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Abstract

A systems analysis of an extrusion cooking process for pu�ed corn snack products revealed that the speci®c mechanical energy

(SME) and screw speed (SS) was a desirable pairing of measured and manipulated variables, respectively for regulating extrudate

density. To facilitate the design of an SME model-based control system, a discrete-time transfer function that depicts the dynamic

response of motor load (ML) to changes in SS is required. The research literature describes several o�-line techniques for developing

such transfer function models but no methods for on-line system identi®cation were found. This paper represents the ®rst of two

articles that describe our investigations into the use of on-line system identi®cation for automatic tuning and adaptive control of a

high-shear twin-screw extrusion process. This paper reports results for using various system identi®cation schemes in combination

with relay-feedback as a way to derive, in real-time, a transfer function model that accurately depicts the dynamical behavior of an

extrusion cooking process. A Wenger TX-52 co-rotating twin screw extruder was subjected to relay feedback during the processing

of cornmeal for a breakfast cereal formula under di�erent moisture and screw speed conditions. The data obtained from these

experiments were used to derive ®rst-, second- and third-order discrete-time transfer functions. An analysis of the resulting transfer

functions revealed that a ®rst-order lead-lag transfer function structure adequately described the dominant dynamic behavior of the

process in all cases. Next, batch and recursive implementations of least-squares, extended least-squares, output error, maximum

likelihood, Box±Jenkins and predictive error algorithms were used to derive parameters for the ®rst-order transfer function. Overall,

the batch output error method provided good transfer function estimates over the range of product and process conditions stud-

ied. Ó 2000 Elsevier Science Ltd. All rights reserved.
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List of symbols

SS screw speed (rpm)
SSr rated screw speed (rpm)
FR feed rate of ingredients other

than water added (kg/min)
Pr rated motor power (kJ/s)
ML motor load (%)
MC melt moisture content (% wet

basis)
TM temperature of the melt at the die

(°C)
WA water added (kg/min)
FM feed moisture (% wet basis)
DP die pressure (kPa)
SME speci®c mechanical energy (kJ/kg)

e stationary, white, normally dis-
tributed random disturbance
variable

k discrete time sampling instant
an, bn, cn, dn, fn parameters of the z-transform

models in polynomial form. The
parameters represent the coe�-
cients of the polynomials A, B, C,
D and F, respectively. The index
of each coe�cient is designated
by a value n

an, bn, cn, dn,
/n

parameters of the z-transform
models in pole±zero form. The
parameters represent the roots of
the polynomials A, B, C, D and
F, respectively. The index of each
root is designated by value n

K gain for zero±pole transfer func-
tion models
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1. Introduction

1.1. Extrusion processing

Over the past several decades, twin-screw extrusion
cooking has become a popular method to manufacture
ready-to-eat cereal products such as breakfast cereals
and snack foods. In large part, this popularity is due to
the extraordinary capability of the twin-screw extruder
to combine blending, bioreaction, cooking, pu�ng and
forming operations into one e�cient continuous pro-
cess. In particular, extrusion cooking provides a unique
means of producing pu�ed products by the ¯ash evap-
oration of water upon passing through the extruder die.
However, the development of a `turn-key' automatic
extruder control system has been hampered by the
general lack of insight into the complex transport
properties that occur during extrusion processing and
their relationship to ®nished product quality. Conse-
quently, investigators working in this area have devel-
oped mathematical models that attempt to describe the
extrusion cooking process to aid in automatic process
control design. Models based on ®rst principles have
been developed by several investigators for twin screw
extrusion cooking processes (e.g., Kulshreshtha, Zaror
& Jukes, 1991a; Kulshreshtha Zaror, Jukes & Pyle,
1991b; Tayeb, Vergnes & Valle, 1989; Kulshreshtha,
Zaror & Jukes, 1995; Mohamed & Ofoli, 1990; van
Zuilichm, van der Laan & Kuiper, 1990), but it is di�-
cult to use such mechanistic models as the basis for an
automatic control system. Such models require extensive
knowledge of engineering properties that describe the
chemical, rheological and physical, and thermodynamic
properties of the plasticized biopolymer melt and their
interactions within the extruder. Many of these prop-
erties and their transport processes in general are either
unknown or not well de®ned for the extreme process
conditions that exist within an extruder during opera-
tion. In addition, ®rst principles models do not depict
the stochastic disturbances characteristic of extrusion
processing. The appearance of non-homogeneous feed-
stock components, transient surging behavior, low fre-
quency vibration harmonics from the rotating screws
and sensor noise can contribute to stochastic distur-
bances that vary depending on the feedstock composi-
tion, screw con®guration and operating conditions used.
Such disturbances are important in the context of con-
trol design.

While ®rst principle models can be useful for extruder
equipment design, experimentally determined transfer
function models are generally used for controller design.

Furthermore, any stationary non-white stochastic dis-
turbance present in the process can be suitably modeled
by ®ltering white noise through a transfer function.
Transfer function models are developed from observa-
tions of the input±output behavior of a process. Typi-
cally, the identi®cation of a transfer function is made by
®rst conducting an experiment where the process is
subjected to a change in some manipulated variable and
measuring the response of one or more output variables.
A parameter estimation algorithm is then used to ®nd a
transfer function that best describes the observed input±
output response.

Transfer functions for extrusion cooking processes
have been derived using continuous-time transfer func-
tions (Moreira, Srivastava & Gerrish, 1990; Lu, Mul-
vaney, Hsieh & Hu�, 1993; Cayot, Bounie & Baussart,
1995), as well as discrete-time transfer functions (Hofer
& Tan, 1993; Chang & Tan, 1993a; Chang & Tan,
1993b). In those studies, all system identi®cation was
performed using o�-line experiments followed by o�-line
development of transfer function models. In many cases,
it was reported that the transfer functions were subse-
quently used to derive automatic controllers. However,
the controllers developed were only suitable for the
limited process and operating conditions studied during
the system identi®cation experiments. Given the wide
range of dynamic behavior that can result from varying
product and processing conditions, many investigators
have concluded that some means of on-line system
identi®cation for automatic tuning and adaptive control
of extrusion processing is desirable (Moreira et al., 1990;
Kulshreshtha et al., 1991a; Hofer & Tan, 1993; Kulsh-
reshtha et al., 1995). However, a feasible method for on-
line identi®cation of the dynamic behavior of extrusion
cooking processes has not been reported to date. This
paper represents the ®rst of two articles that describe
our investigations into the development of an on-line
system identi®cation procedure for use in automatic
tuning and/or adaptive control of high-shear twin-screw
extrusion processes. The contribution reported in this
paper is the comparative evaluation of several on-line
system identi®cation methods for use with a twin-screw
extrusion cooking process. The second paper will focus
on the use of such a system for automatic control of
pu�ed corn snack density.

