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Vibration Suppression in a Two-Mass Drive System
Using PI Speed Controller and Additional
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Abstract—In this paper, an analysis of control structures for the
electrical drive system with elastic joint is carried out. The synthe-
sis of the control structure with proportional–integral controller
supported by different additional feedbacks is presented. The
classical pole-placement method is applied. Analytical equations,
which allow for calculating the control structure parameters, are
given. The limitation of the design due to the number of degrees
of freedom of the considered drive systems is shown. In order
to damp the torsional vibration effectively, the application of
the feedback from one selected state variable is necessary. In
the literature, a large number of possible feedbacks have been
reported. However, in this paper, it is shown that all systems
with one additional feedback can be divided into three different
groups, according to their dynamical characteristics. In addition,
the system with two additional feedbacks is investigated. The
comparison between considered structures is carried out. The
simulation results are confirmed experimentally in the laboratory
setup.

Index Terms—Elastic joint, electrical drive, pole-placement
method, speed control, vibration suppression.

I. INTRODUCTION

A DRIVE SYSTEM is composed of a motor connected
to a load machine through a shaft. In many cases, the

joint is assumed to be stiff, yet in a number of applications,
such as rolling-mill drives, robot arms, servo systems, textile
drives, throttle systems, conveyor belts, and deep-space an-
tenna drives, this assumption can lead to damaging oscillations
[3], [9], [12]–[16], [22]. The speed oscillations decrease the
system characteristics and product quality; the system can even
lose stability.

The control problem is especially difficult when not all sys-
tem state variables are measurable, which happens very often
in industrial applications. The most popular classical cascade
structure with the parameters of a proportional–integral (PI)
speed controller adjusted according to the symmetrical criterion
cannot damp the torsional vibrations effectively.

Manuscript received June 8, 2005; revised June 27, 2006. Abstract published
on the Internet January 14, 2007. This work was supported by the National Sci-
entific Research Committee (Poland) under Grant 3T10A 043 26 (2004–2006).

The authors are with the Institute of Electrical Machines, Drives and
Measurements, Wroclaw University of Technology, 50-372 Wroclaw, Poland
(e-mail: krzysztof.szabat@pwr.wroc.pl; teresa.orlowska-kowalska@pwr.
wroc.pl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2007.892608

The simplest method to eliminate the oscillation problem,
which occurs under the reference-speed changes, is a slow
change of the reference velocity. Nevertheless, it causes the
decrease of the drive system dynamics and does not protect
against oscillations, which result while disturbance torque
changes.

A method that can improve system performances exploits
alternative tuning techniques for the classical cascade control
structure (with a PI speed controller and the basic feedback
from the motor speed), based on a suitable location of the
closed-loop system poles. Three different pole locations with
identical radius, damping coefficient, and real part were pre-
sented in [1]. In this paper the analytical guidelines were
presented, that allow setting the controller parameters of every
drive and examined the selected drive systems with respect to
different mechanical parameters. A comparison of the system
dynamics with different pole placements was made. The au-
thors reported that the proposed locations are effective in the
case of a large value of inertia ratio (defined as the ratio of
the load to the motor moment of inertia). This method cannot
damp the oscillations effectively when the inertia ratio has a
comparatively small value (less than 1). Hence, the authors
suggested the application of a proportional–integral–derivative
controller. The derivative part D increased the inertia ratio of
the system, virtually decreasing the moment of inertia of the
motor. However, the authors claim that measurement noises can
limit the value of part D in the real system; thus, the desired
dynamical characteristics cannot be obtained.

In [2], Preitl and Precup analyzed another possible location
of the closed-loop system poles. They proposed assigning the
poles on the ellipse and reported that this location can provide
more effective damping of the torsional vibrations than the
location on the circle. However, this method is effective also
only in the case when the inertia ratio has a relatively large
value.

To improve the performances of the drive, the additional
feedback loop from one selected state variable can be used.
The additional feedback allows setting the desired value of the
damping coefficient, yet the free value of resonant frequency
cannot be achieved simultaneously. The additional feedbacks
can be inserted to the electromagnetic-torque control loop or
the speed control loop.

In [3], the additional feedback from the derivative of the
shaft torque that was inserted into the electromagnetic-torque
node was presented. The authors investigated the proposed
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method and applied it to the two- and three-mass system.
Nevertheless, the proposed estimator of the shaft torque is
quite sensitive to measurement noises, so suppression of high-
frequency vibrations is difficult; additionally, the dynamics of
the system decreases. In [5], it was shown that in the case
of the aforementioned structure, for the same value of the
assumed damping coefficient, two different feedback gains can
be designed, resulting in two different values of the resonant
frequency of the system.

