
SJSU ME106

AVR Studio Simulator Introduction and Exercises

LEARNING OBJECTIVES
• get a brief introduction to most of the major debugging features AVR Studio
• read through a refresher on C programming and an introduction to I/O on AVR microcontrollers
• gain an appreciation of what the AVR Studio simulator is and what it's good for
• learn how to use the AVR Studio user interface to control program execution and to simulate

I/O

COMPONENTS REQUIRED
• a Windows PC (or a Mac running VMware Fusion, or Wine on Linux)
• downloaded AVR Studio installation package, "AVR Studio 4.18 (build 684)" from

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
• downloaded AVR Studio service pack, "AVR Studio 4.18 SP2", also from

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
• downloaded AVR C compiler toolchain,

http://sourceforge.net/projects/winavr/files/WinAVR/20100110/WinAVR-20100110-
install.exe/download

PREPARATION

For both a C-language refresher as well as an introduction to the basics of programming for the Atmel
AVR ATmega microcontrollers, it is highly recommended that you take the time to go through the “C
Programming” chapter of the tutorial at
http://www2.tech.purdue.edu/ecet/courses/referencematerial/atmel/. This document provides a very,
very good foundation for almost all of the microcontroller-related material for the semester, so now's
the time to start dealing with it. You can probably skip the final subsection on Pointers if you care to,
as you won't really be needing them this semester. The other chapter, “References”, should be near the
top of your list of resources around about Week 5 of this course.

One issue with the aforementioned Purdue tutorial is that at the time of writing, they were using the
CodeVisionAVR C compiler, which we are not using. Features specific to that compiler, in particular
the “Single Bit Manipulations” described in the “I/O Operation” section, and the “RAM vs. Flash” in
the “Pointers” section, are not available in the compiler that we are using. However both can be done,
but use a different mechanism in WinAVR.

INTRODUCTION
It is often believed that without target hardware it is difficult, if not impossible, to develop and test
software for a microcontroller (a.k.a. MCU) project. This is often not the case as many of the
microcontroller manufacturers (or their partners) offer software simulators that exist for just this
purpose. Not only does Atmel's free IDE (Integrated Development Environment), AVR Studio, provide
the framework for compiling programs and downloading them to the MCU, but

Eric B. Wertz 2010/06/29 (v0.04)

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
http://www2.tech.purdue.edu/ecet/courses/referencematerial/atmel/
http://sourceforge.net/projects/winavr/files/WinAVR/20100110/WinAVR-20100110-install.exe/download
http://sourceforge.net/projects/winavr/files/WinAVR/20100110/WinAVR-20100110-install.exe/download
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

SJSU ME106

it also comes with the ability to simulate programs for most of their AVR microcontrollers.
This simulator has the ability to not only execute AVR instructions but also to simulate limited digital
I/O (input/output). So it's not the case that if you don't have an STK500 (the hardware development
board that you'll be using this semester) in front of you that you can't be writing and testing software
for homework, labs or final projects.

AVR Studio should feel relatively similar to other IDEs that you may have used in your introduction to
programming classes, like Microsoft Studio Express C, Eclipse, or NetBeans. IDEs all look pretty
much the same at 20,000 feet. They all give you an easy way to edit files, to describe and build
projects, and to execute and (usually) debug them. In most respects, once you've seen one IDE you've
seen them all. The trick is knowing where all of the options are hiding for the things that you need to
set, how clearly they're organized, and how well they perform for what's most important to you. One of
the best things that AVR Studio (and WinAVR, which actually provides the Windows version of the
compiler tools) has going for it is that it's free and that it performs pretty well – it's reasonably fast and
doesn't seem to crash very often.

Although you won't be using one this semester (unless you spring $100-250 for one yourself) AVR
Studio can also be used with a USB device called an AVR JTAG programmer/debugger to debug real
running hardware from your PC using exactly the same interface as this simulator. This AVR JTAG
device is an interface between AVR Studio, your PC's USB port and a 6-pin (or 10-pin) connector on
your target hardware board. It allows you to view and change any piece of data inside the running
MCU, as well as to control program execution in exactly the same way that you'll be doing in the AVR
Simulator. So by learning how to use the AVR Simulator, you'll also be learning how in-circuit
debugging works on real hardware should you ever do that in the future.

The way that AVR Studio (and most IDEs) is organized is that one works on projects. A project is a
collection of files, their interrelationships, and configuration settings necessary to build source, header
files and libraries together into a final unit. This final unit is usually a program to be simulated or
downloaded to a chip for execution. A project is composed of a list of files to be compiled, the
compiler settings, the configuration of the chip being developed for, as well as the layout and contents
of the various windows on the screen, etc. Just as changes to files need to be saved to disk, any
changes to a project also need to be saved, otherwise all of this (meta)information is lost and will have
to be entered again. So don't forget to save project settings as well as your source files (assuming you
don't really want to discard project settings) when exiting AVR Studio.

