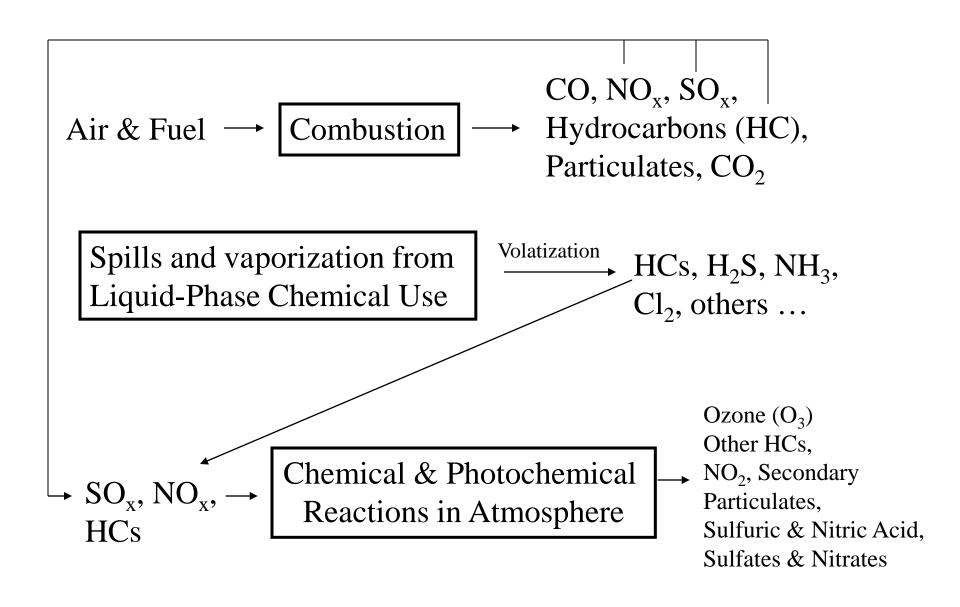
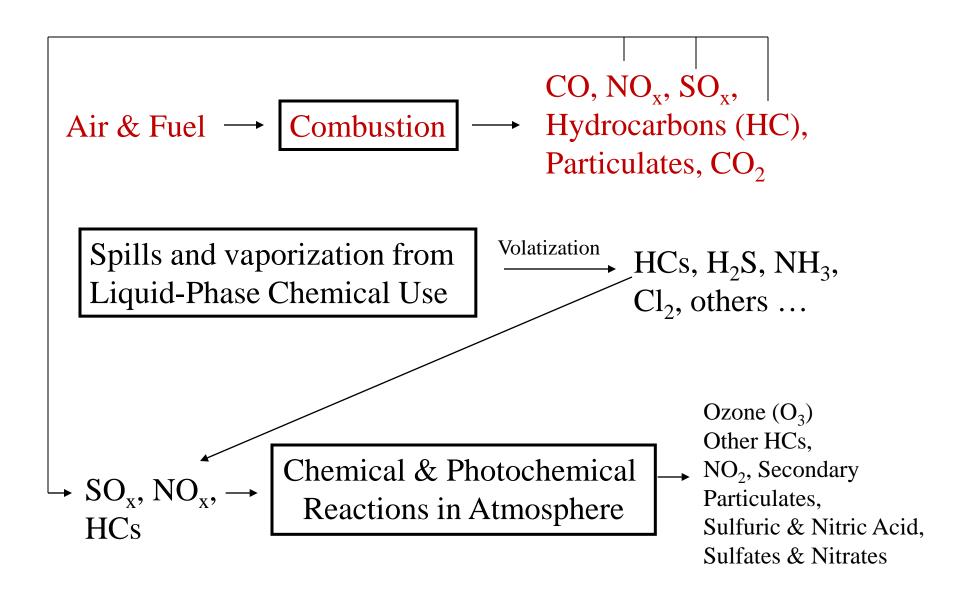
Lecture 6 Air Pollution Emissions

(focus mainly on combustion of carbon-based fuels)



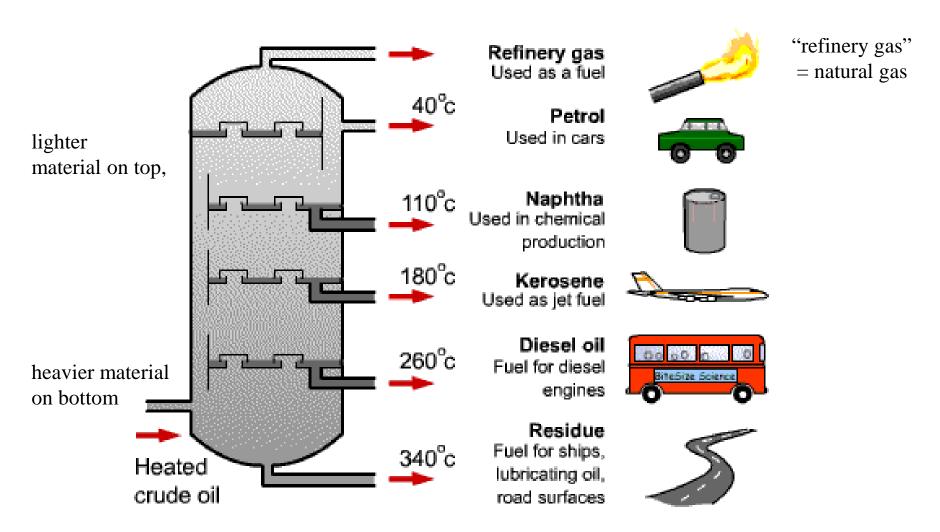
METR 113/ENVS 113 Spring Semester 2011 April 19, 2011