Another modification of the control structure results from
inserting the additional feedback from the shaft torque. This
type of feedback was utilized in [4]–[8]. The damping of the
torsional vibration is reported to be successful. This structure is
less sensitive to measurement noises than the former one since,
in the analyzed system, the derivative of the shaft torque does
not exist. In [6], the feedback from the difference between the
motor and load speeds was utilized. Although the oscillations
were successfully suppressed, the authors claim the loss of
response dynamics and larger load impact effect. The additional
feedback from the derivative of the load speed was proposed
in [4], resulting in the same dynamical performance as for the
previous control structure.

Another possible modification of the classical structure is
based on the insertion of additional feedback to the speed
control loop. In [5] and [7], the feedback from the load speed
was applied. The authors argued that this feedback can ensure
good dynamical characteristics and is able to damp vibrations
effectively. The same results can be obtained by applying the
feedback from the difference between the motor and load
speeds.

The other torsional-vibration-suppression method relies on
the additional feedback from the disturbance observer. This
approach was proposed in [9]. In order to apply this method,
the implementation of the fast disturbance torque observer is
necessary. The time delay in the estimated state caused by the
observer must be shorter than the vibration period. The com-
pensation signal taken from the estimated disturbance torque
is fed back to the electromagnetical torque node; the torsional
vibrations are damped in this way. The authors reported good
results. The more advanced approach was proposed in [10] and
[11]. The control structure parameters were successfully de-
signed to fulfill specifications such as load variations, backlash,
and Coulomb friction in order to ensure very precise control.

The most advanced control structures, which ensure very
good performance of the system, are based on the control
structures with additional feedbacks from all state variables,
i.e., shaft torque, load speed, and/or disturbance torque simul-
taneously. However, the direct feedbacks from these signals
are very often impossible because additional measurements of
these mechanical variables are difficult and costly, and reduce
the system reliability. Therefore, the estimating problem of
nonmeasurable variables attracted much attention [16]–[19].
In many papers, Luenberger observers were applied to the
nonmeasurable state variable reconstruction. In the case of the
linear system with nonchangeable parameters and a small value
of measurement noises, this estimator can ensure good accuracy
of the estimated states. However, in the presence of nonlinear-
ity, parameter uncertainty, and high measurement noise level,

the performance of the Luenberger observer is nonsatisfactory
[16], [17]. The dynamical characteristic improvement can be
achieved by implementing the nonlinear Luenberger observer,
as presented in [19]. However, this approach requires knowl-
edge about the existing nonlinearity of the drive, which can be
difficult in practice. For the system disturbed by measurement
noises and with changeable parameters, the Kalman filter can
ensure much better results of mechanical variable estimation
than the Luenberger observer [16], [17]. It results from the
fact that the Kalman filter algorithm relies directly on the para-
meter and measurement noises. In the presence of changeable
parameters of the drive, the nonlinear Kalman filter can be
used to estimate the correct value of these parameters [17],
[18]. To ensure the proper work of the Kalman filter, there is
a need to set the state and measurement covariance matrices
correctly, which is a quite difficult task. Usually, the trial and
error procedure is used. In [18], the genetic algorithms were
applied to ensure the optimal setting of those matrices. The
reconstruction of the full-state vector allowed implementing
the state controller. This structure was presented in [16], [17],
and [19]. Through the suitable selection of the closed-loop
pole location, the dynamical characteristic of the system can
be set freely. The torsional vibrations can be successfully
damped.

In recent years, nonlinear and soft computing control meth-
ods have attracted much attention [20]–[25]. The application
of the sliding [20] or the fuzzy control [21]–[24] increases the
robustness of the drive system to parameter variations. The
evolutionary algorithms can select the controller parameters
to every desired control index [24]–[26]. The aforementioned
techniques allowed obtaining better dynamical characteristics
of the system, as compared to the classical ones, but they are
not yet popular in industrial applications.

The control structures of electrical drives working in the
industry are usually based on linear PI controllers. Despite a
large number of publications, to our knowledge, there is a lack
of papers that provide comprehensive and comparative results.
Usually, one or two structures are examined and compared,
and quite frequently analytical formulas allowing setting the
controller parameters are missing. A survey of those control
structures with analytical equations, which can provide adjust-
ment of the control system parameter, is sought after.