On shared lab computers it is additionally helpful to give your project a more unique name than
“Lab2”, like “Lab2Fri”, so that you can more easily identify it. That way you can differentiate your
project from others' "Lab2". There's nothing funnier than watching a lab group make change after
change to their code, recompile and re-run it over-and-over again, and always have it behave exactly
the same way. It's because they keep downloading someone else's old lab code with the same name to
their chip. Priceless! :-)

Eric B. Wertz 2010/06/29 (v0.04)

SJSU ME106

Don't forget to copy your entire project directory off to a flash stick or email them off the machine
when you're done. It's not really recommended to work right on the flash drive because they're
considerably slower than the internal hard disk. The lab machines do get periodically wiped-clean, so
what's there one week may not be there the next.

About the simulator in particular, it should be fairly obvious that it's not possible to directly hook-up
hardware like switches, LEDs, or motors and the like as there's no physical hook-ups to the simulator.
However, one is able to look at a representation of the digital portion of the (virtual) physical interface
to the chip with the simulator. For example, you can look at a physical output line on the controller to
see that an LED would/wouldn't be lit if one were connected. Similarly for input, one can direct the
simulator to behave as though a given digital pin were high/low as if a switch were currently
open/closed.

Microcontroller programs produce outputs dependent on the program's current state and inputs. A
simulated stream of inputs can be provided for every general-purpose digital input pin on the MCU
being simulated. This is done by providing what is called a stimulus file, which is really just a time-
line containing the state of some or all of the inputs at every point in time. This feature will be
presented in a later section.

PROCEDURES

Installing and Running

First, download and install the software (as administrator) in the order listed in the COMPONENTS
section above onto your PC. Reboot the PC afterward if you're prompted to do so for the installation to
complete properly.

Once you have the software loaded on your machine, you should be able to go ahead and run AVR
Studio. If it didn't create a desktop icon when it was installed, you'll just have to rough it and find it in
the Windows Start menu.

Creating a Project

Once AVR Studio is running you should be prompted for a project to work with, either by creating a
new one, or by using an existing project. In this case, click New Project.

Select Project type AVR GCC, enter Project name simcounter, select both Create initial file
and Create folder and select (and remember the location of !) a directory in which to put the new
simcounter project directory, then click Next.

Eric B. Wertz 2010/06/29 (v0.04)

SJSU ME106

Select Project type AVR GCC, enter Project name simcounter, select both Create initial file
and Create folder and select (and remember the location of !) a directory in which to put the new
simcounter project directory, then click Next.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 1: Creating or opening existing project

SJSU ME106

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 2: Selecting C for the new project source type

SJSU ME106

Select Debug Platform AVR Simulator, and Device ATmega16, then click Finish.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 3: Selecting the Simulator as debugger type for ATmega16

SJSU ME106

You should now see the default window layout in AVR Studio. Because you checked Create initial file
when creating the project, AVR Studio has created a blank simcounter.c file and pre-opened this
file for you. If you click on the expand-group icon (the Plus icon) in front of Source Files in the left-
hand window, you'll find that simcounter.c has been added to the simcounter project. If you
needed to include any additional files source files for your project, you would right-click on Source
Files and choose the appropriate method to do this. You won't need to for this example, but you will
for labs later in the semester.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 4: Initial workspace layout with empty source file template

SJSU ME106

At this point, cut-and-paste the contents of simcounter.c from the final section of this document
into the blank window created for your project's simcounter.c. While you're at it, save the
contents of this file by doing a File->Save (or typing CTRL-S, or pressing the floppy disk icon).
Alternatively, if you already had a copy of simcounter.c on your computer, you could also have
used Add Existing File and pointed it to the file's location to add it to the list of the project's source
files. This is commonly done when you are given pre-written helper code to perform ancillary
functions within the MCU, such as communicating with the UART (the serial line that connects back to
the PC). The is one of the ways to include code from elsewhere to extend the function of your
program.

Now you will add an additional data file to be used later when simulating I/O using this project's code.
Create a new file called simcounter-PORTA.sti by right-clicking on Other Files in the left-hand
window and select Create New File. Cut-and-paste the contents of the section titled simcounter-
PORTA.sti at the end of this document into the window that was opened for this file, and similarly
save it to disk.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 5: Entering source code into project

SJSU ME106

Configuring and Building Projects

The process of building code for a microcontroller (and for a PC program, for that matter) is a many-
part process of turning your source code and other provided code into a final execuatable program. The
tool that translates your C code into microcontroller instructions is the compiler. The compiler takes a
source file, typically a .c file, as input and generates an object file, typically a .obj or .o file. So,
for example, a successfully compiled source file named myfile.c would generate the object file
myfile.obj.
Another tool called the linker, takes all of your .obj files, and other .obj and .lib files that you
may have specified, and combines them into the final program. On Windows, this final product is
typically a .exe (executable) file, but for most microcontrollers it is a .hex file. It is this .hex file
that is stuffed into the microcontroller over some type of serial/USB connection and finally executed
after the microcontroller is reset. When all is said and done, making a hex file from one source file
generates a number of auxiliary files along the way – that you don't necessarily know about.