Reading ...

• To be determined ...

Sources of Air Pollutants ...

Focus on Combustion ...



What do we mean by "combustion"?

- Combustion = **burning** something
- For example ...
 - Burning gasoline in automobiles
 - Burning <u>diesel</u> fuel in trucks
 - Burning "residual oil" (bunker fuel) in ships
 - Burning <u>coal</u> in power plants
 - Burning <u>natural gas</u> (methane, CH₄) in power plants
 - Burning wood and other biomass in wildfires & controlled burns
- Underlined "fuels" above are all carbon-based fuels
- All except wood & biomass are "fossil fuels".
- Sources of fossil fuels
 - Extraction of natural gas (methane, CH₄) from earth
 - Crude oil distillation (where crude oil is extracted from earth)

Distillation of Crude Oil

(Where lots of our fossil fuel come from ...)

Distillation Tower in a Refinery

Emissions from Combustion

(let "fuel" below be some carbon-based fuel)

Air & Fuel — Combustion
$$CO_2$$
, CO, NO_x, SO₂, Unburned HCs, Particulates $C_mH_n + O_2 + N_2 \rightarrow CO_2 + H_2O$ + other products (SO₂, NO_x, Particulates, etc ...)

Fuel Air Products

Notes about combustion ...

- <u>Complete Combustion</u> all carbon and hydrogen in fuel and oxygen in air is converted to carbon dioxide (CO₂) and water vapor.
- <u>Incomplete Combustion</u> some carbon/hydrogen/oxygen goes to other products (carbon monoxide, various hydrocarbon gases, black carbon/soot, etc ...)
- Any sulfur in fuel is converted to sulfur dioxide (SO₂)
- Nitrogen in air is converted to nitrogen oxides (NO and NO₂)

Clean Air vs. Combustion Gas

- Clean Air
 - Nitrogen (78%)
 - Oxygen (21%)
 - Carbon Dioxide (0.03%)
 - Others very small
- Flue Gas (released to air after combustion from smokestacks)
 - Nitrogen (78%)
 - Oxygen (2-6%)
 - Carbon Dioxide (10-15%)
 - SO₂, CO, NO_x, Particulates, HCs higher levels than clean air

Air-Fuel ratio is important ...

- Complete Combustion: "just right" amount of air vs. fuel ...
- Fuel "rich": More fuel than air
- Fuel "lean": More air than fuel
- If too rich or too lean, combustion will not occur
- Determines which types of air pollutants are formed
 - Fuel Rich: High levels of CO, particulates, unburned HCs
 - Fuel Lean: High levels of NO_x
- Other pollutants
 - SO₂ is formed as long as there is sulfur in fuel (rich or lean)
 - CO₂ is formed in either case (rich or lean). Unavoidable (!)

2008 TOYOTA SEQUIDA 5.7 L VB

Smog Check Vehicle Inspection Report (VIR)

Vehicle Information

Test Date/Time: 04/23/2009 @ 11:13

Model Year: 2008 License: HH2HYGN Engine Size: 5 7 I.

Engine Size: 5.7 L GVWR: 7100 Odometer: 5320 Fuel Type: Gasoline Make: TOYOTA State: CA Truck

Type: Truck
Test Weight: 5000
Certification: California
Exhaust: Single

Model: SEQUOIA VIN: STDZY68.

VIN: 5TDZY68A78S007553 Transmission: Automatic

Cylinders: VLT Record #:

VLT Record #: 00028 Inspection Reason: Pre-test

Overall Test Results PRE-TEST INSPECTION (Not an Official Inspection)

Emission Control Systems Visual Inspection/Functional Check Results

IVitualifunctional tests are used to assist in the identification of cranicase and cold start emissions which are not measured during the ASM tests

