METR 130: Lecture 2

- Surface Energy Balance
- Surface Moisture Balance

Spring Semester 2011 February 8, 10 & 14, 2011

Reading

• Arya, Chapters 2 through 4

- Surface Energy Fluxes (Ch2)
- Radiative Fluxes (Ch3)
- Soil Fluxes, Soil Temperature, Soil Temperature Transport Eq. (Ch4)

• Arya, Chapter 12.1 – 12.2

- Surface humidity fluxes (evaporation, evapotranspiration)
- Soil Moisture & Soil Moisture Transport Eq.
- Other stuff to come or ref'd in later slides ...

Why Study Surface Energy (SEB) & Moisture Balance (SMB)?

- Vertical fluxes of heat and moisture to ABL depend on the amount of heat and moisture at the surface
 - Surface Temperature, T_0 (alt. surface potential temperature, θ_0)
 - Surface Specific Humidity (q₀)
 - Surface Soil Moisture Content (η_0)
- Stability of ABL (which affects all ABL variables and properties) in large part determined by surface temperature (T0) via SEB and SMB
- In models, the surface is the "lower boundary conditions" of the model

Simple case to introduce some basics things ...

(Surface fluxes over water)

 T_0/θ_0 are constant, not f(t). For example, specified from SST observations. This is what is typically done in NWP models, since only a short term forecast is needed (~ days). However, what about in climate modeling? Sensible Heat Flux = $H_s = -\rho_a c_p C_H U_a (\theta_a - \theta_0)$

Moisture Flux = E = $-\rho_a C_Q U_a (q_a - q_0)$

Latent Heat Flux = $H_L = \lambda E = -\lambda \rho_a C_o U_a (q_a - q_o)$

Momentum Flux = $\tau_0 = -\rho_a C_M U_a^2$

where C_H , C_Q and C_M are turbulent vertical exchange coefficients for heat, moisture and momentum, respectively. These coefficients are in turn functions of stability, and therefore θ_0 . They are unitless.

Units ...

Sensible Heat Flux = H_S = - $\rho_a c_p C_H U_a(\theta_a - \theta_0) \rightarrow (kg_{air}/m^3) (J/kg_{air} - K)(m/s)(K) \rightarrow J/(m^2 - s) \rightarrow W/m^2$ Moisture (Evaporative*) Flux = E = - $\rho_a C_Q U_a(q_a - q_0) \rightarrow (kg_{air}/m^3) (m/s)(kg_{vap}/kg_{air}) \rightarrow kg_{vap}/(m^2 - s)$... as an equivalent liquid water depth. Set kg_{vap} to kg_{wat} and divide by density of water (ρ_w) $\rightarrow [kg_{wat}/(m^2 - s)] / [kg_{wat}/m^3] \rightarrow m_{wat}/s \rightarrow mm_{wat}/day \text{ or } in_{wat}/day$

<u>Latent Heat Flux</u>^{*} = $H_L = \lambda E = -\lambda \rho_a C_Q U_a (q_a - q_0) = (J/kg_{vap})(kg_{vap}/(m^2 - s)) \rightarrow W/m^2$

... where λ is the latent heat of vaporization*

 $\underline{\textbf{Momentum Flux}} = \tau_0 = -\rho_a C_M U_a^2 \rightarrow (kg_{air}/m^3) \text{ (m}^2/s^2) \rightarrow (kg_{air}/ms^2) \rightarrow [kg_{air}m's)] / [m^2-s]$

*This assumes moisture flux is due to evaporation (or condensation if negative), and therefore λ represents the latent heat of vaporization/condensation. If surface is ice or snow covered, then moisture flux would be as sublimation (or deposition if negative), and λ would represent the latent heat of sublimation/deposition.

Surface Energy Balance (Arya Chapter 2)

Surface Energy Balance over Land

Surface Energy Balance

(Sign Convention of Terms)

Radiation

- Solar (R_s): Positive Downwards
- Downward Longwave ($R_{L\downarrow}$): Positive Downwards
- Upward Longwave ($R_{L\uparrow}$): Positive Downwards
- Net Radiation (R_N): Positive Downwards
- Sensible Heat Flux (H_s): Positive Upwards
- Latent Heat Flux (H_L): Positive Upwards
- **Ground Heat Flux (H_G)**: Positive Downwards

 <u>towards</u> surface
 Positive <u>away from</u> surface

Positive

Typical Sign of SEB Fluxes: Day vs. Night (Arya Figure 2.1)

Fig. 2.1 Schematic representation of typical surface energy budgets during (a) daytime and (b) nighttime.