AVR Studio is smart enough to know that when you change any individual source file, that it needs to
use the compiler to generate a new .obj file from that .c file. It does this solely by noting that the
.c file is more recent than its corresponding .obj file, and therefore needs to compile it. AVR Studio
does not blindly (re)compile every source file every time a build is requested because that can
substantially increase the time that it takes to generate the final .hex file, if for instance, your project
was composed of many source files.

The problem is that AVR Studio can not be counted on to know when changes other than source file
changes have been made that affect how object files or .hex files are built. These changes are
typically settings changes, like the optimization settings, which microcontroller you're using
(atmega16), at what frequency it is running, or which options are checked/unchecked, as shown in the
screenshot below which we'll be discussing next. Even less obvious is the case where you take an older
source file (like the last copy that you had working an hour ago before you made your more recent
changes) and substitute it for your current one. Because this older file has a file timestamp that is an
hour old, and the most recent corresponding .obj file was generated just minutes ago, AVR Studio
can't know that you switched in a “newer older” source file and that it really does need to recompile it
again. You can Build all day, but the compiler will not remake the object file for the source file that's
there, and you'll never get to run the code that you're expecting to be there.

There are two ways to get around these types of build-synchronization problems, instead of just doing a
regular Build (F7). You can either force everything to be rebuilt from scratch, or you can clean out all
of these intermediate/temporary files and build them again. These two processes are Rebuild All and
Clean respectively, and can be found under the Build menu. In general, I'd say that Clean is only useful
when you're at the end of your lab and want to collect all of your work for emailing or thumb-driving
because it gets rid of all of the intermediate by-product files that you don't are about (because the
compiler will regenerate them) saving space and clutter.

Eric B. Wertz 2010/06/29 (v0.04)

SJSU ME106

That leaves Rebuild All. Do a Rebuild All when there's any doubt about what code it is that you want to
be executing. There's no harm in doing a Rebuild All every time rather than just a Build, it's just that
it'll take longer to generate the hex file. Just always, always, always make sure that code compiles
without errors (otherwise you'll just download over-and-over the last hex file you successfully made)
and downloads without incident to the microcontroller.

Be forwarned – chunks of time even larger than the chunks of hair you will be pulling out of your head
can be saved merely by checking for reported errors (and copious use of Rebuild All) every step along
the way.

In Project->Configuration Options->General, set Frequency to 8000000 and Optimization to -O0
(note that this is capital-oh zero) and, of course, click OK.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 6: Configuring project for build and MCU options

SJSU ME106

It should be noted that this optimization setting is usually not the most popular for generating code to
be downloaded to a real MCU, but it is probably the best choice for generating code to be simulated.
However, in subsequent weeks in the lab, once you're ready to start programming your microcontollers
in the lab, you'll often be directed to change this setting -O2. Just remember that should you need to
revert to simulating code again, don't forget to change this option back to -O0, and then back again to
-O2 when building your code for the real MCU. If you ever start seeing strange behavior when
stepping execution through simulated programs, it's probable that you weren't using -O0 for the code
to be simulated. What usually happens is that while stepping through your program, the cursor doesn't
accurately advance from line to line as you'd expect it to. Please see the Additional
Information section at the end of this document for more on code optimization.

At this point do a Build->Rebuild All, and you should be all set. Once again, doing a Rebuild All rather
than just a Build is always a good idea after you have changed any project configuration options..

When the build is complete, confirm that the last line in the Build window at the bottom of the screen is
Build succeeded with 0 Warnings... as shown above. If this isn't what you see,
somehow you boffed your cut-and-paste, so go back and try it again.

For some reason, there are certain configuration settings in AVR Studio that cannot be set unless you've
already started simulating a program, and the following is one of them. To do so, initiate the simulation
with Debug->Start Debugging. Now in Debug->AVR Simulator Options you should set Frequency to
8.00MHz. Go figure..

Starting and Stepping through Execution

If you hadn't just done so immediately above, normally you'd start simulating the execution of the
program with Debug->Start Debugging, or by pressing the green right-facing triangle

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 7: Result of first build with cut-and-paste source code

SJSU ME106

in the toolbar. The first thing that the simulator then does is to start-up and then stop before the very
first simulated instruction is executed. It stops here to give you the chance to do all the setup you need
before starting the run.

The important thing to notice at this point is that there should be a little yellow right-facing arrow
pointing to the opening curly-brace of the function main(). This arrow indicates the next statement
to be executed.