Result	ECS	Result	ECS	Result	ECS
Pass	PCV	N/A	Thermostatic Air Cleaner	Pass	Fuel Evaporative Controls
Pass N/A	Catalytic Converter	N/A	Air Injection	Pass	MIL/Check Engine Light
M/A	6GR Visual	Pass	Vacuum Lines to Sensors/	Pass	Carb./Fuel Injection
M/A	EGR Functional		Switches	Pasa	Other Emission Related
Poss	Fuel Cap Functional	NIA	lonition Timing:		Components
Pass	Fuel Cap Visual	Pags	Wiring to Sensors	Pass	Oxygen Sensor
Pees	Spark Controls	N/A	Filippe Restrictor	Pass	Liquid Fuel Leaks
MITML	Final Componition Controls F.	unational	201000000000000000000000000000000000000	0.0000000000000000000000000000000000000	Control business of control of the property of

ASM Emission Test Results

		%CO,	%O ₂ MEAS I	HC (PPM)		CO (%)		NO (PPM)		Barren and a second			
Test	RPM	MEAS		MAX	AVE	MEAS	MAX	AVE	MEAS	MAX	AVE	MEAS	Results
5 mph	1301	15.1	0.0	101	- 5	0	0.51	4.41	0.00	980	19	- 1	PASS
55 mph	1290		0.0		5.	0	1.00	0.01	0.00	840	25	2	PASS
A.X makes	Michigan C	diagonately	Emission	4	437F =	Acres more	Francisco	w Free Par	enima Mala	Letters.			MCAC American Alexand

Smog Check Inspection Station Information

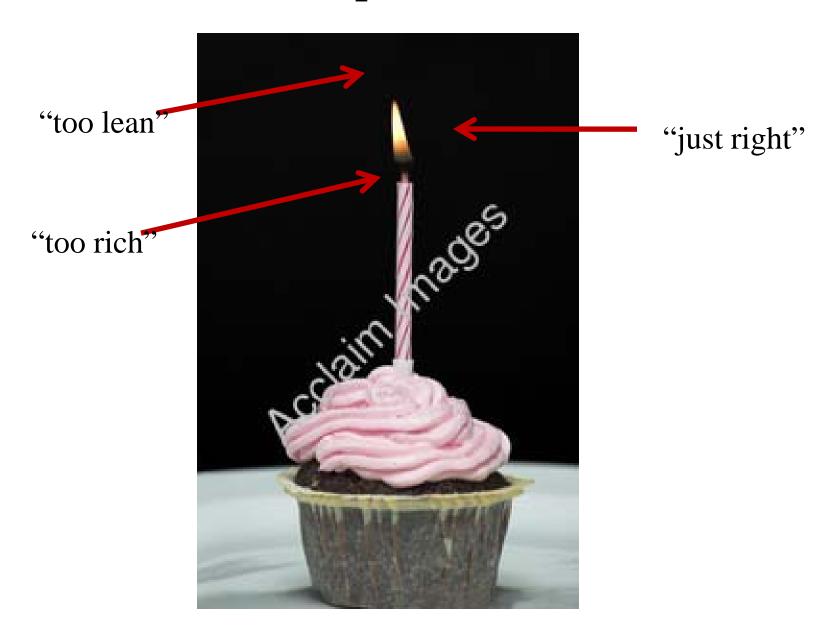
CANOGA SMOG CENTER 21412 HART ST.AA, CANOGA PARK, CA 91303

(918)887-7060

Station Number: TC249342

Technician Name/Number: VO, THEN/EA147024
Repair Tech Name/Number:

Software Version/EIS Number: 0403/ES987690


I certify, under penalty of perjury, under the laws of the State or California, that I performed the inspection in accordance with all bureau requirements, and that the information listed on this vehicle inspection report is true and accurate.

1000 73/04

Technician s\Signature

HHZ= 99.9% EMISSION REDUCTION

Cupcake

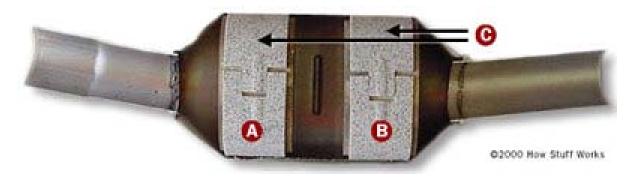
Other Important Combustion Reactions

Sulfur Dioxide (SO₂)

(Sulfur in Fuel) +
$$O_2$$
 + $N_2 \rightarrow SO_2$ + others

Hydrogen (H₂)

$$2H_2 + O_2 \rightarrow 2H_2O +$$
heat


Note: hydrogen gas, however, must be produced by some other means, usually through hydrocarbon combustion/gasification (i.e. hydrogen is not an energy "source").