Thus, the main goal of this paper is a systematic analysis and
a presentation of the design guidelines for the speed control
structures of the two-mass system with a PI speed controller
that is supported by different additional feedbacks as well as
a comparison of the dynamic properties of such structures.
Aside from the structures mentioned in the introduction, in
this paper, three additional structures were analyzed: two with
feedback inserted to the torque loop and one with feedback
inserted to the speed loop. Due to the limited length of this
paper, the comparative studies were confined only to the control
methods based on the additional feedbacks from the shaft and
the load side. This paper does not include methods based
on the feedback from the estimated load torque [9]–[11] or
state controller [16], [17]. In addition, the description of the
estimating methods of nonmeasurable variables [16]–[19] was
not included in this paper. The theoretical investigation and the
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Fig. 1. Schematic diagram of the two-mass system.

simulation results presented in this paper were confirmed by
experimental tests in a laboratory setup.

II. MATHEMATICAL MODEL OF THE SYSTEM

In technical papers, there exist many mathematical models
that can be used for the analysis of the plant with elastic
couplings. In many cases, the drive system can be modeled as
a two-mass system, where the first mass represents the moment
of inertia of the drive and the second mass refers to the moment
of inertia of the load side. The mechanical coupling is treated as
inertia free. The internal damping of the shaft is sometimes also
taken into consideration. The schematic diagram of that model
is presented in Fig. 1.

The system is described by the following state equation:

d

dt
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 =
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where Ω1 is the motor speed, Ω2 is the load speed, Me is the
motor torque, Ms is the shaft (torsional) torque, ML is the load
torque, J1 is the inertia of the motor, J2 is the inertia of the load
machine, Kc is the stiffness coefficient, and D is the internal
damping of the shaft.

The aforementioned model is valid for the system where
the moment of inertia of the shaft is much smaller than the
moment of inertia of the motor and the load side. In other
cases, the more extended model should be used, as the Rayleigh
model of the elastic coupling or even a model with distributed
parameters. The suitable choice of the mathematical model is a
compromise between accuracy and calculation complexity. As
can be concluded from the literature, nearly in all cases, the
simplest inertia-shaft-free model has been used [1]–[12].

The resonant fr and antiresonant far frequencies of the two-
mass system are defined as follows:

fr =
1
2π

√
Kc

J1 + J2

J1J2
far =

1
2π

√
Kc

J2
. (2)

The value of the resonant frequency depends on the type of
drive, can vary from a few hertz in a paper machine section [12]
to dozens of hertz in a rolling-mill drive [15], and can exceed
hundreds hertz in modern servo drives [14]. The value of the
antiresonant frequency can be even ten times smaller than the
resonant one in a dryer [12], but usually the difference is much
smaller (smaller than two).

Fig. 2. Block diagram of the two-mass system.

To simplify the comparison of the dynamical performances
of the drive systems of different powers, the mathematical
model (1) was expressed in a per-unit system, using the fol-
lowing notation of new state variables:

ω1 =
Ω1

ΩN
ω2 =

Ω2

ΩN

me =
Me

MN
ms =

Ms

MN
mL =

ML

MN
(3)

where ΩN is the nominal speed of the motor; MN is the
nominal torque of the motor; ω1 and ω2 are the motor and load
speeds, respectively; me, ms, and mL are the electromagnetic,
shaft, and load torques in the per-unit system, respectively.

The mechanical time constant of the motor T1 and the load
machine T2 are, thus, given as

T1 =
ΩNJ1

MN
T2 =

ΩNJ2

MN
. (4)

The stiffness time constant Tc and internal damping of the
shaft d can be calculated as follows:

TC =
MN

KcΩN
d =

ΩND

MN
. (5)

The block diagram of the two-mass system in the per-unit
system is presented in Fig. 2 (where s is the Laplace operator).

III. CONTROL STRUCTURE ANALYSIS

A. General Remarks

A typical electrical drive system is composed of a
power-converter-fed motor coupled to a mechanical system;
microprocessor-based speed and torque controllers; and cur-
rent, speed, and/or position sensors used for feedback signals.
Usually, a cascade control structure containing two major con-
trol loops is used. The diagram of such system is presented
in Fig. 3.

The inner control loop performs motor torque regulation
and consists of a power converter, the electromagnetic part of
the motor, and current sensor and respective current or torque
controller. Therefore, this control loop is designed to provide
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Fig. 3. Classical control structure of the drive system.