At any point when you have control of the running program (that is, when it isn't free-running at full-
speed uninterrupted), you can step through the program slowly, line-by-line, at your own pace. There
are three ways to step – step into, step over, and step out. Each of these three stepping actions has an
icon in the toolbar to the right of the yellow arrow icon, shown below.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 8:
Mr. Start
Debugging icon

Illustration 9: Breakpoint at program start position

Illustration
10: The three
Step sisters

SJSU ME106

Step into and step over behave similarly except when a function call is the next statement to be
executed. Step into steps into (imagine that!) the function and pauses execution at the beginning of the
called function. Step over executes the entire function as a single statement and advances to the next
statement after the function call. Step over is a huge time-saver once you know that you don't care
about stepping through that function line-by-line. However if you want/need to see what's going on in
the function, by all means step into it. Step out is what's used once you're in a function and you no
longer care about what's going on inside the rest of it and just want to get back to the code that called
the function. Step Over completes executing the function and gets you back to where you were when
you called it. These three icons are shown below.

Just to get the hang of single-stepping, we're going to start with Step Into. You can do this (and most of
the simulator functions) one of three ways. In decreasing order of pain, they are: in the menu bar do
Debug->Step Into, in the toolbar click on the Step Into icon (the one immediately to the right of the
yellow arrow in the toolbar, or by pressing the F11 key. Learn to know and love the F11 (and F10,
which is coming-up later) key, as the function keys are by far the easiest ones to use 500 times in an
hour.

Press the F11 key once. It should now point to the statement where buttonPresses is intialiized.

Note again that this is the next statement to be executed. Press the F11 key again and you should see
the arrow pointing to

 uint8_t thisState, prevState=0x00, changed;

At this point, wouldn't it be cool to know that the value of buttonPresses is actually zero? Well,
you can, and there are two ways to do this. The first is to use your cursor to point to the variable
buttonPresses anywhere in the source window and it'll pop-up a floating balloon that says that the
current value is 0 (along with some other details about the variable). The second way is the power-user
way, and you're also going to learn that now.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 11: Program execution location after first single-step

SJSU ME106

You can maintain a window on the screen containing any variables that you want to watch along with
their current values. This window is called the Watch window, and you can open it by doing a View-
>Watch. Do this and right-click the first cell under the label Name and click Add Item. If you enter
buttonPresses, it will give you an entry showing the current name and value for this variable.
Not only that, this value will be updated as you execute the program under your control (it isn't updated
as the program free-runs though). An alternate way to add a new variable to be watched is to double-
click in an empty Name field cell and you can enter a variable name that way. If that weren't enough,
there's third way to add a variable to the watch window – just right-click on the variable name
anywhere the editing window and select Add Watch. Pretty slick, huh?

While you are here, use any of these three methods to add watch entries for the variables thisState,
prevState and changed. After this is done, the contents of the Watch window should appear like
this:

Depending on your preference, (all, or selected) entries in the Value column can be shown as either
decimal or hexadecimal number by right-clicking on the value in question.

You should notice at this point in program execution that we have not yet initialized these three
variables. If you look where the yellow arrow is pointing, we're still before their initialization
statements. Observe that these three variables currently contain some random, often non-zero, value.

They are currently what's known as “initialized to garbage”. This is programmer-speak for a variable
that has been declared but not yet set (initialized) to any known value – it contains whatever garbage
was there when that particular memory location was last used. It is a very, very, very bad thing to ever
use a value that has not been initialized. Multi-billion dollar satellites (and perhaps your job with it)
can be (and have been) lost forever when this happens, so it's usually best to try to avoid it.

Go ahead an press F11 again to execute their initialization statements. Presto, Initialize-o... zero
values now for all of them!

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 12: Watch window with four variables shown

SJSU ME106

Before you go any farther you're going to learn how to view the I/O registers for the microcontroller.
All PORTA-related registers can be viewed by expanding the PORTA group (click the plus-sign) in the
right-hand I/O View window, as well as for all of the other functional groupings of I/O registers. Here
you will find the current simulated values for PORTA, DDRA and PINA both there as well as in their
own more-detailed-view window below. Go ahead and expand the PORTB set also. If you would like
to add another group of registers (like those for PORTB) in the bottom detail window, you can CTRL-
left-click on the register name and it will be added.

Now if you can't see the full contents of each of these entries' columns, especially in the lower of the
two windows, stretch your windows out so that you can see everything. In particular, you want to be
able to see all eight squares in the Bits column for each of the three PORTA/PORTB-related registers.
These types of registers are very important as they are the chip's interface to the outside world.

At this point, program execution should be right before the function call to init(). Let's demonstrate
Step Into first. The first time that you hit F11 you'll find yourself entering init(). Continue
pressing F11 until you have executed the following two lines:

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 13: Viewing current state of I/O
registers

SJSU ME106

 DDRA = 0x00; // PORTA used entirely for input
DDRB = 0xff; // PORTB used entirely for output

You should notice that the values for DDRA and DDRB (also known as Port A/B Data direction register)
in the I/O View window have been updated. Especially note that the hollow squares in the lower
window are blackened for bits that contain high (1) values. This representation is very useful for
quickly visualizing which bits are set within an 8-bit value. In the case of DDRB, all bits are high/black
– assuming that you have the PORTB group selected in the upper window. You will often be using
these windows frequently when following your code's execution.