Remaining Figures (Arya Chapter 2)

Figure 2.3 (dry lake bed, desert): H_L essentially zero, only H_s and H_G .

Figure 2.4 (barley field, low vegetation): Large H_L compared to H_s . Both surface evaporation and plant transpiration are occuring ("evapotranspiration").

Figure 2.5 (Douglas fir canopy): ΔH_c accounted for; combined with H_g in plot.

- Seasonal course of R. due to Sun-Earth geometry
- Moist climates feature near • balance of $R_{c} \sim LE$
- Dry climates feature near balance of R ~ H
- Others are intermediate •
 - Spring vs fall in Texas
 - Summer vs spring and fall in Wisc
- Why is G small everywhere?

Bowen Ratio

• "Bowen Ratio" (B) is the ratio of sensible heat flux to latent heat flux,

$\mathsf{B} \equiv \mathsf{H}_{\mathsf{S}}/\mathsf{H}_{\mathsf{L}}$

- Concept is most meaningful during daytime conditions (R_N , $H_S \& H_L > 0$)
- Key Question: How much of available energy for atmospheric fluxes ('R_N H_G') goes to sensible heat vs. latent heat?
- Typical values ...
 - Semiarid regions: 5
 - Grasslands and forests: 0.5
 - Irrigated orchards and grass: 0.2
 - Sea: 0.1

SEB Equation

(In terms Bowen Ratio)

 $H_{L} = (R_{N} - H_{G})/(1+B)$

```
H_{s} = (R_{N} - H_{G})/(1+B^{-1})
```

- Homework: Derive above equations on your own ...
- Equations can be used to determine H_s or H_L in cases when measurements of these are not available.
- In this case, a constant ratio H_G/R_N is often assumed. Literature supports a range 0.1 – 0.5 (high end of range for night, low end for day).

Radiative Fluxes: Arya Chapter 3

(Read 3.1 through 3.3 to refresh on radiation theory, taught in METR60/61)

Schematic

Solar Radiation

What does R_s depend on?

- Sun angle (time of day & time of year & location on globe)
- Cloud (aerial coverage, LWC, ice, type, height, fog)
- Aerosols (dust, sand, haze, sulfate, smoke, etc ... in atm.?)
- Water vapor in atmosphere (why?)
- Surface albedo (soil type, vegetation, ice, snow, concrete, etc ...?

Longwave (Terrestrial) Radiation

What does $R_{L\downarrow}$ depend on?

- H₂O vapor, CO₂, CH₄ ("greenhouse gases") content of atm.
- Cloud (aerial coverage, LWC, ice, type, height, fog)
- Atmospheric Temperature as f(z)
- A simple empirical expression (Swinbank, 1963): $R_{1\downarrow} = 0.94 \times 10^{-5} \sigma T_a^{-6}$.
- Homework: Does above expression account for all of the above factors determining $R_{L\downarrow}$? If so, how? If unsure, how would you find out?

What does $R_{L\uparrow}$ depend on?

- Surface Temperature
- Surface Emissivity

$$- R_{L\uparrow} = \epsilon_0 \sigma T_0^2$$

Figures 3.4 & 3.5

(Arya Chapter 3)

 R_N large and positive during mid-day hours, more or less proportional to R_S . R_N smaller and negative during night. Not as much diurnal variation in $R_{L\downarrow}$ (why?)

Measurements of "Skin Temperature" T_{skin}

- T_{skin} is a synonym for surface temperature often used when determined from radiometer measurements.
- From measured upward longwave radiation from surface $T_{\rm skin}$ can be determined from ...

$$T_{skin} = (-R_{L\uparrow meas}/\sigma)^{1/4}$$

• Note in this case $R_{L\uparrow meas} = R_{L\uparrow} - (1-\epsilon_0)R_{L\downarrow}$ since radiometer sees both upward emitted longwave from surface, $R_{L\uparrow}$, and the portion of downward longwave that is reflected from surface, $(1-\epsilon_0)R_{L\downarrow}$.