1.2. Systems analysis of extrusion cooking

Although many di�erent cereal products are made
using extrusion cookers, each process shares some
common process characteristics relevant to process
control (Fig. 1). In a typical extrusion cooking process,
the manipulated variables are dry ingredient feed rate
(FR), added water (WA), screw speed (SS) and barrel
jacket temperature (BT). The process variables are in-
barrel melt moisture content (MC) calculated from WA

RMS root mean squared error
PRBS pseudo random binary sequence
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and feed moisture (FM), percent motor power con-
sumed as indicated by motor load (ML), pressure at the
die (DP), and product melt temperature (TM). Thus,
from a systems perspective, extrusion cooking can be
viewed as a 4 input ´ 4 output process. To facilitate
system identi®cation for subsequent control design, it is
desirable to reduce, if possible, the dimensionality of the
system to be controlled. This can often be done by ap-
plying a systems analysis whereby those process vari-
ables that have little or no correlation to the product
quality characteristics of interest are eliminated from the
pool of available inputs and outputs.

1.3. Selection of controlled variables

Numerous experimental studies have demonstrated
the importance of speci®c mechanical energy (SME) in
high shear extrusion cooking processes. SME was ®rst
identi®ed as a system parameter, along with speci®c
thermal energy input and residence time distribution, by
Meuser, van Lengerich and Kohler (1982). SME is re-
ferred to as a system variable because it is a�ected by
virtually all extrusion formula and process parameters,
and in turn a�ects the melt temperature and degree of
polymerization of starch (van Lengerich, 1990). The vast
majority of cereal and/or snack food extrusion cooking
processes are conducted at in-barrel moisture contents
of about 30% or less. Under these conditions, most (or
all) of the energy input into the process is re¯ected by
the SME, due to very limited (if any) heat transfer into
the melt via barrel heating. Therefore, a systems analysis
view of a reproducible extrusion cooking process might
be stated as the application of the same shear stress, as
indicated by SME, to a melt of the same rheology,
which is largely determined by its in-barrel moisture
content. All other things being equal, this combination
should also provide a reproducible melt temperature
and extrusion pressure at the die. Alternatively, ma-
nipulation of SME would be a powerful and convenient
means of altering the thermomechanical treatment

during an extrusion cooking process and manipulating
extrudate characteristics. Thus, it remains to select a
manipulated variable to pair with SME in a closed loop
controller.

SME has been recently identi®ed by several re-
searchers in the ®eld as a critical variable for process
control in some high-shear twin screw extrusion pro-
cesses (Lu, Hsieh, Mulvaney, Tan & Hu�, 1992; Lu et
al., 1993; Onwulata, Mulvaney & Hsieh, 1994). In fact,
experimental studies have demonstrated that at steady
state, SME is highly correlated with TM and that ex-
trudate density is highly correlated with SME and MC
(Onwulata et al., 1994). This suggests that SME could
be used in lieu of TM as a controlled process variable for
regulating extrudate density in high-shear (low mois-
ture) extrusion cooking processes.

1.4. Selection of a manipulated variable

Within a manufacturing setting, controller design
must consider production objectives as well as quality
objectives. Process e�ciency is maximized when FR is
set for a high throughput. This constraint practically
eliminates FR as a manipulated variable. For high shear,
low moisture extrusion cooking, BT has a negligible
in¯uence on SME as discussed above. Consequently, of
all the manipulated process variables available, SS ap-
pears best suited for controlling SME. This observation
was also reported by Onwulata et al. (1994). It should be
pointed out that moisture content has a large e�ect on
SME at moisture contents less than about 30%. How-
ever, the view taken here is that the moisture content in
a sense determines the `polymer' being extruded, and
should be controlled to a particular level by the amount
of water added to the dry feed. In this way, control of
SME can then be considered as a means of controlling
the exit temperature and/or molecular degradation
properties of this base polymer. A second manuscript
will demonstrate how SME can be used as an indirect
means of regulating extrudate density in a high shear

Fig. 1. Process variables available for measurement and control in twin screw extrusion cooking processes.
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extrusion pu�ng process. However, given that the ex-
trusion dynamics are strongly a�ected by moisture
content, which is also a primary formulation speci®ca-
tion, it would be desirable to determine the dynamics
on-line so that an SME regulator could be tuned based
on current dynamic behavior.

1.5. Variable reduction

Using the foregoing analysis, the system dimensio-
nality can be reduced from 4 inputs ´ 4 outputs to 1
input (SS) ´ 1 output (SME). However, SME is not
truly a measured variable but rather a function, as
shown in Eq. (1), of several process variables SS, ML,
FR and WA. Since ML is the only output variable in Eq.
(1), it is clear that the dynamic response of SME to
changes in SS originates from the dynamic response of
ML to changes in SS.

SME�kJ=kg� � Pr�kJ=s� � 60�sec=min� � SS�rpm�
SSr�rpm�

� ML�%�
FR�kg=min� � WA�kg=min� : �1�

Therefore, a transfer function that models the dynamic
response of ML to changes in SS is required. Once such
a transfer function is available, it is then relatively
straightforward to use Eq. (1) to model the complete
response of SME to changes in SS.

1.6. System identi®cation

A typical system identi®cation procedure is to ®rst
conduct an experiment whereby one or more manipu-
lated variables are modulated to excite the process dy-
namics. Second, a parameter estimation algorithm is
used to ®nd those transfer function parameters that give
the best agreement between the model output and the
measured output. Third, validation tests assure that the
resulting model accurately depicts the dynamic behavior
of the process. Automation of this system identi®cation
procedure within a control system provides an on-line
automatic tuning or adaptive mechanism that requires
little or no operator intervention.

1.7. Input excitation

The classical excitation method is to subject the
process to a step change in some manipulated variable
and subsequently measure the open loop response of
one or more measured variables. This step response
method has been reportedly used for identi®cation of
extruder dynamics (Moreira et al., 1990; Lu et al., 1993;
Cayot et al., 1995). However, such step response tests
only excite low frequency components of the process.
They often are unable to su�ciently excite the process at

its )180° phase crossover frequency and result in dy-
namic models that do not re¯ect the process well at these
higher frequencies. Incorrect modeling of dynamics at
the phase crossover frequency can result in derived
controller parameters that provide unstable closed-loop
behavior (�Astr�om & Hagglund, 1984). Thus, depending
on the complexity of the process dynamics, a transfer
function derived from step response tests may not be a
good model for closed-loop control design.