At this point you should be done executing the last statement in init() and ready to return. Using
F11 will return you to the next statement after the one that called this function.

Since we've missed our only opportunity to demonstrate the use of Step Out (because there's only one
function call in our demonstration program, and we're never calling it again), let's re-run the program
from the beginning. You'll do this often when you get to a point where you've missed something that
you mindlessly blew-over and need to start over again. Unfortunately, few simulators are able to back-
up through a simulation, so you'll have to start at the beginning again.

To halt execution and start over again, press the Stop icon in the menu bar, the blue square (or Debug-
>Stop Debugging). Go ahead and do this now.

To restart, as before, press the green triangle (Start/Continue) to continue and halt at the first executable
statement. Press F11 until you get just inside init(). Rather than stepping through the rest of the
function that you no longer care about, you can use Step Out to leave this function. As usual, you can
use the Step Out icon to do this, Debug->Step Out, or the appropriate function key.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 14: Graphical result of setting DDRB
bits to all Ones

Illustrati
on 15:
Mr Stop
icon

SJSU ME106

To demonstrate the final stepping control, do a Debug->Stop Debugging, then Debug->Start
Debugging to start the program again, and F11 until you are just about to call init() again. Now
use Step Over to execute init() without bothering to step into it. You'll do this often once you are
comfortable with what a function does and no longer care about crawling through it again. Stepping
into functions that you don't care about is often a huge waste of time. Even better, notice that F10 is
the keyboard shortcut for Step Over.

F10 is even more useful than F11 in many circumstances. To be honest, I never remember which
hotkey is which. I'll either use the menu or the toolbar to pick which one that I want the first time, look
at the FunctionKey label that is hinted as I hover over the icon, then just use the FunctionKey from that
point on. Just trust me and use the keys – repetitive-stress injuries aren't pretty and every mouse click
adds up, trust me.

By the way, one thing that's easy to do is to keep on pressing F11 and then end up in a function you
didn't intend to enter. In that case, just do a Step Out and you're back to where you wanted to be.

In summary, those are the three flavors of single-stepping and how each of them are useful, or more
efficient, depending on how deliberate you need to be when stepping through code.

Viewing/changing Variables' and I/O Registers' State

At this point you should have just entered the while loop. This loop is coded to run forever until
PINA is read and has the value PINA_END_VALUE (all buttons pressed), at which time it breaks out
of the loop. Otherwise, every time through the loop the current contents of PINA are compared to the
previous value to see if any bits have changed, indicating that a button has changed state. Press F10 a
couple dozen times and see if you can figure out what the program is doing so far.

It should be eventually become obvious that nothing's going to change because, well, nothing's
changing. Clearly there aren't any buttons connected our simulated ATmega16 on PINA/PORTA, and
until that happens, you'll be stuck only executing the boring part of the loop forever. However, a key
feature of the simulator is that you can manually change values on-the-fly to get the program to behave
like physical input changes have occurred on the chip's digital inputs.

First, let's change the variable thisState which contains a copy of the current contents of PINA.
Open the Watch window that was introduced before if it's no longer around. If the variable
thisState is no longer being watched for some reason, add it again as was done above. Single-step
with F10 until you get to the following statement:
 if (thisState == PINA_END_VALUE)

Eric B. Wertz 2010/06/29 (v0.04)

SJSU ME106

So far it's been the case that thisState has always been zero, causing you to do little in the rest of
the loop and to return to the top again. However, let's force a change. Use the Watch window to
change the value of thisState from 0x00 to 0x01. You do this by double-clicking on the 0x00
value and entering 0x01 in its place (and pressing ENTER/RETURN). Now , with a non-zero value
for thisState at this point, pressing F10 should eventually get us into the if block that we've
never been in before. The first press of F10 should get you past the break statement, as usual.
Another F10 will cause changed to be set to the difference between the current value and the value
from the previous time through the loop. Changed becomes 0x01 because the lower bit has changed
since the last time, which then gets you to the inner for loop. By doing enough F10s and following
along carefully, you should see that a button press is detected, and buttonPresses is incremented
to 1.

If you continue F10-ing enough you'll find yourself back in the outer loop. Assuming that you don't
manually alter the value of thisState as we did the last time, PINA will be read again as 0,
transferred into thisState, and it'll look like the low bit has changed back to 0, signifying that the
button has been released. You'll head into the inner for loop, nothing will appear as a new key press,
and eventually you'll be back to where you started, everything zero, nothing changing, looping in the
outer part of the while loop forever.