Surface Albedos (%)

		Typical
Surface type	Range	value
Water		
Deep water: low wind, low altitude	5-10	7
Deep water: high wind, high altitude	10-20	12
Bare surfaces		
Moist dark soil, high humus	5-15	10
Moist gray soil	10-20	15
Dry soil, desert	20-35	30
Wet sand	20-30	25
Dry light sand	30-40	35
Asphalt pavement	5-10	7
Concrete pavement	15-35	20
Vegetation		
Short green vegetation	10-20	17
Dry vegetation	20-30	25
Coniferous forest	10-15	12
Deciduous forest	15-25	17
Snow and ice		
Forest with surface snowcover	20-35	25
Sea ice, no snowcover	25-40	30
Old, melting snow	35-65	50
Dry, cold snow	60-75	70
Fresh, dry snow	70-90	80

- Snow and ice brightest
- Deserts, dry soil, and dry grass are very bright
- Forests are dark
- Coniferous (conebearing) needleleaf trees are darkest

Global Map of Surface Albedo

Surface Emissivity (ϵ_0)

Water and soil surfaces		Vegetation	
Water	92-96	Alfalfa, dark green	95
Snow, fresh fallen	82-99.5	Oak leaves	91-95
Snow, ice granules	89	Leaves and plants	
Ice	96	0.8 <i>μ</i> m	5-53
Soil, frozen	93-94	1.0 μm	5-60
Sand, dry playa	84	2.4 μm	70-97
Sand, dry light	89-90	10.0 <i>µ</i> m	97-98
Sand, wet Gravel, coarse Limestone, light gray Concrete, dry Ground, moist, bare Ground, dry plowed	95 91-92 91-92 71-88 95-98 90	Miscellaneous Paper, white Glass pane Bricks, red Plaster, white Wood, planed oak	89-95 87-94 92 91 90
Natural surfaces		Paint, white	91-95
Desert	90-91	Paint, black	88-95
Grass, high dry	90	Paint, aluminum	43-55
Field and shrubs	90	Aluminum foil	1-5
Oak woodland	90	Iron, galvanized	13-28
Pine forest	90	Silver, highly polished Skin, human	2 95

Ground Heat Flux (Arya Chapter 4)

Soil Temperature vs. Soil Depth (Typical Diurnal Variation)

- Relatively large range near surface
 - 25 K diurnal cycle at 0.5 cm
 - Max Temperature around 2 PM
- Damped and delayed response with depth
 - Only 6 K diurnal range at 10 cm
 - Max Temperature around 6 PM
 - Negligible diurnal cycle at 50 cm
- Similar phenomena on seasonal time scales

Soil Heat Flux & Temperature Equations (Note: Symbols below are different than used by Arya Ch4)

 $F_s = -K_T \frac{\partial T}{\partial z} \leftarrow$

Heat is transferred through soil primarily through conduction

Vertical heat flux in soil or rock: $(K_T$ is thermal conductivity)

Formulate change in storage as a **flux divergence**:

$$C_s \frac{\partial T}{\partial t} = -\frac{\partial}{\partial z} \left(F_s \right) = \frac{\partial}{\partial z} \left(K_T \frac{\partial T}{\partial z} \right) \bigstar$$

Gradient Transport Theory (GTT): Flux negatively proportional to gradient

Diffusion: Rate of change of a variable governed by flux divergence. Flux formulated according to GTT.

If physical properties (**thermal conductivity**) is constant with depth, can simplify to: $(D_T = K_T / C_s \text{ is thermal diffusivity})$

Analytical Solution to Soil Temperature Equation

(Details in Arya Ch4, note change in Arya symbols compared to below)

$$\frac{\partial T}{\partial t} = D_T \ \frac{\partial^2 T}{\partial z^2}$$

- Requires two 'boundary conditions' in z
 - (since PDE is second-order in 'z')
- Specify sinusoidally varying surface temperature of period P = 24 hours.
- T \rightarrow T_m = constant as z $\rightarrow \infty$

solution ...

$$T = T_m + A_s \exp(-z/d) \sin[(2\pi/P)(t-t_m) - z/d]$$

where d is a depth scale ("Damping Depth") = $(PD_T/\pi)^{1/2}$

Homework: Evaluate for typical soil conditions. Is value you get for 'd' consistent with your intuition?

Values for Soil Parameters

(see Arya Table 4.1)

Soil parameters are averages over various components of soil. For example, see below for soil heat capacity ...

	Specific heat (c_p) (J kg ⁻¹ K ⁻¹)	Density (ρ) (kg m ⁻³)	ρc _p (J m ⁻³ K ⁻¹)
Soil inorganic material	733	2600	1.9 × 10 ⁶
Soil organic material	1921	1300	2.5×10^{6}
Water	4182	1000	4.2×10^{6}
Air	1004	1.2	1.2×10^{3}

minerals organics water air ice $C_s = \rho_s c_s f_s + \rho_c c_c f_c + \rho_w c_w f_w + \rho_i c_i f_i + \rho_a c_a f_a$ heat volume capacity fraction of soil in soil

Soil is a mixture of several materials, each with quite different physical properties

Thermal Conductivity vs. Soil Moisture Content

Moisture Fluxes

(Evaporation & Evapotranspitation)

- Arya Chapter 12.1 12.2
- Arya Chapter 12.4.1 12.4.3 and 12.4.5

Evapotranspiration (ET)

- ET = Surface Evaporation (E) + Plant Transpiration (T)
- Two "Stages", Condition, Regimes of ET ...
 - 1. Atmospheric Limited
 - 2. Surface Limited
- We will focus only on surface evaporation from bare soil in the remained of lecture. Basic concepts are more or less the same when plants, vegetation are included, although physical processes and equations are then different and become more complex.