Another common method used to excite the process
dynamics is to modulate the manipulated variable ac-
cording to an input pro®le based on a pseudo-random
binary sequence (PRBS). Similar to the step response,
this method is also performed in open loop. Such
methods have also been applied to system identi®cation
of extruder dynamics (Hofer & Tan, 1993; Chang & Tan,
1993a, b). PRBS patterns are capable of exciting the
process across a wide spectrum of frequencies. However,
because PRBS experiments are performed in open-loop,
it may be di�cult to know a priori the frequency range or
magnitude to use for generating the input.

In contrast to the step response and PRBS methods,
which are performed in open loop, relay feedback is an
alternative method for providing input excitation in
closed loop. The fact that relay feedback is done in
closed loop allows processes that are open loop unstable
(e.g., integrated processes) to be stabilized during system
identi®cation experiments. For system identi®cation,
relay feedback has the important advantage that little or
no a priori information about the dynamic behavior of
the process is required. Under relay feedback, many
processes exhibit limit cycle oscillations at their natural
frequency. Once relay oscillations are initiated, the
magnitude of the input signal can be adjusted in real
time to achieve minimal output oscillation amplitude.
This feature can be important, for example, if the
identi®cation is done during manufacturing where out-
put variation must be kept to a minimum. Since relay
feedback provides direct information regarding the
natural frequency of the process, it has been used to
derive automatic tuning parameters on-line for propor-
tional-integral-derivative (PID) controllers (�Astr�om,
Hagglund & Wallenborg, 1993). More importantly, re-
lay feedback has also been used as a method to provide
input excitation for subsequent estimation of transfer
function model parameters (�Astr�om & Hagglund, 1984;
�Astr�om, 1988; �Astr�om et al., 1993).

1.8. Transfer function modeling

Processes regulated by digital controllers are often
modeled using a discrete time transfer function such as
the following z-transform:

A�zÿ1�y�k� � B�zÿ1�
F �zÿ1� u�k� �

C�zÿ1�
D�zÿ1� e�k�: �2�
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Discrete time transforms have been described in the
food engineering literature as a means to model the time
dependent behavior of processes (Salvadori, Sanz,
Alonso & Mascheroni, 1994). The z-transform exhibits a
time shift property. That is, for example, zÿ1y�k� �
y�k ÿ 1�. This property makes the z-transform an ex-
tremely valuable tool for the study of discrete time
systems. In Eq. (2), A, F, C and D are polynomials in zÿ1

that are monic (i.e., the leading polynomial coe�cients,
a0, f0, c0 and d0, equal 1), B is a polynomial in zÿ1 whose
number of leading zero-valued coe�cients equal the
time delay in units of the sampling interval. The integer
k denotes the discrete time sampling instant
�k � 0; 1; 2; . . .�. The variables u(k) and y(k) denote the
values of the process input and output, respectively at
sampling instant k. Polynomials A, F and D describe the
present output in terms of past values of the output.
Discrete-time models that incorporate these polynomials
are often referred to as having auto-regressive compo-
nents. The polynomial B describes the present output in
terms of present and past values of the input. Models
that use these polynomials are often referred to as
having external or exogenous components. The poly-
nomial C describes the present output in terms of pre-
sent and past values of process disturbances. Models
with these polynomials are referred to as having moving
average components.

While Eq. (2) represents an extremely ¯exible model
structure, it is much too general to use in practical ap-
plications. Therefore, the model structure for a partic-
ular process of interest is made by combining only some
auto-regressive components with possibly some moving
average and exogenous components. Finding a suitable
model structure thus involves determining the order of
those polynomials in Eq. (2) that best mimic the dy-
namic behavior of the process. Using a set of process
input and output data, any selected model structure can
be parameterized. The ®nal model structure selected to
represent the process dynamics should be a trade-o�
between ¯exibility and accuracy. In most cases, this is
the simplest model structure that best minimizes some
residual error norm. Prior knowledge of time delays and
disturbance characteristics can help to formulate an
initial model structure that can then be veri®ed through
experimentation.

Di�erent parameter estimation algorithms are avail-
able for model development. These algorithms di�er by
(1) which objective function is used to search for pa-
rameters, (2) which simplifying assumptions and ap-
proximations are made and (3) how process
disturbances are handled. Di�erent estimation methods
have di�erent convergence and parameter accuracy
properties that depend on the number of measurement
samples available, the statistical distribution of distur-
bance noise, the signal-to-noise ratio in the measure-
ment data, the model structure selected and whether

they are implemented as a recursive or as a batch al-
gorithm. Consequently, the success or failure of any one
method to converge to a set of satisfactory parameter
estimates can depend on the initial parameter estimates
used, the number of data samples evaluated, and
whether any mechanisms are employed to restrain the
estimated parameters to values that result in a stable
transfer function estimate. In addition, parameter esti-
mation algorithms can be further grouped according to
whether they are implemented as a batch or recursive
identi®cation method. Batch identi®cation is performed
after the process data have been collected and stored,
whereas recursive identi®cation is performed every
sampling instant as new process data become available.
Batch identi®cation methods analyze a segment of the
input±output data together as a group, and therefore,
are good candidates for time-invariant processes whose
model parameters do not need to be frequently updated.
Batch identi®cation often requires a large amount of
computational memory that is proportional to the
number of data samples analyzed. In contrast, recursive
identi®cation methods provide updated parameter esti-
mates at each sample interval as newly acquired input±
output data become available. Recursive methods are
good candidates for time-varying processes whose
model parameters require frequent updating. The
amount of memory required for recursive identi®cation
is proportional to the number of parameters to be es-
timated and is typically much smaller than that re-
quired for batch algorithms. Batch identi®cation
methods can accommodate complex non-linear opti-
mization methods that require numerical analysis,
whereas recursive methods can only provide an ap-
proximation to these methods. Consequently, for a
given parameter estimation algorithm, the batch im-
plementation may provide better parameter estimates
than its corresponding recursive implementation. The
bottom line is that if computer memory is available and
if model parameters do not need to be updated at every
sampling instant then batch estimation is probably the
method of choice. Otherwise, recursive estimation
should be considered.