Emission Control Technologies (Air pollution mitigation, non-CO₂)

Some common control technologies ("traditional air pollutants", not CO₂)

- Mobile Sources (Autos, other mobiles sources ...)
 - Catalytic Converters (1970s, controls CO, HCs, NOx)
 - Reformulated Gasoline (Calif., 1990s, ozone precursors ...
 i.e. ROGs and VOCs)
- Stationary Sources (Power plants, refineries, etc ...)
 - Sulfur Dioxide "scrubbers" (removes SO2)
 - Flares (burns excess HCs, esp. during accidents)

Catalytic Converter (Three-Way)

- Reduction catalyst
- Oxidation catalyst
- () Honeycomb

cross-section

Catalytic Converter (Three-Way)

Made of platinum and rhodium (honeycomb)

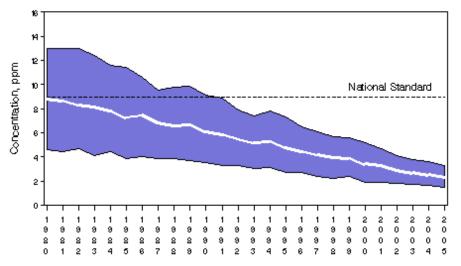
History

- Mandated by Clean Air Act in 1970
- For post-1975 automobiles

• NO_x Reduction

- $-2NO => N_2 + O_2 \text{ or } 2NO_2 => N_2 + 2O_2$
- 'A' on diagram on previous slide

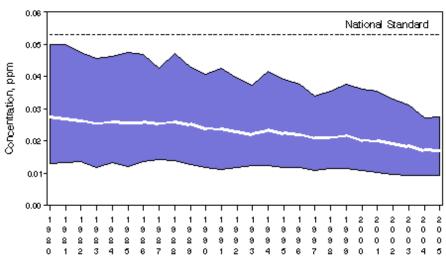
CO and HC Oxydation


- $2CO + O_2 => 2CO_2$
- Similar type reactions for HCs
- 'B' on diagram on previous slide

Improvements in U.S. Air Quality ...

CO Air Quality, 1980 - 2005

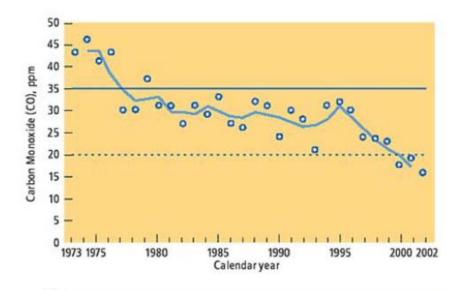
(Based on Annual 2nd Maximum 8—hour Average)


National Trend based on 152 Sites

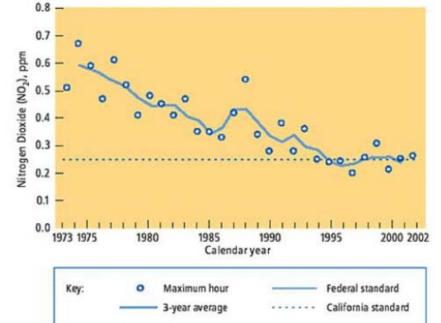
1980 to 2005: 74% decrease in National Average

NO2 Air Quality, 1980 - 2005

(Based on Annual Arithmetic Average)
National Trend based on 88 Sites



1980 to 2005: 37% decrease in National Average


Carbon Monoxide

Nitrogen Dioxide

Improvements in California Air Quality (1) ...

CARBON MONOXIDE

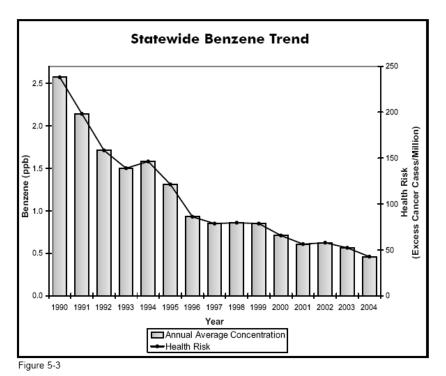
NITROGEN DIOXIDE

Reformulated Gasoline (RFG)

History

- Mandated by Clean Air Act in 1990 for high pollution areas (e.g. Calif.)
- Aim to reduce ozone (O_3) and toxics (TAC) concentrations (e.g. benzene)

Blend alcohol additives into gasoline


Results ...

- Reduced fuel volatility (reduced evaporative HC emissions)
- Alcohol additives less photochemically reactive (reduced ozone)

Common additives

- Ethanol
- Methyl Tri-Butyl Ether (MTBE)

Improvements in California Air Quality (2) ...