Fig. 4. Control structure with different additional feedbacks.

sufficiently fast torque control, so it can be approximated by an
equivalent first-order term. In the case of the induction motor, it
could be a field-oriented or direct torque control method; in the
system with dc motors, it is usually a PI current controller tuned
with the help of modulus criterion. If this control is ensured, the
type of driven machine makes no difference for the outer speed
control loop. This outer control loop consists of the mechanical
part of the drive, speed sensor, and speed controller, and is
cascaded to the inner torque control loop. It provides speed
control according to its reference value.

As it was said before, the suitable oscillation damping of
the two-mass system can be obtained using different additional
feedbacks [3]–[8]. The block diagram of the drive system with
a simplified inner loop and additional feedbacks reported in the
literature is presented in Fig. 4. The internal damping coeffi-
cient d of the shaft has a very small value in a typical industrial
drive and, therefore, was neglected in the further analysis.

The control structures were divided into three different
groups according to their dynamical characteristics. In the
further analysis, three additional feedbacks (k2, k6, and k7

in Fig. 4), which were not mentioned in the literature, were
introduced, i.e., the feedback from the derivative of the speed

difference (ω1 − ω2) in group A, the feedback from the load
speed in group B, and the feedback from the derivative of the
shaft torque in group C.

In the literature, every feedback has a specific name. It
creates an impression of a large number of possibilities to
shape the dynamical characteristics. However, the link between
different feedbacks (in every group) can be found out from
Fig. 4. The relationship can be directly seen between feedbacks
k4 and k5 in group B: the derivative of the shaft torque is simply
the difference between the motor and load speeds multiplied
by the stiffness coefficient. The same relationship exists be-
tween the feedbacks k7 and k8 in group C. The last feedback
k9 is based on the motor and load speeds. The link between
feedbacks k1 and k2 is not so clearly seen in group A. However,
if the electromagnetic and load torques are neglected, the
derivative of the difference speeds is the shaft torque multiplied
by the following coefficient: d(ω1 − ω2)/dt = −ms(1/T1 +
1/T2). Thus, despite of nine feedbacks, which were introduced
as additional closed loops in the cascade control structure,
in fact, only three types of control structures exist, whose
dynamical characteristics are different, as it was presented in
Fig. 4. It will be proved in the succeeding sections of this paper.
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The closed-loop transfer functions from the reference speed
to the motor and load speeds, respectively, for the control
structure demonstrated in Fig. 4, are given by (6) and (7),
shown at the bottom of the page (with the assumption that
the optimized transfer function of the electromagnetic-torque
control loop is equal to 1), where

Gr(s) = KP + KI
1
s

(8)

is the transfer function of the PI controller.

B. Cascade Control Structure Without Additional Feedbacks

First, the control structure without additional feedback was
considered. The characteristic equation of the analyzed system
is given by

s4 + s3

(
KP

T1

)
+ s2

(
KI

T1
+

1
T1Tc

+
1

T2Tc

)

+ s

(
KP

T1T2Tc

)
+

KI

T1T2Tc
= 0. (9)

The desired polynomial of the system has the following form:(
s2 + 2ξω0s + ω2

0

) (
s2 + 2ξω0s + ω2

0

)
= 0 (10)

where ξ is the damping coefficient and ω0 is the resonant
frequency of the closed-loop system.

Equation (10) can be rewritten as follows:

s4 + s3(4 ξω0) + s2
(
2ω2

0 + 4 ξ2ω2
0

)
+ s

(
4 ξω3

0

)
+ ω4

0 = 0.
(11)

Through the comparison of relationships (9) and (11), the set
of four equations is created, i.e.,

4 ξω0 =
KP

T1
(12a)

2ω2
0 + 4 ξ2ω2

0 =
KI

T1
+

1
T1Tc

+
1

T2Tc
(12b)

4 ξω3
0 =

KP

T1T2Tc
(12c)

ω4
0 =

KI

T1T2Tc
. (12d)

Solving the equation set (12), the parameters of the system,
i.e., damping coefficient ξ and resonant frequency ω0, as well
as the controller parameters, i.e., KP and KI , are obtained as

ξ =
1
2

√
T2

T1
ω0 =

√
1

T2Tc
(13)

KP =2
√

T1

Tc
KI =

T1

T2Tc
. (14)

The damping coefficient of the system depends on the inertia
ratio defined as R = T2/T1. The decrease of the R value causes
the larger and slowly damped oscillations in the system step
response. In Fig. 5, the transients of the investigated control
structure for system parameters T1 = 0.203 s, Tc = 0.0026 s,
T2 = 0.203 s, and (R = 1) are presented.