1.9. Validation

Once a transfer function has been estimated, the re-
sulting model is validated against an independent set of
process input and output data that have not been used
for model development or training. The performance of
a model trained on one data set and evaluated using
another independent data set is considered statistically
signi®cant for assessing con®dence in the model (Ripley,
1996). Several objective measures to evaluate model
performance are time and frequency domain error
norms, the location and variance of estimated poles and
zeros, residual error correlation and normality tests.
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2. Experimental objectives

It is important to note that while system identi®cation
experiments for high shear twin-screw extrusion pro-
cesses have been reported in the literature, no analysis
has been presented that evaluates the use of relay feed-
back as an on-line system identi®cation method. Fur-
thermore, we could not ®nd any research that compares
the various parameter estimation methods and their
batch and recursive implementations. Such information
is required to develop automatic tuning and adaptive
control systems for extrusion processing. Therefore, the
speci®c experimental objectives of this work were to (1)
evaluate relay feedback as an excitation method to
identify the dynamic behavior of an extrusion cooking
process and (2) evaluate various parameter estimation
methods for deriving suitable transfer function models.
Based on the system analysis presented earlier, the dy-
namic response of ML to changes in SS over a range of
extrusion processing conditions was examined.

3. Materials and methods

All experimental studies were conducted using a co-
rotating twin screw extruder with a screw diameter of 52
mm (Model TX-52 Wenger Manufacturing; Sabetha,
KS) driven by a 22.37 kW (30 hp) DC drive motor. The
extruder barrel was of a clamshell design, and was
horizontally split and vertically segmented into modules
or barrelheads. Each head had a length of ®ve screw
diameters that were internally cored to permit external
heating or cooling of the extrudate using a suitable heat
transfer ¯uid. All extruder variables could be visually
monitored and manually adjusted at the operatorÕs
control panel.

During the experimental studies, all processing con-
ditions were continuously measured by sensors located
on the extruder. Five experimental runs were conducted,
one under medium shear conditions and four under high
shear conditions. In the medium shear experiment, the
measurements were automatically recorded at a rate of
0.5 Hz by a Yokogawa 2400 digital data recorder. An
IBM P-70 personal computer running Yokogawa HR
2400S data acquisition software was used to collect the
data logged from the data recorder via an RS-232 serial
protocol. The collected data was stored onto a diskette
for later analysis.

In the high shear experiments, the measurements were
automatically recorded at a rate of 10 Hz via an IBM
ADC card that was interfaced directly to the backplane
of an IBM XT personal computer. The software used to
acquire and archive the measurement data was Asy-
stant+(Version 1.0) supplied by McMillan and Com-
pany (1987). All analyses were performed using
MATLAB version 4.2b and SIMULINK version 1.3a

(The MathWorks; Natick, MA). The comparison of
various parameter estimation methods was done using
the MATLAB System Identi®cation Toolbox, version
3.0a.

FR was controlled via the screw conveyor in the
preconditioning cylinder. This conveyor transported the
dry feed ingredients from a gravity-fed bin to the feed
inlet of the extruder barrel. SS was regulated by a motor
speed controller. The motor speed set-point was desig-
nated by an external low voltage signal provided
through a potentiometer on the control panel. Using
this potentiometer, SS could be manually adjusted to
between 0 and 500 rpm � 1 rpm. The rated screw speed
was 355 rpm. MC was maintained by introducing am-
bient temperature water (WA) into the extruder barrel
between heads 1 and 2 using a single speed variable
stroke positive displacement pump. The ¯ow rate of WA
was visually monitored using ¯ow meters and adjusted
by setting the stroke of the water pump according to the
following mass balance equation (Lu et al., 1992)

WA � FR
MC ÿ FM
1ÿMC

� �
: �3�

TM was measured using a thermocouple that penetrated
0.5 inch into the ¯owing melt stream. The thermocouple
was secured by a custom-made collar that was placed
between the last barrelhead and the die.

4. Experimental procedures

The processing conditions and product formulation
for the medium shear experiment are listed in Tables 1
and 2, respectively. This set of conditions and formu-
lation was designed to give an unexpanded breakfast
cereal product suitable for subsequent ¯aking or pu�ng
with carbon dioxide gas. The screw con®guration for the
medium shear study was developed as part of ongoing
supercritical ¯uid extrusion process research at Cornell
University (Sokhey, Rizvi & Mulvaney, 1995). In the
medium shear experimental study, chilled water at ap-
proximately 4°C was pumped through barrel heads 5±9.
This helped to maintain TM below 100°C at the die thus
preventing direct expansion of the extrudate.

The processing conditions and proximate composi-
tion of corn ¯our used for the high shear experiments
are listed in Tables 3 and 4, respectively. This set of
conditions was designed to provide high-shear cooking
and pu�ng via moisture ¯ash o� for a corn-based snack
food product. During the high shear experiments, the
barrel temperature was left uncontrolled. The screw
con®guration was provided by the extruder manufac-
turer as one typical for high shear applications. The feed
ingredient used was corn ¯our obtained from Lauho�
Grain Company (Danville, IL).
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4.1. Relay-feedback

Before each experiment, the extruder was brought to
a steady-state operating condition. The initial steady-
state condition for the medium shear experiment is listed
in Table 1. The initial steady-state conditions for each of
the four high shear experiments are listed in Table 2.
Once steady state was achieved, the system dynamics
were excited using relay feedback according to the fol-
lowing procedure:

1. After steady state was achieved, the nominal values
of ML and SS were recorded.

2. A positive step change in SS of approximately 50 rpm
was applied.

3. In response to the positive step change in SS, the ML
response was observed to immediately increase fol-
lowed by a gradual decrease.

4. When the value of ML decreased to approximately its
initial steady-state value, a negative step change in SS
of approximately 50 rpm was applied.

5. In response to the negative step change in SS, the re-
sponse in ML was observed to immediately decrease
followed by a gradual increase.

6. When the value of ML increased to approximately its
initial steady state value, a positive step change in SS
of approximately 50 rpm was again made.

7. Steps 3±6 were repeated for approximately 10±20
min.

4.2. Transfer function model development

To determine dynamic response models in the form of
z-transfer functions, the input±output data from each
experiment was detrended and then segregated into a
training and validation set of approximately equal
lengths of time. To determine a suitable model order, a
screening study ®rst was made. In the screening study,
the batch maximum likelihood method (MATLAB
function armax.m) was used to parameterize ®rst, sec-
ond and third-order models using the training data from
each experimental test. The structures for these transfer
function models are shown in polynomial and pole±zero
form in Table 5. The poles are the roots of the denom-
inator polynomial whereas the zeros are the roots of the
numerator polynomials. The polynomial form of the
transfer function depicts the parameters as identi®ed by
the estimation method. The pole±zero form was exam-
ined to give added perspective to the time-response of
the various modes of the system. Con®dence in using
higher order models was in part determined by exam-
ining the standard deviation of the pole±zero estimates.
After parameterization, the models were subjected to SS
data from the validation tests. The root mean squared
(RMS) error between the model predicted ML and the
actual ML was then calculated. The model structure
selected from the screening study was the simplest one
that provided relatively small RMS errors during vali-
dation.