Atmospheric Limited ...

- Abundant moisture supply at surface
- Amount of E limited by atmospheric ability to "take up" moisture.
- Atmospheric limiting conditions: low turbulence (high stability, low winds) and/or RH $\approx 100\%$
- Remember: E = -ρ_aC_QU_a(q_a-q₀), thus in this case C_Q and q_a are the "limiting" variables
- Upper limit on E determined by setting $q_0 = q_{sat}$.
- Upper limit called "Potential Evaporation" (E_P).

Surface Limited ...

- Limited moisture supply at surface.
- $q_0 < q_{sat}$ by significant amount
- In this case, q₀ determined by ability of soil (or plant tissue) to transport moisture upwards from deeper layers of the soil to soil surface (or leaves)
- $-q_0$ is key variable
- q_0 related to surface soil moisture content (η_0) and soil properties for bare soil. These as well as plant tissue properties for vegetated surface.

First Stage: Potential Evaporation (E_P)

Second Stage: Soil Limited

(Continuity of Moisture Fluxes Across Bare Soil Surface)

• E = βE_{p} = $-\beta \rho_{a}C_{Q}U_{a}(q_{a}-q_{sat})$

- Continuity of fluxes requires E = M, where sfc. soil moisture flux, M, is given above.
- η: Soil moisture content (volume of soil water per volume soil)
- D_{η} : Soil moisture diffusivity: represents capillary movement of soil moisture ("suction")
- K_{η} : Hydraulic conductivity: represents gravitational infiltration
- See following slides for $D_{\eta}(\eta)$ and $K_{\eta}(\eta)$ relationships (i.e., they are functions of η !)
- β : A factor limiting evaporation based on availability of soil moisture at surface.
- Parameterization used in NCEP WRF (Chen and Dudhia 2001): $\beta = (\eta_0 \eta_w)/(\eta_{fc} \eta_w)$
- η_w and η_{fc} are the soil moisture "wilting point" and "field capacity", respectively.

Soil Moisture Diffusivity: $D_n(\eta)$

Fig. 2. Examples of the dependence of soil hydraulic diffusivity on volumetric soil water content for loam (HB_L, Hanks and Bowers, 1962); (J, Jackson, 1973); (GHB, Gardner *et al.*, 1970); silt loam (HB_S, Hanks and Bowers, 1962); clay (P, Passioura and Cowan, 1968); results approximated from Gardner (1960) for sand (B_S), loam (B_L), and clay (B_C); relationship from Clapp and Hornberger (1978) for sand (CH_S), loam (CH_L), and clay (CH_C).

Fig. 3. Examples of the dependence of hydraulic conductivity on volumetric soil water content for sand (DL, Day and Luthin, 1956); (Black *et al.*, 1970, 0-50 cm-BGT₁, 50-150 cm-BGT₂); loam (J, Jackson, 1973); (MH_{L1} and MH_{L2}, Marshall and Holmes, 1979); (GHB, Gardner *et al.*, 1970); results approximated from Gardner (1960) for sand (B_s), loam (B_L), and clay (B_c); relationship from Clapp and Hornberger (1978) for sand (CH_s), loam (CH₁), and clay (CH_c).

Soil Moisture: Wilting Point, Field Capacity, Porosity

η: volumetric soil moisture (m³ m⁻³)

Field Capacity (FC or η_{fc})

-Soil water content where gravity drainage becomes negligible

-Soil is <u>not</u> saturated but still a very wet condition

Permanent Wilting Point (WP or η_w)

-Soil water content beyond which plants cannot recover from water stress (dead)

-Still some water in the soil but not enough to be of use to plants

SOIL MOISTURE PROPERTIES (FAR LEFT THREE COLUMNS)

PARAMETERS IN STD. CLAPP AND HORNBERGER EQUATIONS FOR SOIL MOISTURE DIFFUSIVITY AND HYDRALIC CONDUCTIVITY (FAR RIGHT THREE COLUMNS)

