Single Subject Designs

ScWk 240 Week 8 Slides

Group vs. Single Subject Designs

There are two broadly defined approaches to experimental research: group designs & single-subject designs

Both approaches apply components of the scientific method to their approach to research

The difference between group and single-subject designs lies in the manner in which the principles of the scientific method are put into operation in designing studies Single-Subject Designs -- also called: Single Case and Single System Designs

Uses of SSD's and SCD's in Social Work

Requirements for SSD/SCD's

Target problem identification (DV) Quantification of data Obtaining baselines Graphic display of data

Designs(AB, ABAB. ABC/ABCD) and Examples

Time Series Designs and Examples

External Validity of SSD/SCD's

Use of SSD/SCD's Designs in SW

- Logic of time-series design
- Also called single-subject/singlesystem design, and N=1 studies
- Often the most relevant research topics for clinical practitioners
- Major limitations: Sample Sizes are small (usually 1) and problems with external validity

Setting Target Problems

- Target problem(s):
 - Decide desired outcome (=DV) to be measured
 - Positive or negative indicator?
 - Should occur frequently enough

Developing Measurement Strategies

- Target problem(s)
 - Who will measure it? (1) self-monitoring,
 - (2) practitioner, (3) significant others
 - Sources of data: (1) self-report scale,
 - (2) direct observation, (3) available records
 - Triangulation with multiple measures and observers are strongly preferred

Quantification of Data

a) Frequency

b) Duration

c) Magnitude

Obtaining Baseline Phase

- Repeated measures before the intervention (=control phase)
 - Attributes of a good baseline:

 Minimum of 5-10 measurements
 Stable
 Problem is not nearing resolution before the intervention

Celeration Lines/Charts

- Standardized method for charting and analyzing how frequency of behavior changes over time
- Various Standard Charts: Session/Daily/Weekly/Monthly/Yearly
- Consistent Display of Celeration (change)
- Acceleration = increasing performance
- Deceleration = decreasing performance

Interpreting Graphically Displayed Behavioral Data

- Visual analysis
 - Did behavior change in a meaningful way?
 - If so, to what extent can that change in behavior be attributed to the independent variable?
 - Identification of
 Variability
 - Level
 - Trend

Examples of Baseline Measures

Figure 14-4 Alternative Baseline Trends

Baseline and Intervention Phases

Figure 14-5 Graph of Hypothetical Outcome after Extending a Baseline with an Improving Trend (AB Design)

Baseline and Intervention Phases

Figure 14-6 Graph of Two Hypothetical Outcomes with an Unstable Baseline (AB Design)

Figure 14-7 Graph of a Hypothetical Outcome Supporting Intervention Efficacy with an Improving Baseline (AB Design)

Graphic Display of Data

- X axis: (horizontal)
- Y axis: (vertical)
- Data points
- Labels: Baseline/A Phase,

Intervention phase/B Phase

Interpreting Graphically Displayed Behavioral Data

• Read the graph:

- Figure caption
- Condition & axis labels
- Location of numerical value & relative significance of scale breaks
- Visually track each data path:
 - Are data paths properly connected?
 - Is the graph distorted?

AB Design

- The basic and simplest design
- One baseline phase & one intervention phase
- Advantage(s):
- Disadvantage(s):
- Retrospective baseline

ABAB Design

- Withdrawal/reversal design
- Advantage(s):
- Disadvantage(s):

ABAB Design (Examples)

Figure 14-8 Graph of Hypothetical Outcome of ABAB Design Supporting Intervention Efficacy Despite Failure to Obtain a Reversal during Second Baseline

Multiple-Component Designs (ABC, ABCD)

Add a third or fourth type of intervention

Caution: carryover effect, order effect, irreversibility effect, history

Example of Multiple Component Design

Figure 14-14 Graph of Hypothetical Outcome of Multiple-Component (ABCD) Design, with Unclear Results

Replication

Replication can enhance both internal and <u>external</u> validity.

Be prepared for practical obstacles

Time Series and Related Designs

Notations:

X = introduction of stimulus, intervention, or treatment

O = observation/measurement

Time-series design 0 0 0 0 0 X 0 0 0 0 0

Examples of Time Series Projects

Pattern 2

Pattern 1

Pattern 3

Figure 12-3 Three Patterns of Number of Time-Outs in a Longer Time-Series Perspective

External Validity

- Generalizability
- Representativeness of sample, setting and procedures
- Sampling and survey research