movement was started by
overseas Chinese students in the United States at the end of
1970 [The Seventies Monthly, 1971].

2. Some physical disciplines like astronomy and
archeology also do not have controlled experi-
ments.

3. It is untrue that all historians are not concerned
with developing laws and theories in history.
Some tried, not very successfully, partly due to
their inadequate training in using scientific tools.
Historical laws do exist, as shown in Sec. 5.2 and
Figs. 19–21.

4. History studies, like that in Sec. 5.2, do have pre-
diction power.

5. Relations and interactions in history studies can
be expressed mathematically. An example is the
landscape theory of Axelrod and Bennett [1993]
to show how and why 17 European nations in
Second World War aligned themselves into two
large groups. The pairwise propensities between
nations are assigned numerical values, and the
configuration energy in the (fixed) landscape is
given in equations.7

6. Historians do report their findings in research
articles, terse or not. That is why there exist
quite a number of history journals, such as
History and Theory and American Historical
Review. It is true that many historians still skip
the peer-reviewed journals and directly report
their findings in books — not a healthy thing for
the history discipline, epistemologically speaking
[Lam, 2002]. These are actually popular history
books, like the popular science books written
by physicists.8 In the case of the history pro-
fession, there are at least three reasons behind
this practice. (1) Many research results in his-
tory are still at the data gathering and empirical
analysis stage, not very technical and can be pre-
sented in narratives. (2) There is enough num-
ber of readers out there who are willing to pay
to find out what happened to their ancestors or
their own kind in the past. In contrast, not that
many will pay to learn what happened to the
electrons. Bad for physics. (3) Historically, before
history became a professional discipline in the
universities in the second half of the nineteenth
century, historians had to earn their living by
writing books that are readable and saleable to
the public [Stanford, 1998]. In other words, writ-
ing popular history books was a survival need for
historians, a tradition carried over up to now.

These errors are due to misunderstanding of the
nature of science, and the neglect of the material

7See [Galam, 1998] for a comment on this work, and the following response by the original authors.
8The unique characteristics of popular science books and how to integrate them into science teaching are discussed in [Lam,
2001, 2005b, 2005c].
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basis of the historical system itself. The inadequate
science training received by historians, past and
present, explains why they failed to find histori-
cal laws. For example, the Chinese dynasty data
have been in existence for 93 years; the plots in
Figs. 20 and 21 could be carried out by hand with-
out computers, and even by high school students.
But unless one knows about power laws and the
existence of Zipf plots, there is no motivation to
do so. And these are current topics in the study
of complex systems. Ironically, Zipf plots were first
done by George Zipf (1902–1950), a Harvard lin-
guist, with data from the humanities and social
sciences.

Recently and surprisingly, while the importance
of history is well recognized in Hong Kong, a his-
tory department is threatened with closure because
it fails to attract enough number of students [Xie,
2005]. Anyway, it is time for all history depart-
ments to revamp their curriculum, by increasing
the mathematical skills of students, going beyond
story telling and making history research more
technical and scientific, and creating a course on
the physics of history (or histophysics [Lam, 2002,
2004]). This revamp will help current students to
become better historians after they graduate, and
may appeal to a new class of incoming students
who have a technical background but feel attracted
more to the humanities than the traditional
sciences.

6. Physics, Social Science and
Complex Systems

The conventional wisdom that “science consists
of natural science and social science” is wrong.
The correct answer is provided. Ten lessons from
physics relevant to social science and complex sys-
tems research are given.