Once a model order was selected from this initial
screening study, the data from each experiment was ®t

Table 3

Extrusion processing conditions and proximate composition of corn ¯our used in the high shear experimental studies. All values are nominal

SS (RPM) FR (kg/min) ML (%) Feed moisture (%WB) WA (kg/min) MC (%WB) SME (kJ/kg) TM (°C)

300 1.1 45 10.0 0.038 13.0 318 190

350 1.1 40 10.0 0.038 13.0 330 192

300 1.1 45 10.0 0.061 14.8 312 178

350 1.1 40 10.0 0.061 14.8 324 181

Table 2

Feedstock formulation used for the medium shear experimental study

Ingredient Composition (% wet basis)

Pre-gelatinized corn ¯our 55.5

Sugar 10.8

Gluten 9.1

Fiber 8.8

Non-fat dry milk solids 8.1

Whey protein concentrate 3.9

Whey protein isolate 2.2

Salt 1.1

Glycerol monostearate 0.4

Table 1

Extrusion processing conditions used for the medium shear experimental study. All values are nominal

SS (RPM) FR (kg/min) ML (%) Feed moisture (%WB) WA (kg/min) MC (%WB) SME (kJ/kg) TM (°C)

150 0.39 38 9.9 0.1 27.9 312 53
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using parameter estimation algorithms other than the
batch output error method. This was done to determine
whether another parameter estimation method could be
found that would provide a better model than that
provided by the batch maximum likelihood algorithm
used in the screening study. Both batch and recursive
implementations were evaluated. Table 6 lists the pa-
rameter estimation methods that were compared. For

the recursive implementations, a forgetting factor of
0.98 was used. The forgetting factor is typically used
with recursive algorithms to reduce errors caused by
biased initial parameter estimates. Validation was per-
formed as in the screening study by subjecting each
derived transfer function model to the SS input se-
quence from the validation data set and then comparing
the model-predicted output with the actual process
output for that same sequence. The results of the vali-
dation studies were used as a basis for objective evalu-
ation and comparison of the various parameter
estimation algorithms.

5. Results and analysis

5.1. Time domain analysis

After completing the experimental tests, the data
collected from each experiment was analyzed to deter-

Table 6

List of parameter estimation methods compared

Parameter estimation algorithm Polynomials parameterized from Eq. (3) MATLAB function

Batch Least-squares A, B arx.m

Output error B, F oe.m

Prediction error B, C, D, F pem.m

Maximum likelihood A, B, C armax.m

Box±Jenkins B, C, D, F bj.m

Recursive Least-squares A, B arx.m

Extended least-squares A, B, C rplr.m

Output error B, F roe.m

Prediction error B, C, D, F rpem.m

Maximum likelihood A, B, C rarmax.m

Box±Jenkins B, C, D, F rbj.m

Table 5

Model structures evaluated in the screening study

Model order Pole±zero form Polynomial form

1 ML�k� � K
zÿ b1

zÿ a1

SS�k� � zÿ c1

zÿ a1

e�k� ML�k� � b0 � b1zÿ1

1� a1zÿ1
SS�k� � 1� c1zÿ1

1� a1zÿ1
e�k�

2 ML�k� � K
zÿ b1

zÿ a1

zÿ b2

zÿ a2

SS�k�

� zÿ c1

zÿ a1

zÿ c2

zÿ a2

e�k�

ML�k� � b0 � b1zÿ1 � b2zÿ1

1� a1zÿ1 � a2zÿ1
SS�k�

� 1� c1zÿ1 � c2zÿ1

1� a1zÿ1 � a2zÿ1
e�k�

3 ML�k� � K
zÿ b1

zÿ a1

zÿ b2

zÿ a2

zÿ b3

zÿ a3

SS�k�

� zÿ c1

zÿ a1

zÿ c2

zÿ a2

zÿ c3

zÿ a3

e�k�

ML�k� � b0 � b1zÿ1 � b2zÿ1 � b3zÿ1

1� a1zÿ1 � a2zÿ1 � a3zÿ1SS�k�
� 1� c1zÿ1 � c2zÿ1 � c3zÿ1

1� a1zÿ1 � a2zÿ1 � a3zÿ1
e�k�

Table 4

Proximate composition of corn ¯our used in the high shear experi-

mental studies

Component Proximate composition (% wet basis)

Carbohydrate 78.6

Moisture 12.0

Protein 6.0

Fat 2.2

Fiber 0.6

Ash 0.6
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mine a suitable discrete-time transfer function that
would adequately depict the dynamic response of ML to
changes in SS. The SS and corresponding ML response
for each of the ®ve experimental tests are plotted in Figs.
2±6. In each of these experimental test results, it is noted
that the ML response to step change in SS is typical of
lead-lag type dynamics. This response is characterized
by an immediate overshoot followed by an inverse re-
sponse. The new steady state achieved by ML was ob-
served to be either slightly greater than, close to or less
than its original nominal value. This lead-lag dynamic
response is what is to be modeled using on-line system
identi®cation.

The dynamic response found in this study can be
compared with those presented by Lu et al. (1993).
Using o�-line techniques, they determined the dynamic
response of torque to step changes in SS during high
shear extrusion processing of a cooked, directly ex-
panded corn meal product using an APV-Baker 50 mm
twin screw extruder. They also found an inverse re-
sponse of torque to changes in SS. The similarity in the
dynamic response as presented by Lu et al. (1993) with
the results found in this study con®rms that an inverse
response model can be used, but that the model pa-
rameters may vary depending on the operating and
processing conditions.

Fig. 2. Experimental results of SS and ML under medium shear operating conditions. SS� 150 RPM, MC� 27.9%.

Fig. 3. Experimental results of SS and ML under high shear operating conditions. SS� 300 RPM, MC� 13.0%.
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5.2. Frequency domain analysis

An estimated frequency response analysis of ML and
SS was made using the Matlab supplied spectral anal-
ysis function contained in the script ®le Ôspa.mÕ. Fig. 7
shows the estimated magnitude and Fig. 8 shows the
estimated phase for the ®ve experimental studies. The
results indicate that the magnitude of the frequency re-
sponse in the medium shear experiment appeared more
uniformly distributed across frequencies than in the high
shear experiments. The high shear experiments show
signi®cantly more high frequency content than the me-
dium shear experiment. This e�ect may be due to the

di�erence in feedstock composition between the high
shear and medium shear studies. It may also be due to
the higher screw speed used in the high shear experi-
ments. The e�ect of MC on the phase lag is clearly
demonstrated in the high shear experimental studies.
Fig. 8 indicates that above 0.6 rad/sec, those experi-
mental studies with MC� 13.0% exhibited a greater
phase-lag than those experimental studies with
MC� 14.8%. Thus, it appears that feed formulation,
particularly MC, a�ected the dynamic response of the
extruder more strongly than did SS at these frequencies.
This is consistent with the view expressed earlier that
moisture content really de®nes the `polymer' being ex-

Fig. 4. Experimental results of SS and ML under high shear operating conditions. SS� 350 RPM, MC� 13.0%.