The closed-loop system with the PI controller is of the
fourth order. Because there are only two parameters of the PI
controller, it is not possible to locate all the poles of the control
structure without additional feedbacks independently. In order
to improve the dynamical characteristics of the system, the
application of additional feedbacks from selected state variables
is necessary. As it was said before, the modified structures can
be divided into three groups with respect to their dynamical
characteristics. The parameters of all the systems presented
here were calculated similarly with those of the system without
additional feedbacks—using the pole-placement method.

C. Control Structures With Additional Feedbacks—Group A

This group includes the modified control structures with ad-
ditional feedbacks from the shaft torque k1, from the derivative
of the difference between the motor and load speeds k2, or from
the derivative of the load speed k3.

First, the control structure with additional feedback from
shaft torque k1 was investigated. The damping coefficient and
resonant frequency of this structure with the PI speed controller
are the following:

ξk1 =
1
2

√
T2(1 + k1)

T1
ωk1

0 =
√

1
T2Tc

. (15)

Gω1(s)=
ω1(s)
ωr(s)

=
Gr(s)(s2T2Tc+1)

s3T2Tc(T1+k2)+s2T2 (Gr(s)Tc+Gr(s)k7+Gr(s)Tck8)+s (T1+T2(1+k1+sk4+sTck5)+k3)+Gr(s)(1+k9)+k6

(6)

Gω2(s)=
ω2(s)
ωr(s)

=
Gr(s)

s3T2Tc(T1+k2)+s2T2 (Gr(s)Tc+Gr(s)k7+Gr(s)Tck8)+s (T1+T2(1+k1+sk4+sTck5)+k3)+Gr(s)(1+k9)+k6

(7)
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Fig. 5. Transients of the two-mass system without additional feedback: (a) motor and load speeds, and (b) electromagnetic and torsional torques.

Fig. 6. Transients of the two-mass system for the control structures of group A with k1, k2, or k3 feedbacks for ξr = 0.7: (a) motor and load speeds, and
(b) electromagnetic and torsional torques.

The following equations allow setting the parameters of the
feedback loop and the speed controller:

k1 =
4 ξ2

rT1

T2
− 1 Kk1

P = 2

√
T1(1 + k1)

Tc
Kk1

I =
T1

T2Tc

(16)

where ξr is the required damping coefficient of the system.
The damping coefficient and resonant frequency of the sec-

ond system belonging to group A, with additional feedback
from the derivative of the difference between two speeds
k2, are

ξk2 =
1
2

√
T2 − k2

T1 + k2
ωk2

0 =
√

1
T2Tc

. (17)

The control structure parameters are given by

k2 =
T2 − 4 ξ2

rT1

4 ξ2
r + 1

Kk2
P = 2

√
(T1 + k2)(T2 − k2)

T2Tc

Kk2
I =

T1 + k2

T2Tc
. (18)

For the next control structure with additional feedback from
the derivative of the load speed k3, the damping coefficient and
resonant frequency are

ξk3 =
1
2

√
T2 + k3

T1
ωk3

0 =
√

1
T2Tc

(19)

respectively.
The control structure parameters are determined in the fol-

lowing way:

k3 = 4 ξ2
rT1 − T2 Kk3

P = 2

√
T1(T2 − k3)

T2Tc
Kk3

I =
T1

T2Tc
.

(20)

In the three mentioned structures, the application of addi-
tional feedback (k1, k2, or k3) increases the damping coeffi-
cient of the drive system, yet the resonant frequency remains
unchanged [see, e.g., (15), (17), and (19)]. The systems have
the same dynamical characteristics because, for every selected
value of the damping coefficient, the characteristic equations of
all three systems have identical forms. In Fig. 6, the transients
of the considered control structures, for the assumed damping
coefficient ξr = 0.7 and the same parameters of the drive, are
presented.
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D. Control Structures With Additional Feedbacks—Group B

Next, the structures of group B with additional feedbacks
from the derivative of torsional torque k4, the difference be-
tween motor and load speeds k5, or the load speed k6, inserted
to the torque node, were tested.

The damping coefficient and the resonant frequency of the
system with additional feedback from the derivative of the shaft
torque k4 are

ξk4 =

√
Tc + x

4T1Tc
(T1 + T2) +

Tc

4(Tc + x)
− 1

2

ωk4
0 =

√
1

T2(Tc + x)
(21)

respectively, where x is the solution of the second-order equa-
tion defined by

x1,2 =
−b ±√

b2 − 4ac

2a
(22)

where

a =T 2
2 (T1 + T2) (23)

b =2T 3
2 Tc − 4 ξ2

rT1T
2
2 Tc (24)

c =T 3
2 T 2

c − 4 ξ2
rT1T

2
2 T 2

c . (25)

Depending on the parameters of the drive system, (22) can
produce two, one, or no real solutions. It means that, for
one assumed value of the damping coefficient ξr, the system
can have a maximum two sets of parameters (B1 and B2)
with different values of resonant frequency. The parameters
of the considered control structure can be calculated using the
following equations:

k4 =xKk4
p Kk4

P =
4 ξrω

k4
0 T1Tc

Tc + x
Kk4

I =
(
ωk4

0

)4

T1T2Tc.