6.1. What is science?

Social science consists of anthropology, business
and management, economics, education, environ-
mental science, geography, government policy, law,
psychology, social welfare, sociology and women’s
studies.9 Social science is thus the study of the
few-body or many-body problem of living Homo
sapiens (excluding the medical aspects), while his-
tory is mostly about dead Homo sapiens. Obviously,
the two are related, just as to understand annihi-
lated electrons it helps to understand existing, mov-
ing electrons. Similar to the case of histophysics,
physics can and should be used to study social sys-
tems, resulting in sociophysics [Montroll & Badger,
1974; Galam, 2004; Stauffer, 2003].10

As explained in Sec. 5.1, natural science is
the study of all material systems. Anything —
social science in particular — connected with Homo
sapiens, a material system, is a legitimate part
of natural science. Consequently, the usual under-
standing that

science = natural science + social science (30)

is simply wrong. The correct expression should be

science = natural science
= nonliving systems + living systems (31)

whereas

living systems = nonhuman biological systems
+ human beings (32)

Combining Eqs. (31) and (32), we have

science = natural science
= physical science + social science
> social science (33)

where physical science includes not just physics, but
biology, chemistry, etc.11

9See http://www.sosig.ac.uk/. Generally speaking, history together with philosophy, religions, languages, literature, art and
music make up the humanities. On the other hand, while history is listed in the humanities at Stanford University, it is
included in the social sciences at UC Berkeley and San Jose State University.
10A popular account of the physics of society is given by Ball [2004].
11How do humanities fit in? The aim of literature, music and art in the humanities is to stimulate the human brain — through
arrangement of words or colors, sound or speech, or shape of things — to achieve pleasure and beauty, or their opposites, via
the neurons and their connecting patterns [Pinker, 1997]. The brains, some sort of computer, of the creator and the receiver
at the two ends of this process are heavily involved. The scientific development of these disciplines as complex systems is at a
primitive level, and that is why they are separated from the social sciences, which are at an intermediate level. Linguistic is
the study of the tools involved in written words and speeches, supporting the three disciplines mentioned above. History, by
its nature, belongs more to the social sciences. With this understanding, Eq. (33) could be extended to read: science = natural
science = physical science + social science + humanities. Or, equivalently, science = physical science + human science, where
human science = social science + humanities. In short, everything under the sun and not just under the sun — everything in
the universe — is a legitimate topic in science, unified at the fundamental level [Wilson, 1998].
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6.2. Ten lessons from physics

Since a human being is the ultimate complex sys-
tem, it is not hard to see that social systems are also
complex systems. Complex systems, as a research
field, cut across every discipline, and allow the par-
ticipants to reach others far from their own back-
ground [Lam & Naroditsky, 1992; Cowan et al.,
1994]. Apart from the universal gravity that con-
nects a mass to all other masses in the universe,
complex system study is probably the next powerful
thing that allows this to happen to the participants.

However, complex system scientists have differ-
ent backgrounds, coming respectively from physics,
chemistry, biology, geology, ecology, economics, psy-
chology and computer science, to name a few. Per-
haps because of this diversity in background and
training, there are sometimes unavoidable miscon-
ceptions and confusion carried by some newcomers,
and even some practitioners, in this field. Take, for
example, the distinction between fractals, chaos and
complex systems. These are three very different con-
cepts, even though there are overlaps between them
[Lam, 1998, 2000]. In particular, a complex system
need not be a fractal or chaotic. A human body is
a complex system; the whole body is not fractal or
chaotic, even though some components inside the
body are. For instance, the heartbeat in a normal
person is chaotic; the bronchial tree is a fractal.

Also due to their diverse background, some of
these scientists in complex systems may not be
aware of the valuable lessons learned in physics
— through hundreds, if not thousands, years of
research, which are common knowledge among
physicists, at least the good ones. Here are ten such
lessons, written with graduate students in mind.

1. Physics succeeded not because the systems
under study are simple, but because we make
simplifications or approximations. Yes, elec-
trons are simpler than humans. But an elephant
is not simple. Physics succeeded because we are
very daring in making simplifications. In New-
ton’s second law of motion, F = ma, the mass
m is that of a point particle, i.e. a particle with-
out any size. There is no such particle in reality;
it is a simplification. When we drop an elephant
from a plane, we treat it like a point mass and
use F = ma. The same goes to planets when
we calculate their orbits.