Fig. 5. Experimental results of SS and ML under high shear operating conditions. SS� 300 RPM, MC� 14.8%.
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truded. Accurate modeling at frequencies close to the
)180° phase crossover frequency is important for sys-
tems controlled by negative unity feedback. The mag-
nitude of the system at this frequency must be well
below unity for closed-loop stability and robustness.
This result indicates that a closed-loop controller tuned
for 30° phase margin under conditions where the MC is
14.8% may exhibit instability if the MC drops to 13%
or lower. Consequently, it may be more important to
identify a new transfer function when changes or dis-
turbances in feed formulation occur than when a
change in SS occurs. This is especially important since
a common disturbance in extrusion processing is vari-
ation in MC due to di�erences in the feed moisture
content.

5.3. Model structure parameterization

Tables 7±11 list the gain, zero and pole values, their
standard deviations and the root mean square (RMS)
error as estimated by the batch maximum likelihood
method during the initial screening study. It was noted
that each discrete-time transfer function was found to
have a zero whose value was close to 1.0 in the z-plane.
This zero re¯ects the lead dynamics of ML in response
to changes in SS. Furthermore, it was found that each
transfer function had a dominant pole located between
0.75 and 0.93 in the z-plane. This pole re¯ects the lag
dynamics of ML in response to changes in SS. This
zero±pole pair is consistent with the lead-lag dynamic
response observed. It was observed that the poles esti-
mated in the second and third-order models represented

Fig. 6. Experimental results of SS and ML under high shear operating conditions. SS� 350 RPM, MC� 14.8%.

Fig. 7. Results of estimated magnitude versus frequency for the ®ve

experimental studies.

Fig. 8. Results of estimated phase shift versus frequency for the ®ve

experimental studies.

T.A. Haley, S.J. Mulvaney / Food Control 11 (2000) 103±120 113



fast dynamics that are not of interest from a control
design perspective. In addition, since the standard de-
viations of the higher order poles and zero estimates
were larger than those for the ®rst-order models, less
con®dence could be placed in them.

Next, a validation study of each model was made by
subjecting each of the ®rst-, second- and third-order
transfer functions to the SS data from the validation
data sets. The output predicted by each model was then
compared to the corresponding ML output from the
validation sets. A comparison of the in®nite-step-ahead

model prediction with the actual ML response for the
medium shear experimental study (SS � 150 rpm and
MC � 27:9%) is shown in Fig. 9. This ®gure illustrates
that the ®rst-order model adequately captured the
dominant process dynamics and that a second-order
model contributed little to improving the ®t to the ex-
perimental data. An analysis of the residual errors ob-
tained during the validation study was made using auto
correlation, cross correlation and normality tests. The
results from these analyses provided further evidence
that little if any information remained in the error re-

Table 7

Results of model structure screening study. SS� 150 RPM, MC� 27.90%

Model

order

Steady state

gain (s.d.)

Zeros Poles RMS error

b1 (s.d.) b2 (s.d.) b3 (s.d.) a1 (s.d.) a2 (s.d.) a3 (s.d.)

1 )0.2896 1.0325 0.9373 2.4174

(0.1244) (0.0205) (0.0195)

2 )0.6846 1.0486 0.6899 0.9655 0.6202 2.3247

(0.2690) (0.0191) (0.1773) (0.0188) (0.1930)

3 )0.6824 1.0510 0.5988 0.5988 0.9642 0.6889 0.3515 2.3190

(0.2778) (0.0202) (0.2315) (0.2582) (0.0195) (0.3483) (0.3312)

0.0349i )0.0349i

(0.0637i) (0.0637i)

Table 8

Results of model structure screening study. SS� 300 RPM, MC� 13.0%

Model order Steady state

gain (s.d.)

Zeros Poles RMS error

b1 (s.d.) b2 (s.d.) b3 (s.d.) a1 (s.d.) a2 (s.d.) a3 (s.d.)

1 0.0267 0.9922 ± ± 0.8977 ± 1.5929

(0.0963) (0.0298) (0.0278)

2 0.0786 0.9722 )0.8114 ± 0.8397 )0.3373 1.6164

(0.0490) (0.0201) (0.1209) (0.0256) (0.0870)

3 )0.0549 1.0148 )0.9347 0.2171 0.9049 )0.0975 0.0975 1.5351

(0.1055) (0.0255) (0.0845) (0.1234) (0.0268) (0.0482) (0.5014)

0.3902i )0.3902i

(0.0777i) (0.0777i)

Table 9

Results of model structure screening study. SS � 350 RPM, MC� 13.0%

Model order Steady state

gain (s.d.)

Zeros Poles RMS error

b1 (s.d.) b2 (s.d.) b3 (s.d.) a1 (s.d.) a2 (s.d.) a3 (s.d.)

1 0.0874 0.9673 ± ± 0.8612 ± ± 1.1603

(0.0599) (0.0276) (0.0301)

2 0.1367 0.9384 )1.4539 ± 0.7974 )0.6161 ± 1.1558

(0.0332) (0.0202) (0.1006) (0.0263) (0.0466)

3 0.0611 0.9805 )1.5083 0.2980 0.8808 )0.6206 0.1677 1.0649

(0.0689) (0.0260) (0.0819) (0.1569) (0.0337) (0.0522) (0.1635)
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siduals from a ®rst-order model ®t to justify using a
higher order model. The details of the residual error
analyses conducted during the screening study can be
found in Haley (1998). The results of the screening study
suggested that a ®rst-order model structure would ade-

quately depict the dominant behavior of the SS to ML
dynamics such that

ML�k� � G�z�SS�k�; �4�
where

G�z� � b0 � b1zÿ1

1� a1zÿ1
:

It was apparent that the higher order transfer functions
were simply modeling some of the high frequency dis-
turbances that reside outside the frequency bandwidth
of interest for process control design.

5.4. Evaluation of parameter estimation methods

Tables 11±16 detail the gain, zero and pole values,
their standard deviations and the root mean square
(RMS) error found for each model generated by the
various parameter estimation methods for each of the
®ve experimental studies. It is noteworthy that no one
parameter estimation method clearly stands out among
others as superior in terms of providing a signi®cantly
smaller RMS error. However, it can be seen that the
recursive prediction error method (rpem.m) and the

Table 10

Results of model structure screening study. SS� 300 RPM, MC� 14.8%

Model order Steady state

gain (s.d.)