BENZENE

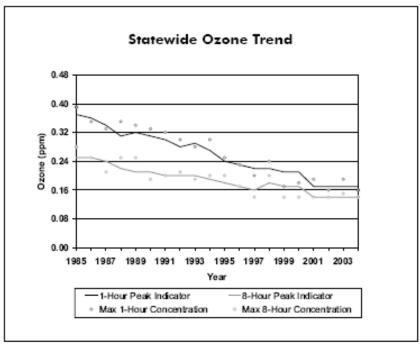
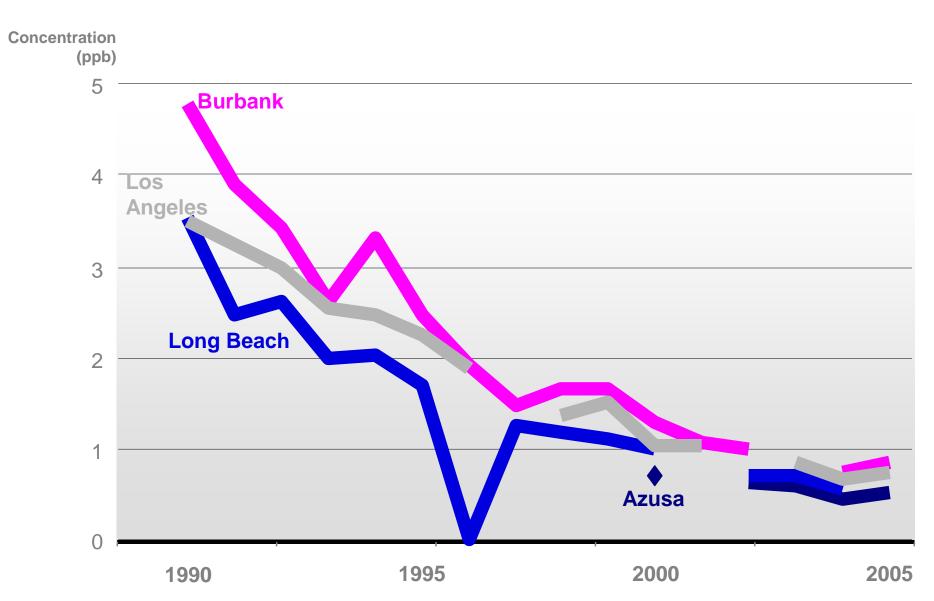



Figure 3-4

OZONE

Ambient Benzene:

CARB Air Toxics Network

Stationary Source Control Device: Absorption Scrubbers (SO₂ reduction)

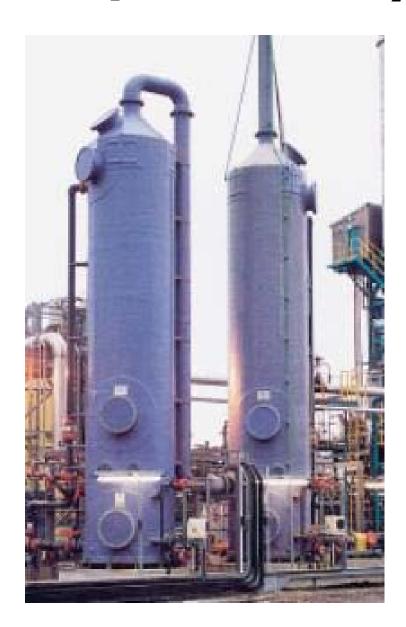
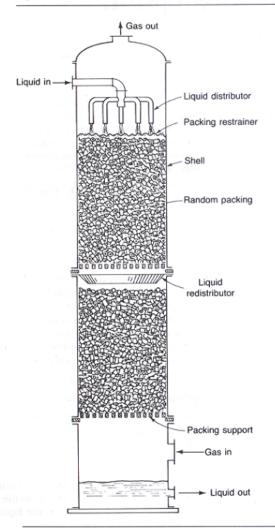



Figure 13.1 Schematic diagram of a packed gas absorption tower.

SO2-laden
combustion
gasses pas from
bottom to top
through wet
foam packing
in scrubber tower.
SO2 in gas is
absorbed into the
water coating
the foam packing.
SO2-free air
then passes out the
top of the scrubber.

Stationary Source Control Device: Flares

Refineries and chemical plants are equipped with these to burn off waste, especially during accidents. In this case, the accidental release gasses are routed to flare to be burned off.

Alternative Energy Strategies (CO₂ mitigation, slides to be added ...)

Control Strategies for CO₂ Emissions ...

Increase Energy Efficiency

- Same amount of work using less fossil fuel input energy
- Less CO₂ emissions for same amount of work