Interesting things happened along the way though. buttonPresses is now set to one because we've
“seen” a button press. And if you look in the I/O View window, you should notice that the value of
PORTB has changed to reflect the running count of presses detected. If you click on PORTB in the
upper window, you'll see the detailed view of the PORTB-related registers in the lower window. Since
PORTB would be connected to LEDs in our “real” hardware, one of them would now be lit-up, just like
the blackened-square in the lower-right window, in the 0x01 bit position.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 16: I/O Register graphic showing
single-bit change

SJSU ME106

Another important feature in addition to being able to see variables' values at every execution stop-
point is that you can also change the I/O registers' values on-the-fly. Just as you manually changed
thisState to modify the captured value of PINA, you can modify PINA directly in a similar
fashion. Go ahead and click on PORTA in the upper I/O View window. PINA's bits in the lower
window should all be zero – clear squares in the Bits display. Now click on one of the clear squares for
PINA, and you'll see it switch to black. You've turned this bit on manually, and you'll notice that the
displayed numerical value changes with it, highlighted in red. This red high-lighting is very helpful
feature also, and it's used to point out what value was most recently changed on the display. Go ahead
and press on all these squares to light them all up except one.

This would denote that all buttons except one are currently being pressed/held at the same time. Now
if you go back and step though the while and for loops, you'll see these additional (fake) button presses
counted, eventually resulting in a buttonPresses value of 8, and the binary representation for eight
displayed on PORTB. And just as you can simulate button presses, you can simulate releases by
clearing the bits in the display for PINA also. If you set all eight PINA bits at the same time, that's the
magic sequence that causes the program to break-out of the outermost while loop and essentially end
the program. All buttons pressed results in PINA being 0xFF, to which we've associated the constant
label PINA_END_VALUE.
So in summary, you've seen in this section that you're able to modify C-language variables on-the-fly in
the Watch window, and able to modify PORT input pins on-the-fly, and can view their output state in
the I/O View window.

Project Display Mode vs. Debugging Display Mode

If you haven't noticed already, AVR Studio pops back-and-forth between two modes while you're using
it. As soon as you hit Start Debugging, the left-hand window switches to a Processor window. When
you hit Stop Debugging, it reverts to its starting (editing) state and shows you the AVR GCC window,
which is basically a project view and the files contained therein.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 17: I/O Register graphic showing
value after manual change

SJSU ME106

The point here being that if you're expecting or wanting to see the project view in the left-hand window
and it's not there at the time, you can switch to it by hitting the window tab for it below the window.

Using a Stimulus File for Playing-back a Sequence of Inputs

It's clearly very convenient that you can fake I/O input in the simulator by manually setting/clearing
bits in PORT registers, but what's even more convenient is that you can automate this process. By
specifying a time-line of what you want the input pins to be, the AVR Studio Simulator will change
them for you automatically at specified points during the execution of your program. The mechanism
for doing this is by providing a stimulus file for any PORT bits that you have configured for input.
You've already got one of these files – it's the simcounter-PORTA.sti file that you cut-and-pasted at
the beginning of this exercise.

We'll take a look at this file. You can use the Windows FileManager to find it, but you can also get to it
in the Other Files section of the project display window (AVR GCC). Regardless of you how want to
look at it, get it open now so we can talk about its contents.

...
00013000:00
00014000:01
00015000:03
00016000:01
…
A stimulus file is a two-column data file. The first column is basically a time designation (it's actually
the Cycle Count value that shows up in the Processor window on the left-hand side of the screen) and
the second column is the value that you'd like the PIN register to be at that point in time. The last
value in the file must be 99999999, according to the documentation. One stimulus file is good for only
one PORT/PIN eight-bit register, although multiple log/stimulus files can be used to get access to the
other ports. In our case all of our input is on PORTA/PINA, so we only need one file.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 18: The magic tab to
recover the Processor values window

SJSU ME106

To attach a stimulus file to the simulator, go to Debug->AVR Simulator Options->Stimuli and Logging.
I've noticed that if you haven't started a simulator run (Start Debugging), the AVR Simulator Options
option may be grayed-out, just like that other goofy case you saw above. If so, start a simulator session
and at the first pause, pop open that config panel. Choose Port PORTA, Function Stimuli and use the
“...” button to set File to the location where simcounter-PORTA.sti is located. When you click Add
Entry, you should see the new entry show up in Action List. Finally, press OK.

Similarly, if you'd like to log the output of PORTB, you can do so by selecting Logging and by
providing a filename for output. You don't necessarily have to do this now, but I mention it just to let
you know that exists. It might even be possible get Excel to import both the input stimulus file and
output log file and plot them on the timescale so that you can compare their interrelationship, just like a
two-channel oscilloscope would do.