Zeros Poles RMS error

b1 (s.d.) b2 (s.d.) b3 (s.d.) a1 (s.d.) a2 (s.d.) a3 (s.d.)

1 0.0898 0.9479 ± ± 0.7594 ± ± 2.0469

(0.0302) (0.0210) (0.0253)

2 )0.0813 1.0249 0.4805 ± 0.9154 0.2317 ± 1.7845

(0.1275) (0.0312) (0.1107) (0.0348) (0.1063)

3 )0.0239 1.0092 0.7842 0.7842 0.7875 0.7130 0.7130 1.6698

(0.0520) (0.0186) (0.0319) (0.0618) (0.1134) (0.0721) (0.5159)

0.3644i )0.3644i 0.2217i )0.2217i

(0.0368i) (0.0368i) (0.0903i) (0.0903i)

Table 11

Results of model structure screening study. SS� 350 RPM, MC� 14.8%

Model order Steady state

gain (s.d.)

Zeros Poles RMS error

b1 (s.d.) b2 (s.d.) b3 (s.d.) a1 (s.d.) a2 (s.d.) a3 (s.d.)

1 0.1083 0.9349 ± ± 0.7495 ± ± 1.5148

(0.0275) (0.0208) (0.0264)

2 0.0518 0.9769 0.4607 ± 0.8582 0.3045 ± 1.4313

(0.0587) (0.0313) (0.2212) (0.0528) (0.2009)

3 0.1084 0.9305 0.5108 0.5108 0.7552 0.4642 0.4642 1.5832

(0.0322) (0.0265) (0.0284) (0.0748) (0.0339) (0.0298) (0.0666)

0.7211i )0.7211i 0.7235i )0.7235i

(0.0323i) (0.0323i) (0.0297i) (0.0297i)

Fig. 9. Comparison of actual versus model predicted output using 1st

and 2nd order models as estimated by the batch maximum likelihood

method. Medium shear experimental study. SS� 150, MC� 27.9%.
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recursive Box±Jenkins method (rbj.m) performed sig-
ni®cantly more poorly than the other parameter esti-
mation algorithms in the experimental studies where
MC� 14.8%. These algorithms have special data re-

quirements for accurate parameter convergence (Ljung
& Soderstrom, 1983) that may not have been met by
these particular experimental data sets. These results
also re¯ect the observations made by Johnson (1988)

Table 13

Estimated parameters, their mean and standard deviation, and RMS error of transfer function models identi®ed by di�erent estimation algorithms.

SS� 300 RPM, MC� 13.0%

Implementation Parameter estimation algorithm Gain (s.d.) Zero (s.d.) Pole (s.d.) RMS error

Batch Least-squares 0.0027 0.9993 0.9042 1.5163

(0.0802) (0.0208) (0.0203)

Output error )0.2361 1.039 0.9419 1.4551

(0.0617) (0.007) (0.0069)

Prediction error )0.3995 1.054 0.9571 1.4887

(0.1339) (0.0102) (0.0087)

Maximum likelihood 0.0267 0.9922 0.8977 1.5929

(0.0963) (0.0298) (0.0278)

Box±Jenkins )0.3934 1.0533 0.9567 1.4848

(0.1338) (0.0102) (0.0089)

Recursive Extended least-squares 0.1114 0.9591 0.8592 1.6813

(0.1301) (0.061) (0.0682)

Least-squares 0.0152 0.9959 0.9039 1.5578

(0.2191) (0.0614) (0.0595)

Output error 0.0479 0.986 0.8937 1.5844

(0.0482) (0.0157) (0.0195)

Prediction error )0.2061 1.0376 0.9367 1.4620

(0.1246) (0.0173) (0.0149)

Maximum likelihood 0.1784 0.9113 0.8212 1.9473

(0.1329) (0.0929) (0.0946)

Box±Jenkins )0.2061 1.0376 0.9367 1.4620

(0.1246) (0.0173) (0.0149)

Table 12

Estimated parameters, their mean and standard deviation, and RMS error of transfer function models identi®ed by di�erent estimation algorithms

SS� 150 RPM, MC� 27.9%

Implementation Parameter estimation algorithm Gain (s.d.) Zero (s.d.) Pole (s.d.) RMS error

Batch Least-squares 0.0121 0.9973 0.8734 2.9076

(0.0867) (0.0365) (0.0343)

Output error )0.3028 1.0295 0.9430 2.3999

(0.0712) (0.0101) (0.0109)

Prediction error )0.3376 1.0321 0.9466 2.3792

(0.1056) (0.0142) (0.0145)

Maximum likelihood )0.2896 1.0325 0.9373 2.4174

(0.1244) (0.0205) (0.0195)

Box±Jenkins )0.3367 1.0321 0.9465 2.3797

(0.1057) (0.0143) (0.0145)

Recursive Extended least-squares )0.3076 1.0394 0.9338 2.4565

(0.3064) (0.0542) (0.0472)

Least-squares 0.0207 0.9948 0.8794 3.0150

(0.1101) (0.0527) (0.0439)

Output error )0.2553 1.0263 0.9425 2.4385

(0.0787) (0.0123) (0.0128)

Prediction error 0.0237 0.9937 0.8687 3.0377

(0.2620) (0.1356) (0.1408)

Maximum likelihood )0.2668 1.0363 0.9323 2.5049

(0.2464) (0.0476) (0.0419)

Box±Jenkins 0.0237 0.9937 0.8687 3.0377

(0.2620) (0.1356) (0.1408)
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that the capacity for a signal to provide persistent ex-
citation depends partly on the parameter estimation al-
gorithm used.

Of the algorithms evaluated, the batch output error
algorithm appeared to provide consistently good results,
in terms of small parameter standard deviations and

Table 14

Estimated parameters, their mean and standard deviation, and RMS error of transfer function models identi®ed by di�erent estimation algorithms.