• Use a less CO2-emitting energy sources

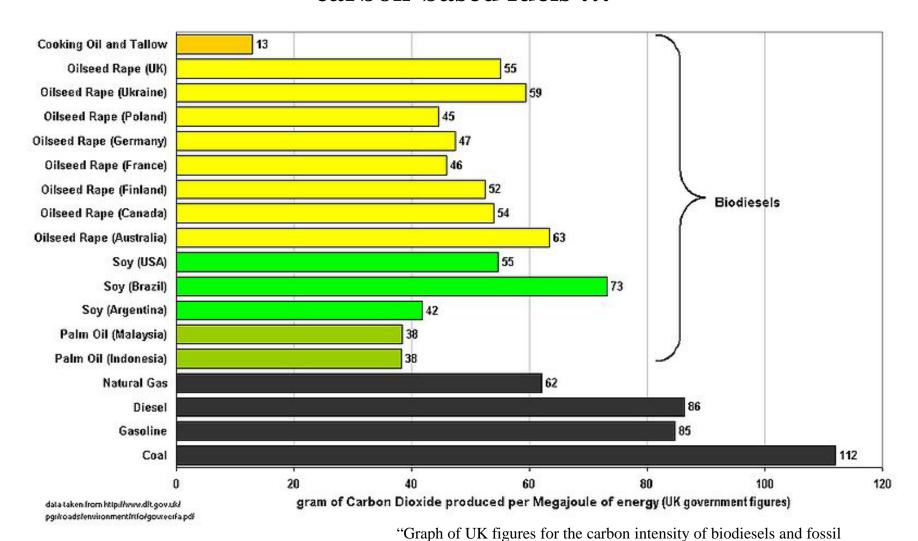
Hydroelectric
 Nuclear
 Biofuels

GeothermalSolar

Wind - Electric, Hydrogen, Hybrid Vehicles

• Carbon Sequestration (Capture and Storage)

- Sequestration: Carbon capture and storage underground
- IGCC, "Future Gen" (U.S. Department of Energy program)
- A flagship "clean coal" technology for CO₂ mitigation


Geo-Engineering

- Mirrors in space (reflect sunlight)
- Huge Aerosol Injection to Stratosphere (reflect sunlight ...)
- Large phytoplankoń planting in oceans (absorb CO₂)
- Large CO₂ "scrubbers" to pull CO₂ out of air
- ._____Etc ...

Carbon Emission Intensity

- Carbon emission intensity is how much CO2 (or CO2-eq) is emitted per amount of energy obtained in burning fuel
- Expressed, for example, as
 - Grams CO2 per Mjoule energy obtained
 - Tons CO2 per BTU obtained (british units)
 - Others ...
- CO2 emitted comes from both <u>direct</u> and <u>indirect</u> emissions. Carbon intensity therefore accounts for CO2 emitted during the <u>entire process</u> of production of fuel through burning of fuel ("well-to-wheel").

Carbon emission intensity of various carbon-based fuels ...

fuels. This graph assumes that all biodiesels are burnt in their country of origin. It also assumes that the diesel is produced from pre-existing

croplands rather than by changing land use"

http://en.wikipedia.org/wiki/Emission_intensity

An illustration of indirect carbon emissions ... standard industrial production of hydrogen gas.

Using natural gas (methane, CH₄) to produce hydrogen (H₂) ...

$$CH_4 + H_2O -> CO + 3H_2$$

 $H_2O + CO -> CO_2 + H_2$

CO2 emissions, i.e. "indirect" emissions. unless somehow captured somehow ...

Hydrogen fuel for transportation (via pipeline, fuel cells, ?). No direct CO2 emissions when "burning" hydrogen. See slide 14 ...

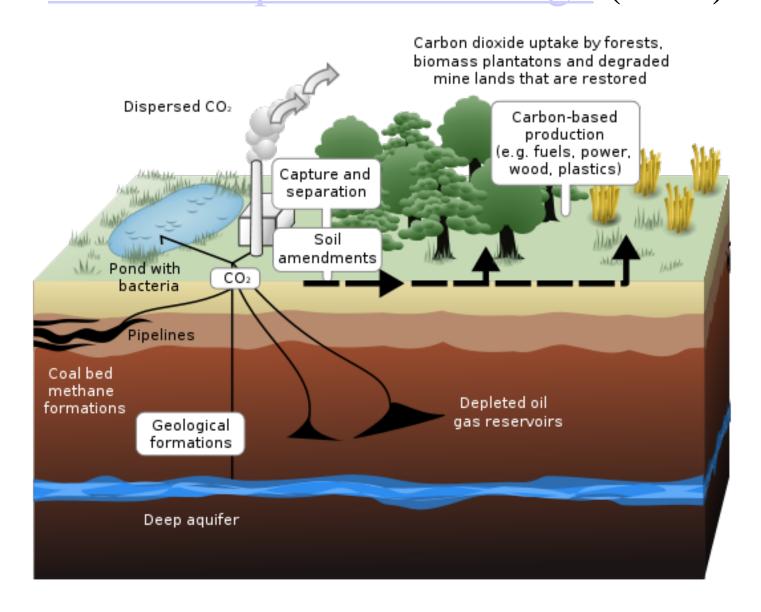
Emission Intensity of other air pollutants

(CO2 and others ...)