2. “The simpler the better” (TSTB) is our
motto.12 We use toy models. A toy model
is known to be unrealistic but may contain
an ingredient that is essential to the phe-
nomenon we want to understand. The Ising
model, invented by a graduate student named
Ising to explain phase transition in a ferromag-
net, is extremely simple and contains only one
parameter. It works, at least in 2D and 3D.
And it continues to provide surprises for many
decades. (Historically, when the Ising model
was proposed, there were no real materials that
matched it — those were discovered much later.
Nature is kind to us, in this case. But that is
beyond the point.) By working with many toy
models and studying how they behave, we find
out what the essential ingredient is. In contrast,
social scientists tend to use complicated models
from the beginning.

3. We work at steps, one step at a time. We always
try to solve and understand a model in 1D,
before we move to 2D or 3D. If the model con-
tains two ingredients, we will keep one ingre-
dient first, study it thoroughly, before we add
in the second ingredient. This procedure is like
doing experiments — you should tune only one
parameter each time, otherwise you will not
know which parameter causes the changes.

4. We tackle a problem at multiple levels. For
example, the flow of water is studied at the
empirical level by the Bernoulli’s equation,
at the phenomenological level by the Navier–
Stokes equation, the microscopic level by Monte
Carlo simulations, and finally, at the artifi-
cial level by lattice gas automata [Lam, 2002].
The phenomenological level is worth empha-
sizing since it is less used by social scientists,
especially after they have access to powerful
computers. Computers were invented in the for-
ties in the last century. Computational physics
emerged in the fifties and sixties with main
frames, and flourished in the seventies and after
personal computers became widely available.
Before the forties, without the help of any com-
puter, physics had already matured. This was
due largely to the success of phenomenological
theories, which do not require information
about the components making up a system. For
example, the Navier–Stokes equation is derived

12The TSTB principle is at the core of modern science, which is also called Occam’s razor: “What can be done with fewer is
done in vain with more.”
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without knowing that water is made up of
molecules. (The AW models in Sec. 5.3 are phe-
nomenological models.)

5. We understand that not all models have equal
rights. We discard those that are not supported
by reliable experiments, unless they can still
provide insights. To argue that any computer
model created by humans match reality some-
where — if not in our universe, in parallel uni-
verses — is not helpful. First, parallel universes
may or may not exist. Second, even if they
existed, research is about the wise use of our
energy and time and the distribution of fund-
ing. We do not do a problem simply because it
is doable.

6. We know that the reduction method (work-
ing from bottom up) is always valid, in prin-
ciple. But we still often do physics at one
level up, because of practical considerations.
For instance, working from pairwise Coulomb
interaction between electrons, we can calcu-
late the properties of metals, but that does
not prevent us to work with the elementary-
excitation picture because it is efficient to
do so and a clear physical understanding is
gained.

7. “The whole is more than the sum” in nonlinear
complex systems is a well-known fact in physics.
If the sum means the properties of isolated,
individual components in the system adding
together, the whole could be larger than the
sum when their mutual interactions are taken
into account. The whole usually refers to emerg-
ing properties which are not foreseen from the
sums, either because the mutual interactions
are neglected, or, if they are included, we are
not smart enough to foresee them. No holism is
called for.

8. We adhere to data. No model or theory is
established unless they are compared with and
supported by reliable data. Many computer
simulations in social science forsake this route,
and end up as computer “games” [Bankes,
2002].

9. “Simplicity can lead to complexity” is well pro-
ven in physics; it is redundant to reestablish
that in the study of social sciences or complex
systems. For example, a collection of electron
pairs could lead to superconductivity. In fact,
almost everything interesting and important in
the world, humans included, come from a sim-
ple hamiltonian of electrons and ions, with very

simple Coulomb interactions [Laughlin & Pines,
2000].

10. In physics and elsewhere, experiments are done
with real apparatuses. Calling the runs of a
computer code written for a simulation model
experiments does not make the simulation
model more respectable or more real. It con-
fuses students, if not the scientists themselves.