(26)

Then, the control structure with additional feedback from the
difference between the motor and load speeds k5 was investi-
gated. The damping coefficient and the resonant frequency of
the analyzed system are

ξk5 =

√
(T1 + T2)(1 + x)

4T1
+

1
4(1 + x)2

− 1
2

ωk5
0 =

√
1

T2Tc(1 + x)
(27)

respectively.
Parameter x is obtained using (22) with the following coeffi-

cients:

a =T1 + T2 (28)

b = −2T1 − 4T1ξ
2
r (29)

c =T1. (30)

The control structure parameters are, in this case,

k5 = xKk5
p Kk5

P =
4 ξrω

k5
0 T1

(1 + x)
Kk5

I =
(
ωk5

0

)4

T1T2Tc.

(31)

Next, the control structure with additional feedback from the
motor speed k6 was investigated. The damping coefficient and
resonant frequency of this structure with PI speed controller are
the following:

ξk6 =

√
(1 + x)2T1 + T1 + T2

4T1(1 + x)
− 1

2
ωk6

0 =

√
(1 + x)
T2Tc

.

(32)

In this case, parameter x is calculated using (22) with the
following coefficients:

a = T1 (33)

b = −4T1ξ
2
r (34)

c = T2 − 4T1ξ
2
r . (35)

The following equations allow setting the parameters of the
control structure:

k6 = xKk6
p Kk6

P = 4 ξ2ω
k6
0 T1 Kk6

I =
(
ωk6

0

)4

T1T2Tc.

(36)

The considered systems have two sets of parameters B1

and B2, which allow setting the desired value of the damping
coefficient. In Fig. 7, the transients of the control structures
of group B, for the assumed value of the damping coefficient
ξr = 0.7, are demonstrated.

E. Control Structures With Additional Feedbacks—Group C

Group C consists of three structures with additional feed-
backs from the derivative of shaft torque k7, the difference
between the load and motor speeds k8, or the load speed k9.
Unlike the previous two groups, the additional feedback is
inserted to the speed node.

First, the control structure with additional feedback from the
derivative of the torsional torque k7 was examined. The system
damping coefficient and resonant frequency are

ξk7 =
1
2

√
(T1 + T2)(Tc + k7)

T1Tc
− 1 ωk7

0 =

√
1

T2(Tc + k7)
.

(37)
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Fig. 7. Transients of the two-mass system for the control structures of group B with k4, k5, or k6 feedbacks for the (a) and (b) larger and (c) and (d) smaller
values of system resonant frequency for ξr = 0.7: (a) and (c) motor and load speeds, and (b) and (d) electromagnetic and torsional torques.

The control structure parameters are determined in the fol-
lowing way:

k7 =

(
4 ξ2

r + 1
)
T1Tc

T1 + T2
− Tc

Kk7
P = 4 ξr

(
ωk7

0

)3

T1T2Tc

Kk7
I =

(
ωk7

0

)4

T1T2Tc. (38)

Next, the control structure with additional feedback from the
difference between motor and load speed k8 was tested. The
damping coefficient and resonant frequency are

ξk8 =
1
2

√
T1k8 + T2(1 + k8)

T1
ωk8

0 =

√
1

(1 + k8)T2Tc

(39)

respectively.
The control structure parameters are given by

k8 =
ξ2
r4T1 − T2

T1 + T2

Kk8
P =

4 ξrω
k8
0 T1

1 + k8

Kk8
I =

T1

(1 + k8)2T2Tc
. (40)

In the end, the system with additional feedback from the load
speed k9 was considered. The damping coefficient and resonant
frequency of this system are defined as

ξk9 =
1
2

√
T1 + T2

T1(1 + k9)
− 1 ωk9

0 =
√

1 + k9

T2Tc
. (41)

The parameters of the control structure can be calculated
based on the following equations:

k9 =
T1 + T2

T1 (4 ξ2
r + 1)

− 1

Kk9
P =4 ξrω

k9
0 T1

Kk9
I =

T1(1 + k9)
T2Tc

. (42)

The reference value of the last system should be set ac-
cording to the following formula: ω∗

r = ωr(1 + k9). All three
systems have the same dynamical characteristics. The tran-
sients of the drive system for the assumed damping coefficient
ξr = 0.7 are shown in Fig. 8.
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Fig. 8. Transients of the two-mass system for the control structures of group C with k7, k8, or k9 feedbacks for ξr = 0.7: (a) motor and load speeds, and
(b) electromagnetic and torsional torques.