Fossil Fuel Emission Levels - Pounds per Billion Btu of Energy Input

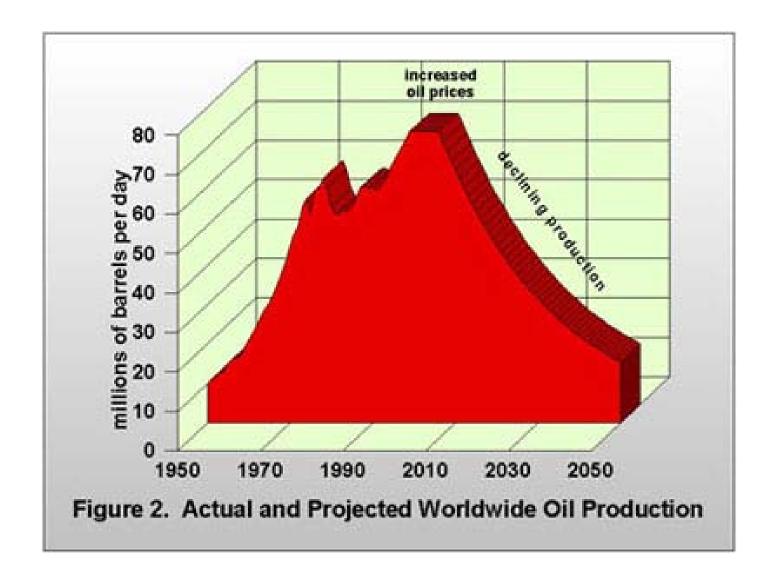
Pollutant	Natural Gas	Oil	Coal
Carbon Dioxide	117,000	164,000	208,000
Carbon Monoxide	40	33	208
Nitrogen Oxides	92	448	457
Sulfur Dioxide	1	1,122	2,591
Particulates	7	84	2,744
Mercury	0.000	0.007	0.016

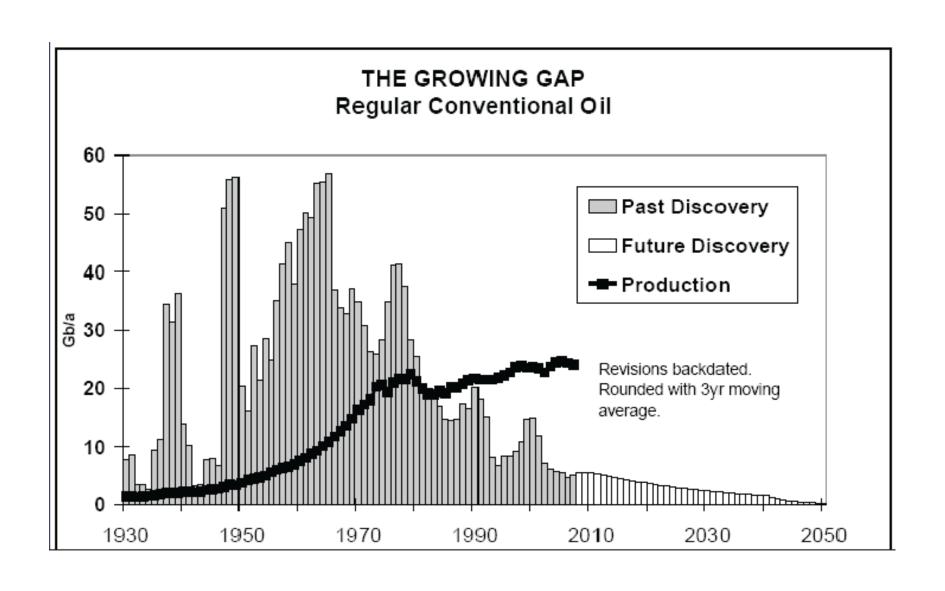
Source: EIA - Natural Gas Issues and Trends 1998


cleaner to dirtier

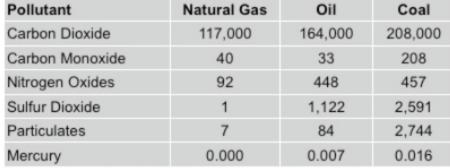
Gasification & Carbon Capture and Storage (CCS)

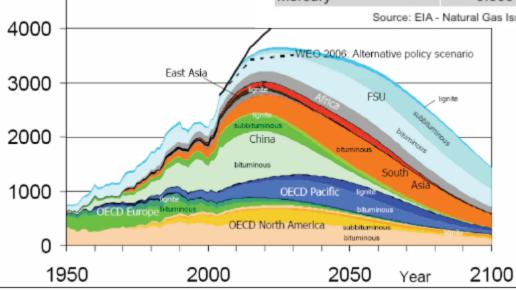
- Gasify fossil fuel to produce ...
 - Hydrogen gas (H₂)
 - Carbon Dioxide (CO₂)
- Burn H₂ for energy
 - Steam or gas turbine for electricity
 - Fuel cell for transportation vehicle
- Capture and then store CO₂ underground
 - Oil & Gas Reservoirs
 - Coal Seams
 - Ocean


http://www.fossil.energy.gov/programs/powersystems/futuregen/


Hyperlink ... → Carbon Capture and Storage (CCS)

Another consideration ... "peak oil"


What will be our electricity source? Conventional crude oil production to decline in future years (Similar story with natural gas, although not as imminent as with oil)



What other energy resources could replace oil & natural gas? How about coal?