SS� 300 RPM, MC� 13.0%

Implementation Parameter estimation algorithm Gain (s.d.) Zero (s.d.) Pole (s.d.) RMS error

Batch Least-squares 0.0402 0.9811 0.8193 1.8990

(0.0348) (0.0177) (0.0208)

Output error )0.0628 1.0177 0.9022 1.8477

(0.0327) (0.008) (0.0102)

Prediction error 0.0356 0.9857 0.8364 1.9012

(0.0359) (0.0156) (0.0208)

Maximum likelihood 0.0898 0.9479 0.7594 2.0469

(0.0302) (0.021) (0.0253)

Box±Jenkins 0.0427 0.9822 0.8298 1.9116

(0.0354) (0.0163) (0.0219)

Recursive Extended least-squares 0.0335 0.9818 0.8063 1.9394

(0.0771) (0.0446) (0.0551)

Least-squares )0.0046 1.0022 0.8271 1.8539

(0.0933) (0.0439) (0.0547)

Output error )0.0253 1.0123 0.8453 1.8794

(0.0266) (0.0126) (0.0162)

Prediction error 0.1476 0.788 0.4134 2.5293

(0.1126) (0.2221) (0.2548)

Maximum likelihood 0.0566 0.9659 0.7513 2.0180

(0.1087) (0.0722) (0.0983)

Box±Jenkins 0.1476 0.788 0.4134 2.5293

(0.1126) (0.2221) (0.2548)

Table 15

Estimated parameters, their mean and standard deviation, and RMS error of transfer function models identi®ed by di�erent estimation algorithms.

SS� 350 RPM, MC� 13.0%

Implementation Parameter estimation algorithm Gain (s.d.) Zero (s.d.) Pole (s.d.) RMS error

Batch Least-squares 0.1101 0.9619 0.8679 1.1296

(0.0500) (0.0221) (0.0237)

Output error 0.0680 0.9800 0.8798 1.0823

(0.0217) (0.0077) (0.0114)

Prediction error 0.0301 0.9921 0.8991 1.0739

(0.0499) (0.0142) (0.0185)

Maximum likelihood 0.0874 0.9673 0.8612 1.1603

(0.0599) (0.0276) (0.0301)

Box±Jenkins 0.0387 0.9897 0.8954 1.0774

(0.0412) (0.0121) (0.0162)

Recursive Extended least-squares 0.0896 0.9696 0.8700 1.1053

(0.1876) (0.0772) (0.0783)

Least-squares 0.0916 0.9688 0.8691 1.1068

(0.1563) (0.0645) (0.0640)

Output error )0.1550 1.0272 0.9334 1.2517

(0.1938) (0.0255) (0.0251)

Prediction error )0.0552 1.0112 0.9188 1.1883

(0.3436) (0.0624) (0.0659)

Maximum likelihood 0.1306 0.9502 0.8533 1.1705

(0.1726) (0.0876) (0.0891)

Box±Jenkins )0.0552 1.0112 0.9188 1.1883

(0.3436) (0.0624) (0.0659)
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small RMS error residuals, across the range of product
and processing conditions studied. A good ®t by the
output error method indicates that, within the frequency
bandwidth of interest, disturbances noted in the output
measurements are not coupled with the process inputs.
Using the validation data set from the medium shear
experimental study as an example, a comparison be-
tween the batch output error model and actual system
response is plotted in Fig. 10 (cf. Fig. 9). Fig. 11 shows
the corresponding auto and cross correlation plots of

the residual errors, and Fig. 12 shows a histogram of the
residual error versus frequency of occurrence. The auto
and cross correlation tests show that the residual errors
correlate no better than that expected for white noise.
The histogram shows that the residual errors closely
approximate a Gaussian distribution. These results in-
dicate that the batch output error parameter estimation
method could derive a ®rst-order transfer function pa-
rameterization that adequately describes the dynamic
response of ML to changes in SS. Furthermore, the

Table 16

Estimated parameters, their mean and standard deviation, and RMS error of transfer function models identi®ed by di�erent estimation algorithms.

SS� 350 RPM, MC� 14.8%

Implementation Parameter estimation algorithm Gain (s.d.) Zero (s.d.) Pole (s.d.) RMS error

Batch Least-squares 0.0796 0.9607 0.7999 1.4173

(0.0254) (0.015) (0.0197)

Output error 0.1085 0.9492 0.7976 1.4532

(0.0121) (0.0079) (0.0161)

Prediction error 0.1014 0.9435 0.7697 1.4776

(0.0257) (0.0187) (0.0283)

Maximum likelihood 0.1083 0.9349 0.7495 1.5148

(0.0275) (0.0208) (0.0264)

Box±Jenkins 0.1018 0.9433 0.7693 1.4774

(0.0257) (0.0187) (0.0284)

Recursive Extended least-squares 0.0539 0.9745 0.8261 1.4278

(0.1) (0.0527) (0.0619)

Least-squares 0.026 0.9896 0.851 1.3753

(0.1238) (0.0521) (0.0608)

Output error 0.0718 0.9709 0.8219 1.3861

(0.0352) (0.0174) (0.0327)

Prediction error )0.6412 )14.8158 0.2822 9.5226

(0.1019) (22.7065) (0.0621)

Maximum likelihood 0.0555 0.9723 0.8143 1.4360

(0.1343) (0.0747) (0.0855)

Box±Jenkins )0.6412 )14.8158 0.2822 9.5226

(0.1019) (22.7065) (0.0621)

Fig. 10. Comparison of actual versus model predicted output using 1st

order model as estimated by the batch output error method. Medium

shear experimental study, SS� 150, MC� 27.9%.

Fig. 11. Auto and cross correlation of residual errors using 1st order

model as estimated by the batch output error method. Medium shear

experimental study. SS� 150 RPM, MC� 27.9%.
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residual error that resulted from using the estimated
transfer function contained no additional information to
justify the use of a more complex transfer function
structure. Similar results were found for the high shear
experimental studies.

As a ®nal observation, it is interesting to note that the
model parameters appeared particularly sensitive to
MC. For the high shear experiments where the feedstock
was composed entirely of corn ¯our and water, the lag
dynamics (pole locations) of ML to changes in SS were
found to correlate with MC. Speci®cally, it was noted
that the speed of the response had a positive correlation
with the MC. However, it was observed that the speed of
response of ML was considerably slower in the medium
shear experiment compared to that in the high shear
experiments even though the MC was considerably
higher (27.9%). Since the formulation, screw speed and
screw con®guration were signi®cantly di�erent in the
medium shear versus high shear experiments, it is evi-
dent that these factors have a signi®cant impact on
process dynamics. This observation further supports the
view that some means of on-line system identi®cation
for automatic tuning application in extrusion cooking
control systems is warranted. In fact, these observations
may explain why extruder vendors do not provide `turn-
key' closed loop control systems with their extruders.

6. Conclusion

This paper has described the development and com-
parative evaluation of on-line system identi®cation
methods for a twin-screw extrusion cooking process. We
found relay-feedback to be a good excitation method for
inclusion as a method for excitation in an on-line system
identi®cation system. We also found the batch output

error parameter estimation algorithm to provide good
transfer function model parameters across a wide range
of product and processing conditions. The system
identi®cation procedure described in this paper can be
used as part of an automatic tuning and adaptive con-
trol system. The demonstration of such a system for
control of extrudate density is the topic of the subse-
quent paper in this two part series.
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