Use of Breakpoints

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 19: Choosing PORT and filename settings for I/O Stimulus/Logging

SJSU ME106

Now that you've got the stimulus file in place, let's start running again. Once again, do a Start
Debugging (Stop Debugging first if you need to), and keep banging away on F10 until something
interesting happens. OK, don't bother anymore after you've done this for about 20 seconds because it's
going to be a while until something happens. The point here is that in real life, most microprocessors
execute so quickly that even if you were to press a button right away after your hardware starts running
your program, you're really going through the while loop hundreds of thousands of times before
changed will ever become non-zero. This isn't because it takes the microcontroller so long to figure
out that you've pressed the button, it's because it's so incredibly fast that it executes those five
statements just inside the while loop approximately 200,000 times per second. So if you were to
simulate the program waiting for a button press that occurred one second after the start of execution,
you'd have to press F10 about (literally) a million times before you ever saw that inner for loop being
hit. Borrrrrrrrrr-ing!

Fortunately there's a feature (in almost every debugger) called breakpoints that tell the simulator (or
debugger) to just go ahead and run full-speed until it hits a particular place in the code. When a
breakpoint is hit, the program stops execution and passes control back you to so that you can either
start single-stepping, look at variables, or do whatever else you want to do.

Since the point in the program where things are most interesting is around when a button press has been
detected, let's set a breakpoint there. Within the source code window there is a vertical gray bar along
the left side that is used to select actions or to view settings on a line-by-line basis. Within this gray
bar, right-click on the same line as the statement:

buttonPresses++;
and select Toggle breakpoint.

Eric B. Wertz 2010/06/29 (v0.04)

SJSU ME106

The operative word here is toggle. If there's a breakpoint there already, it removes it, and if there's
none there it'll add one. Once you've got as many breakpoints as you want set, you can let the program
free-run until it hits one of them. In our case, there's exactly one. To let the program run wild until it
hits a breakpoint (or ends), do a Debug->Run, press the Run icon, or F5.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 20: Setting/toggling a breakpoint by right-clicking on the
gray line-select bar

SJSU ME106

Once you hit the breakpoint, the state of the simulation is frozen. You have access to all the current
program variables as well as the PORT pins. From here you can often tell exactly what set of
conditions were that got you to this breakpoint.

Breakpoints are an incredibly useful feature. Not only are they huge time-savers, but they're
remarkably efficient for detecting error conditions – assuming you write your code to try to detect them
in the first place. All you have to do is to put breakpoints everywhere were you don't expect your code
to ever end-up. If you ever hit one of these breakpoints, you'll be stopped exactly where you want to be
to track down the problem.

You want spots in your code to detect situations like this. However instead of having a breakpoint for
it in the debugger, you'd have the program set off an alarm, hit a kill-switch, or perhaps even reset
itself. Otherwise, you might just be kissing that satellite goodbye without even knowing why.

Simulator Limitations

The most notable limitation of the AVR Studio Simulator is that although it does good job of simulating
digital input, analog input simulation is not implemented. This means that you cannot use a stimulus
file to feed analog input values into an ADC pin (you'll get to analog pins and ADCs later in the
semester). However, this limitation can be worked-around by writing your code so that you have the
opportunity to provide your own fake ADC values (to replace the values returned by the registers that
aren't simulated correctly) using the Watch window. Or better yet, internally/automatically generate
fake ADC values in code that's only enabled during simulation, and you can probably make a fair
amount of forward progress that way.

Wrap-up

Hopefully by now you're convinced that there's a lot of software work that can be in (and before!) the
lab before the circuit's been wired-up. In most of the labs this semester, the software can almost be
complete by the time that you're ready to flip the power-switch on real hardware.

Eric B. Wertz 2010/06/29 (v0.04)

Illustration 21: Execution stopped when breakpoint hit

SJSU ME106

There's no reason why there has to be only one “software person” per group – as there often has been in
semesters past. Everyone has the ability to show up to lab with test software ready to run and debug.
This is especially important because typically roughly a third of the lab groups don't finish half the labs
in the allotted time, so any head-start will go a long way toward finishing on-time with less stress.

There are plenty of other features of AVR Studio that we haven't discussed here. There is both
reasonably complete built-in help available as well as a fairly well-organized set of menus and panels
to poke around in. There is also a fair amount of customization that you can do if you don't like the
default layout of the windows within the main frame of the application. There's a lot of stuff in AVR
Studio, so if you find yourself spending all day with it, you might as well make it comfortable by
customizing it.

So enjoy the AVR Studio Simulator. It contains all (ok, some) the fun of embedded programming
without any of that nasty short-circuited hardware smell. And it's all free... sweet!

ADDITIONAL INFORMATION

Other AVR Simulator references

AVR Studio has a fair amount of embedded HTML help built-in. It's a very concise and convenient
source of information on simulator features. To the best of my knowledge, there's no one PDF
document from Atmel that describes the use of the AVR Studio Simulator.

The only other document that I have found that discusses the use of the AVR Studio Simulator in any
detail is
http://www2.tech.purdue.edu/ecet/courses/ecet309/Reference_Materials/Simulation_AVR_Studio_4.pd
f. Although the document makes many references to their own development environment and
hardware, there's a lot of useful material contained therein.