Source: EIA - Natural Gas Issues and Trends 1998

M toe

5000

Peak Coal within 20 years?

"Unconventional" Oil ...

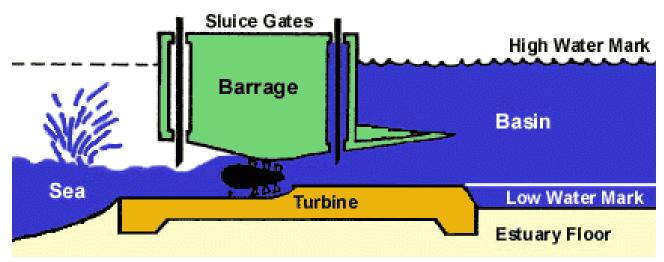
Non Fossil Energy Sources: Electricity ...

Solar ...

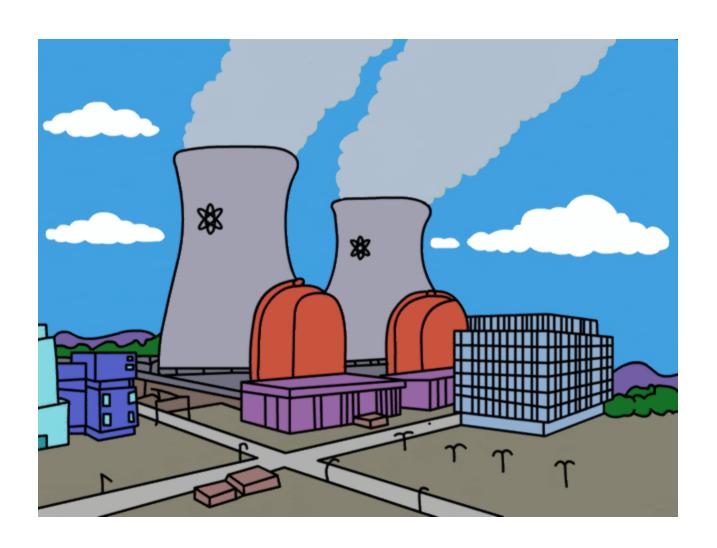
Wind ...

Altamont Pass, California

Geothermal



Hydro power



Tidal Power

Nuclear

"Alternative" Transportation Fuels:

Ethanol

- Corn Based (U.S.)
- Sugar Cane (Brazil)
- Switch Grass (future?)
- Falling out of favor:
 - May not actually be "carbon neutral"
 - Takes more energy to produce than it gives off when burned
 - Drives up cost of food
- Ethanol still used as additive to mitigate air pollution (see previous slides regarding Reformulated Gasoline in early part of lecture)

Biodiesel

- Soybeans
- Similar problems as ethanol (may not be as bad though)
- Grease (a waste product, waste to energy, ©)

The catalytic converter on modern automobiles is designed to control emissions of the following species emitted from automobiles:

- a) Carbon monoxide (CO) and ozone (O_3)
- b) Carbon monoxide (CO) and nitrogen oxides (NO_x)
- c) Carbon dioxide (CO_2) and ozone (O_3)
- d) Carbon dioxide (CO₂) and nitrogen oxides (NO_x)

A coal combustion plant is constructed. The plant will contain numerous 'flares' and a 'scrubber'.

Based on this, what can be accurately said about pollution control at the plant?

- a) All three of the following emissions are controlled: Carbon Dioxide, Sulfur Dioxide, and accidental emissions.
- b) Carbon Dioxide and accidental emissions are controlled, but not Sulfur Dioxide
- c) Sulfur Dioxide and accidental emissions are controlled, but not Carbon Dioxide
- d) Sulfur Dioxide and Carbon Dioxide are controlled, but not accidental emissions.

Which of the following best characterizes the sequence of steps in forming high ozone concentrations in urban areas?

- a) High O_3 emissions in the morning, followed by high rates of chemical production of O_3 in the late morning and afternoon due to rising temperatures during the day.
- b) High O_3 emissions in the morning, followed by low rates of chemical destruction of O_3 in the late morning and afternoon due to rising temperatures during the day.
- c) High NO and ROG emissions in the early morning, followed by high chemical formation of NO₂ and O₃ in the late morning and afternoon.
- d) High NO and CO emissions in the early morning, followed by high chemical formation of CO₂ and O₃ in the late morning and afternoon.

Carbon Intensity of Unconventional vs. Conventional Oil ...

See links below ... does unconventional oil release more CO2 Than conventional oil? How much more (in terms of emission intensity)? Why ... i.e. what is it about unconventional oil that makes it "dirtier" with respect to CO2 emissions?

Be prepared to answer multiple choice and/or short answer question on Exam #4 on this topic.

http://www.wri.org/publication/content/10339

http://en.wikipedia.org/wiki/Oil_sands