Incidentally, two important tools used to study
stochastic systems were first employed in the social
sciences, not physics. One is the application of
random walks (see Sec. 2.2 of Part I); the other
is probability. Probability was first introduced to
understand gambling in the seventeenth century,
and later as a foundation for the insurance busi-
ness — a branch of economics or social sciences. The
use of probability in physical sciences came much
later, in the year 1859, in the forms of Maxwell’s
velocity distribution and Darwin’s evolution theory
[Lestienne, 1998]. Furthermore, sociology was orig-
inally called “social physics” by its founder, Comte
(1798–1857) [Timasheff, 1957].

These examples illustrate the fact that all sys-
tems in nature, living and nonliving, are unified at
a fundamental level — which was well recognized
by the Greeks, about 2600 years ago. Plato and
Aristotle may get the details wrong, but they pur-
sued knowledge as a whole. In short, in the study of
history, social systems and complex systems, let us
be inspired by the Greeks, guided by physics, and
equipped with statistical physics.

7. Open Problems

The major open problem in AW is to develop gen-
eral methods to study theoretically the walk of a
single active walker (like what is done in random
walk [Weiss, 1994; Hughes, 1995]) and the collec-
tive behavior of multiwalkers, and the time evolu-
tion and structure of the corresponding landscape.
Barring that, here are some doable open problems,
presented as research projects.

7.1. Balls rolling down a soft
inclined plane

The model: Start with a triangular lattice on a soft
inclined plan. Allow a ball to roll down from a fixed
lattice site at the top line. Then,

1. It can go to either the left or the right lattice
site, one line below.
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2. When it passes a lattice site below, it makes
a dip of depth 1 at that site. Then it goes
down another line below with the same rule
#1, and reaches the bottom line far down
eventually.

3. The probability for the ball to jump from site i
to a site j below is given by Pij , which is pro-
portional to exp[β(V (i) − V (j))]. Here, β is the
inverse “temperature,” with 0 ≤ β ≤ ∞. (This
is a BAW model.)

4. After the first ball reaches the bottom and
removed, release a second ball from the same
initial site at top, and so on, until N balls are
released, one at a time.

Note that we are not talking real balls here; they
are just massless point particles.

The question is, What is the spatial distribution
of the N balls at the bottom line when N is large or
approaching infinity? We have partial answers. We
know the answer in the two extreme cases.

1. For β = 0, the model becomes a downward ran-
dom walk model — the softness of the inclined
plan has no effect. The distribution of the N balls
is a Gaussian curve [Ambegaokar, 1996].

2. For β = ∞, it is the deterministic (DAW)
model. Every ball will follow exactly the same
path as the ball before it, and all the balls will
end up at one bottom site. The distribution at
the bottom line is thus a delta function (for
N → ∞), with the delta located at a bottom
site. This site could be any of the sites at the
bottom, picked by the balls with a Gaussian
probability.

But what is the answer for 0 < β < ∞? To solve
it, write a computer program to find the answer
first, with varying β. Then try to find the answer
analytically.

The significance of this problem: The Gaussian
curve is very fundamental, and is related to down-
ward random walk. The model proposed here could
be the simplest 2D AW model as AW is con-
cerned, like the hydrogen atom problem in quantum
mechanics. And no real AW model, with cou-
pled equations and no approximation, has been
solved yet. (The two-site AW model is solved
by mapping it to a 1D site-dependent proba-
bilistic walk, and then solved as a random walk
problem.) This model can be compared with the
results from a desktop experiment, not yet done by
anybody.

7.2. Fractal surfaces in a Boltzman
active walk

A single active walker, in a 1D BAW walk, changes
an initially flat surface into a fractal surface. In
this model the walker, at every step, decreases the
surface on its two adjacent sites and increases the
height at its own site, with the average height
of the surface conserved. The landscaping func-
tion W (r) is given by W (0) = 2, W (±1) =
−1, and W = 0 otherwise. Computer simulation
results [Pochy et al., 1993] show that the scal-
ing properties of the surface thickness σT belong
to a new class differing from those of other ther-
mally activated models [Family & Vicsek, 1991].
For example, σT is independent of the system
size L, but is a function of the “temperature” T .
Specifically,

σT (L, t) ∼ T γg

(
t

T γ/β(T )

)
(34)

where γ = 0.48; g(x) = const for x 
 1, and
g(x) = xβ(T ) for x � 1. Here β is not “inverse tem-
perature” but the exponent defined by σT ∼ T β,
and t is the time. Equation (34) has the same form
as that in most other models [Barabási & Stan-
ley, 1995], except that on the right-hand side, T
replaces L and β is not a constant but temperature
dependent.