Fig. 9. (a) Closed-loop pole location and (b) load-speed transient of all considered systems.

F. Comparison of Dynamical Performance
of Control Structures

In Fig. 9(a), the closed-loop pole loci of all considered
control systems are presented. These systems are of the fourth
order, and the presented poles are double. The closed-loop pole
location of the system without additional feedback depends
only on the mechanical parameters of the drive [according
to (5)]. The system poles are situated relatively close to the
imaginary axis. The response of the drive system has quite a
large overshoot and settling time.

The closed-loop pole location of the system with one addi-
tional feedback depends on the assumed damping coefficient,
which, in each case, was set to ξr = 0.7.

The closed-loop poles of the system from group B (in this
case, B1) have the highest value of the resonant frequency,
when the additional feedback coefficient (k4, k5, or k6) has
a negative value. The rising time of the speed response of
the mentioned drive is approximately twice as short as that of
the remaining systems. The next faster system is the control
structure belonging to group A. The dynamical characteristics
of the remaining structures (group C and group B2) are quite
similar. In Fig. 9(b), the load-speed transients of all considered
systems are presented. The shape of the curves confirms the
closed-loop pole location analysis.

G. Control Structure With Two Feedbacks

To obtain a free design of the control structure parame-
ters, i.e., the resonant frequency and damping coefficient, the
application of two feedbacks from different groups is neces-
sary. The type of selected feedback from a particular group
is not significant because, as was shown before, feedbacks
belonging to the prescribed group give, in fact, the same re-
sults. Because a large number of possibilities for the choice
of two different feedbacks exist, only one case was consid-
ered here.

The system with additional feedbacks from the derivative of
the difference between speeds (in group A, k2) and from the
difference between the motor and load speeds (in group C, k8)
was investigated. The system resonant frequency and damping
coefficient are determined as follows:

ξk2+k8 =
1
2

√
(T1 + T2)(1 + k8)

4(T1 + k2)
− 1

4

ωk2+k8
0 =

√
1

(1 + k8)T2Tc
. (43)
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Fig. 10. Speed transients of the two-mass system with two additional feedbacks k2 and k8 for ξr = 0.7 and two different values of the resonant frequency
(a) ωr = 40 s−1 and (b) ωr = 60 s−1.

Fig. 11. Schematic diagram of experimental setup.

The additional feedback coefficients should be calculated in
the following way:

k8 =
1(

ωk2+k8
r

)2

T2Tc

− 1 k2 =
(T1 + T2)(1 + k7)

(4 ξr)2 + 1
− T1

(44)

where ωr is the required resonant frequency of the system.
Thus, the parameters of the PI controller are calculated using

the following expressions:

Kk2+k8
P =

4 ξrω
k2+k8
r (T1 + k2)

1 + k8

Kk2+k8
I =T2Tc(T1 + k2)

(
ωk2+k8

r

)4
. (45)

In Fig. 10, the system speed transients for two required
values of the resonant frequency and the damping coefficient
ξr = 0.7 are presented. It is seen that the system dynamics can
be programmed freely.

IV. RESULTS OF EXPERIMENTAL TESTS

All theoretical considerations were confirmed experimen-
tally. The laboratory setup, which is presented in Fig. 11, was
composed of a dc motor driven by a four-quadrant chopper. The
motor was coupled to a load machine by an elastic shaft (a steel
shaft with a diameter of 5 mm and a length of 600 mm). The
load machine was also a dc motor. The motors had a nominal
power of 500 W each. The speed and position of both motors
were measured by incremental encoders (5000 pulse/rotation).
The mechanical system had a natural frequency of approxi-
mately 9.5 Hz. The control and estimation algorithms were
implemented by a digital signal processor using the dSPACE
software. To avoid the limitation of the electromagnetic torque,
the reference value was set to 25% of the nominal speed.
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Fig. 12. Experimental transients of the system without additional feedback: (a) motor and load speeds, and (b) electromagnetic and torsional torques.

Fig. 13. Experimental transients of the system with additional feedback from the derivative of the difference between speeds k2 (group A) for ξr = 0.7:
(a) motor and load speeds, and (b) electromagnetic and torsional torques.