Table 3. Derived	Soil Hydraul	ic Properties				
Soil texture class	Total	Field	Wilting	Sat. soil	Sat. hyd.	'B'
	Porosity	Capacity	Point	matric pot.	cond.	Parameter
	(%)	(cm ³ /cm ³)	(cm ³ /cm ³)	(m)	(m/s)	
Sand	39.5/	0.174/	0.068/	0.121/	1.76e-4/	4.05/
	33.9/	0.084/	0.021/	0.069/	7.23e-6/	2.79/
	43.7	0.091	0.033	0.001	5.83e-5	3.76
Loamy sand	41.0/	0.179/	0.075/	0.090/	1.56e-4/	4.38/
	42.1/	0.145/	0.059/	0.036/	2.18e-6/	4.26/
	43.7	0.125	0.055	0.001	1.70e-5	4.65
Sandy loam	43.5/	0.249/	0.114/	0.218/	3.47e-5/	4.90/
	43.4/	0.222/	0.099/	0.141/	8.11e-7/	4.74/
	45.3	0.207	0.095	0.011	7.19e-6	4.90
Silt loam	48.5/	0.369/	0.179/	0.786/	7.20e-6/	5.30/
	47.6/	0.360/	0.176/	0.759/	4.35e-7/	5.33/
	50.1	0.330	0.133	0.064	1.89e-6	4.20
Loam	45.1/	0.314/	0.155/	0.478/	6.95e-6/	5.39/
	43.9/	0.286/	0.138/	0.355/	5.23e-7/	5.25/
	46.3	0.270	0.117	0.037	3.67e-6	4.56
Sandy clay loam	42.0/	0.299/	0.175/	0.299/	6.30e-6/	7.12/
	40.4/	0.251/	0.143/	0.135/	6.90e-7/	6.77/
	39.8	0.255	0.148	0.053	1.19e-6	7.02
Silty clay loam	47.7/	0.357/	0.218/	0.356/	1.70e-6/	7.75/
<i>y</i>	46.4/	0.382/	0.247/	0.617/	3.15e-7/	8.72/
	47.1	0.366	0.208	0.106	4.17e-7	6.75
Clay loam	47.6/	0.391/	0.250/	0.630/	2.45e-6/	8.52/
	46.5/	0.340/	0.213/	0.263/	3.79e-7/	8.17/
	46.4	0.318	0.197	0.064	6.39e-7	7.97
Sandy clay	42.6/	0.316/	0.219/	0.153/	2.17e-6/	10.40/
	40.6/	0.292/	0.205/	0.098/	1.12e-6/	10.73/
	43.0	0.339	0.239	0.587	3.33e-7	10.92
Silty clay	49.2/	0.409/	0.283/	0.490/	1.03e-6/	10.40/
	46.8/	0.374/	0.259/	0.324/	2.08e-7/	10.39/
	47.9	0.387	0.250	0.149	2.50e-7	8.73
Clay	48.2/	0.400/	0.286/	0.405/	1.28e-6/	11.40/
2.49	46.8/	0.394/	0.283/	0.468/	1.51e-7/	11.55/
	47.5	0.396	0.272	0.431	1.67e-7	10.16

Notes: Values given as Clapp et al. [1978]/Cosby et al. [1984]/Rawls et al. [1982]

Soil Texture

- Soil is a 3-phase system, consisting of
 Solid minerals and organic matter
 Water trapped in the pores
 - Moist air trapped in the pores
- See classic USDA "texture triangle
- Note size range of sand, silt, clay ...

Fig. 3.5. Textural triangle, showing the percentages of clay (below 0.002 mm), silt (0.002-0.05 mm), and sand (0.05-2.0 mm) in the basic soil textural classes.

Summary:

(Coupled Energy and Moisture Balance Equations over Bare Land)

Modeling Considerations (NWP, Meso and Climate Modeling)

- Representation in models called a "Land Surface Model" or "Land Surface Parameterization".
- How to characterize heterogeneous surface in grid model? See next slide.
- Complexity of surface. Soil, low vegetation, forests, snow, ice, urban, and others. Lots of variability within each of these. Knowledge of needed modeling parameters for the various land surface types is still spotty.
- Soil moisture initialization.
- Land use & land cover data undergoing ongoing improvement.

Characterizing surface heterogeneity in grid models (Mixture vs. Tile approach)

The Mixture approach

The Tile approach

Averaged surface properties

Most schemes somewhere in between

Coniferous forest		
Deciduous forest		
Low vegetation	Snow	

One value each for parameters like LAI, albedo, emissivity, aerodynamic resistance,... per grid square. One single energy balance.

All individual sub-surfaces have their own set of parameters as well as separate energy balances.