The challenge is to develop a theory to explain
this scaling law. The master equation approach
for surface evolution or other methods collected in
[Family & Vicsek, 1991] should be consulted. After
that, do the same for the LDL when W (0) is varied
across 2 [Lam, 1997].

7.3. Microscopic simulation of
surface-reaction filamentary
patterns

In the surface-reaction filamentary patterns induced
by a sequence of dielectric breakdowns presented in
Sec. 5 of Part I, the mechanism is very complicated
and involves the thermohydrodynamics of the liquid
in the cell and other ingredients. The AW modeling
in Sec. 5.4 there is a phenomenological description.
In principle, the AW models and the parameters
used can be derived from one level down, at the
molecular level.

My suggestion is to start from lattice gas
automata [Chen et al., 1991]; more specifically, from
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264 L. Lam

Fig. 24. Formation mechanism of a ring in surface-reaction
filamentary patterns. Temperature T in the yellow region sat-
isfies Th < T < Tc, so that (invisible) dielectric breakdown
first occurs there; the pink region appears later with T > Tc

where the (visible) ring is formed.

the lattice Boltzmann model [Shan & Chen, 1993]
with heat sources added. The filament is where
chemical reactions occur, which involve the chemi-
cal deposit on the two inner surfaces of the cell. Let
us say that chemical reaction occurs at a thresh-
old temperature Tc, and the dielectric breakdown
at a threshold temperature Th. These two processes
release heat of amount Qc and Qh, respectively, as
they occur. We do not know exactly the value of
these temperatures. But the existence of a ring from
which several filaments branch out (see Figs. 19 and
20 of Part I) indicates that Tc > Th, as explained
in Fig. 24.

Use a lattice Boltzmann model to describe the
fluid flow in 2D. Assign a temperature T at the
center so that Th < T < Tc. Heat Qh is added to
this spot, causing the liquid around it to change
into gas; the gas expands and pushes liquid away.
Temperature at all lattice points is checked. At
the location where T > Th, heat Qh is added.
Similarly, at location with T > Tc, heat Qc is
added. The hydrodynamics of liquid and gas, and
the transition from liquid to gas will be handled
by the lattice gas automata. Numerical simulation
should show where the chemical reactions occur,
the formation and movement of bubbles around
these locations, and the time-dependent heat
and temperature distributions throughout the 2D
space.

When the cell fluid is air, the case is simpler
since the liquid–gas phase transition is absent. This
problem could be handled first.

7.4. Active walk modeling of the
end of history problem

In the AW model proposed in Sec. 5.3 to study the
end of history problem, active walkers represent-
ing different countries are allowed to move in a 2D
space. The y axis of this space is “economic sat-
isfaction,” which could be the “index of economic
well-being” measured for different countries [Doyle,
2002a]. The x axis is “recognition,” represented per-
haps by the “happiness index” surveys taken from
various countries [Doyle, 2002b]. These two indices
for each country at different years give the trajec-
tory of the corresponding particle in the 2D plane.
At each point in the plane, a fitness potential is
defined. The movement of each particle will change
the fitness landscape and influences the movement
of other particles. The stepping rule and landscap-
ing rule of the AW have to be inferred from the
existing trajectories. The future can then be pre-
dicted. A similar problem with simpler rules has
been studied before in physics in another context,
and the clustering of active walkers indeed occurs
(see Sec. 2.1.2).