The first considered control structure was the system with a
PI controller without additional feedback, which was designed
according to (13) and (14). As shown in Fig. 12(a), the load
speed of the system has a large overshoot and a quite long
settling time. The maximum value of electromagnetic torque
is about 1.4 the value of the nominal torque [Fig. 12(b)].

Next, the system with additional feedback from the derivative
of the difference between motor and load speeds k2 was inves-
tigated (the group A). The damping coefficient of the control
structure was set, similarly as in simulation tests, to ξr = 0.7.
The transients of the system fulfill the assumed dynamical
characteristics; the overshoot is small, and the torsional vibra-
tions are damped successfully (Fig. 13).

Then, the control structure with additional feedback from the
difference between speeds k5 was examined (group B). This
system has two sets of parameters, which allow setting the
desired value of the damping coefficient. First, the drive system
with a larger value of resonant frequency was investigated. In
Fig. 14(a) and (b), the system transients are presented. The
responses to the speed reference change as well as the load
torque change are very fast, which is clearly seen in the motor-
speed transient. However, the maximum value of electromag-
netic torque during startup was four times larger than the
nominal one.

Then, the drive system with a smaller value of resonant
frequency was tested. The system transients are shown in
Fig. 14(c) and (d). The load speed has a small (assumed) value
of overshoot; in this case, the value of resonant frequency was
much smaller, and the electromagnetic torque under transients
does not reach values that are larger than the nominal one.

The next examined system was the structure with additional
feedback from the difference between the motor and load
speeds inserted in the speed node (k8 for group C). In Fig. 15,
the transients of the analyzed system are presented. The load-
speed overshoot has a small value, resulting from the assumed
value of the system damping coefficient, similarly as in simula-
tion tests.

Finally, the control structure with two additional feedbacks
from the derivative of the difference between speeds k2 and
the difference between the motor and load speeds k8 was
tested. The system with two feedbacks ensures free design of
mechanical characteristics, which is illustrated in Fig. 16.

The presented results confirmed the analytical investigations
and simulation tests. The slight difference between the real and
simulation transients comes from the fact that, in real-system
nonlinearities such as friction, the nonlinear characteristic of
the shaft, which has been neglected in the simulation, exists,
and the perfect derivative part applied in some structures was
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Fig. 14. Experimental transients of the system with additional feedback from the difference between speeds k5 in (a) and (b) group B1 and (c) and (d) group
B2 for ξr = 0.7: (a) and (c) motor and load speeds, and (b) and (d) electromagnetic and torsional torques.

Fig. 15. Experimental transients of the system with additional feedback from the difference between speeds k8 (group C) for ξr = 0.7: (a) motor and load
speeds, and (b) electromagnetic and torsional torques.

replaced with a pseudoderivative term with small (3 ms) time
constant.

V. CONCLUSION

In this paper, different cascade control structures with
additional feedbacks for the electrical drive system with a
flexible connection were investigated. To calculate the control
system parameters, the classical pole-placement method was

implemented. The performances of the control structure with-
out additional feedback depend on the mechanical parameters
of the considered drive and are rather poor. This results from the
fact that the system is of the fourth order and there are only two
controller parameters (KI ,KP ), which cannot form the desired
damping coefficient and resonant frequency simultaneously.
In order to damp the torsional vibrations effectively, the
application of one additional feedback is necessary. Resulting
from the review of the literature, the application of different
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Fig. 16. Experimental speed transients of the system with additional feedbacks from group A (k2) and group C (k8) for ξr = 0.7 and two different values of
the resonant frequency (a) ωr = 40 and (b) ωr = 60.

feedbacks is possible. Despite of the large number of existing
structures, the systems with one additional feedback can be
divided into three different groups, according to their dynamical
characteristic. It was proved in this paper that all structures
within a certain group have the same pole placement and, thus,
the same transient responses.

The structures with one additional feedback ensure setting
the desired value of the damping coefficient, yet the required
value of the resonant frequency cannot be adjusted at the same
time. The best dynamical characteristics are obtained in the
control structure from group B1. The resonant frequency of
that system is about twice higher than of those the remaining
structures.

If the design specifications require the free setting of the
damping coefficient and resonant frequency simultaneously, the
application of two additional feedbacks is necessary. Because
the control structure with the PI controller and two additional
feedbacks has four parameters and the system is of the fourth
order, the closed-loop poles can be placed in every desired
position. The theoretical assumptions and analysis developed in
this paper were confirmed by simulation and experimental tests.
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