7.5. Cellular neural network and
active walk

Cellular Neural Network (CNN) was proposed by
Chua [1998] as a paradigm and tool to investigate
complex systems, with broad applications in image
and video signal processing, robotic and biological
visions, higher brain functions, as well as pattern
formations, autowaves, scroll waves and spatiotem-
poral chaos. Technically, CNN is a spatial arrange-
ment of locally-coupled cells, where each cell is a
dynamical system which has an input, an output,
and internal states evolving according to some pre-
scribed dynamical rules.

As such, CNN is a versatile and suitable plat-
form to perform the calculations in AW. The
internal states of a cell in a CNN could be the
presence/absence of an active walker at the cell
location, plus the velocity and any internal state of
an active walker, as well as the height of the land-
scape function at that location. The input and out-
put of a cell in a CNN come from the stepping rule,
landscaping rule and the landscape’s self-evolving
rule — the three basic ingredients in an AW (see
Sec. 3 of Part I), and the rules governing how the
internal states of an active walker are changed in a
specific application.
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(a) (b)

Fig. 25. Dense radial morphology, from active walk to cellular neural network. (a) A circular dendrite produced by CNN
starting from a seed at the center (from book cover of [Chua, 1998]). (b) Similar dendrite from the PAW model, starting with
four active walkers close to the center, with branching. (A similar dendrite is reported in [Lam et al., 1992], where Vc should
be 500 in the caption of Fig. 11.) Here, a square lattice of size 200 × 200 is used. The initial landscape is a cone with height
Vc = 500 at the center, and zero when it intersects the boundary of the lattice. The landscaping function is W1, with W0 = 5,
r1 = 12, r2 = 15; branching factor γ = 0.5. See [Lam, 1997] for definition of the parameters.

That CNN and AW can indeed achieve the
same results is demonstrated in Fig. 25, showing
the deep link between these two paradigms. The
proposal is to use CNN to do the calculations called
upon in various AW applications.

8. Discussions and Conclusion

Active walk has been applied successfully in model-
ing simple and complex systems. Whenever the sys-
tem under study involves a sequence of choices and
the choice at each step will affect the next choice,
AW is applicable. (Decision making, management,
career path, history and psychological processes
are examples from the social sciences.) The land-
scape in the AW is the space of possible choices
or states. If there is a metric (i.e. distance between
the states is defined) in this state space, one can
talk about neighborhoods of states, which is the
case in most of the applications presented in this
review. On the other hand, if there is no metric in
the state space, one can still talk about connections
between the states; this is the case of networks (see
Sec. 4.3).

The landscape used in most applications of AW
is a linear medium, in the sense that the land-
scaping action of the walker is linearly superposed
to the existing landscape, or that the landscape
could decay through diffusion described by a lin-
ear equation. However, it need not be so. The
landscape could be a nonlinear medium, which is
guaranteed to give rise to many surprising effects
not yet explored.

Protein folding is very fast and is affected
by the solution in which the protein is embed-
ded [Creighton, 1972]. However, in the “confor-
mational energy funnel” description [Frauenfelder
et al., 1991] of the folding process, a particle (repre-
senting the conformation assumed by the protein)
is allowed to cascade down a fixed conformational
energy landscape — the presence of solution is com-
pletely ignored. Yet it is precisely the solution that
allows distant parts of the protein to communicate
with each other. A more realistic model will have
the particle replaced by an active walker; that is, the
local energy landscape is modified in the presence
of the particle — perhaps with local energy barriers
lowered or disappearing — leading to a much faster
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process of downward cascading, and hence shorter
time in protein folding. In other words, the funnel
is now a deformable funnel, modified by the action
of the particle.

Nature employs AW a lot. Apart from the many
examples already mentioned, there is another one
here. In general relativity, gravity results from the
deformation of a space-time surface dragged along
by the particle — an active walker.13 It remains to
be understood why Nature seems to prefer a poten-
tial theory, not just for elementary particles but
even for complex systems, and whether some basic
symmetry principles (like the gauge symmetry) are
associated with the potential in these latter cases.
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