Code optimization

The standard reference documentation for GCC (the compiler) optimization options may be found here:
http://gcc.gnu.org/onlinedocs/gcc-4.3.3/gcc/Optimize-Options.html#Optimize-
Options

In short, optimizations are transformations that the compiler can do that can affect either the amount of
code that it takes, or the time that it takes, to execute your program. In come cases you may need (or
want) to choose between smaller size and faster speed of your final program – in the former case if
your program simply won't fit into the memory of your MCU, or in the latter case if the time (or power)
to execute it should be minimized. In many circumstances, these two desires can be mutually exclusive
where you're either at the space or time limits of your requirements.

Eric B. Wertz 2010/06/29 (v0.04)

http://www2.tech.purdue.edu/ecet/courses/ecet309/Reference_Materials/Simulation_AVR_Studio_4.pdf
http://www2.tech.purdue.edu/ecet/courses/ecet309/Reference_Materials/Simulation_AVR_Studio_4.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.3.3/gcc/Optimize-Options.html#Optimize-Options
http://gcc.gnu.org/onlinedocs/gcc-4.3.3/gcc/Optimize-Options.html#Optimize-Options

SJSU ME106

Optimization of code by the compiler can have some tricky consequences. Let's just say that there are
many “reasonable” or “smart” things that the compiler can do when generating object files that can bite
you in two ways – first, it does something that you're not expecting it to do but you can't really fault it
for, or second, it does something that is reasonable with your marginal, ambiguous, or incorrect code
that sometimes you can get away with, and sometimes you can't.

A simple example that demonstrates some of the effects of optimization is the following:

main()
{
 int a;

 motor_start();

 a = 1;
 for (a=0; a<1000; a++)
 ; // do nothing, just loop 1000 times

 motor_stop();

 printf(“%d”, a);
}

If you tell the compiler to apply no optimizations to this code (compiler option -O0), it compiler will
generate code pretty much exactly as you'd expect it to – call motor_start, a=1, a=0, a=1, a=2,...,a=999,
call motor_stop(), and print “1000”. If you single-step through this code in the simulator, it will stop at
pretty much every line where there's a code statement, including 1000 times through the loop (boring!).

However, once you tell the compiler that it's allowed to make some minimal (time or space)
optimizations, it might choose to do something like eliminating the statement “a = 1;”. It can
reasonably do this because it can look at the code and say “look, why is this guy assigning a=1 when a
is immediately going to be set to zero in the very next statement?”. It can simply eliminate that
statement, and it will. Now, if you were to simulate this code at this optimization level, you might
single-step up to a=1 and have it skip right over it, because the compiler has completely eliminated this
line.

However, it gets even better. If you crank-up the optimization level to something even higher, the
compiler looks at the code even closer and says, “look, why is this guy wasting the time to use the
variable a to count to 1000 and do nothing with that value -- when I know that at the end a=1000? So
what I'll do is to just replace the whole loop with a=1000; and be done with it !”. If you were to
simulate this program with this level of optimization (perhaps, -O2), you would single-step and it
would stop nowhere but motor_start(), motor_stop(), printf(), and at some line
before that where it inserted “a=1000;”. This is one of the symptoms that I warned you about above
– unless you specify -O0 for the optimization option, single-stepping may appear to act bizarre.

Eric B. Wertz 2010/06/29 (v0.04)

SJSU ME106

However, it gets even better. If you were counting on the time that it took to count to 1000 to have that
motor spin, it ain't gonna happen because the loop is gone. The code would have to be changed to
preserve the required delay time, and this can be done a number of ways which you'll learn about later.
The error was to assume that a certain type of code would be generated, and this is always a dangerous
assumption. Sometimes you can skate by without taking the time to fully understand C or how one's
own particular compiler works and merely turn off all optimizations. However, in the end, you've got
buggy code that's going to break sooner or later (if it ever works at all), and that can be a dangerous
thing.

These are just a few of the things that the optimizer can do if you tell it that it can be smarter. Because
the end result of the program is the same as if it hadn't done so, these are all technically correct
transformations for it to do. The optimizer in the compiler is more often your friend that your enemy
once you start developing serious code. However, understanding how the C language really works to
produce correct and efficient code isn't something that you're going to learn without some substantial
effort.

SUPPLEMENTAL FILES

simcounter.c:

/*
 * simcounter.c
 *
 * This program is primarily intended to be used in the AVR Studio
 * Simulator for demonstration of debugging features.
 * This program counts button presses on eight buttons on PORTA,
 * and continuously displays the current count on eight LEDs
 * on PORTB.
 *
 * By going through the exercises that are paired with this program,
 * you will become familiar with the AVR Studio Simulator and
 * Debugger.
 */
#include <avr/io.h>

#define PINA_END_VALUE 0xFF

void
init()
{
 DDRA = 0x00; // PORTA used entirely for input
 DDRB = 0xff; // PORTB used entirely for output
}

int
main()
{
 int buttonPresses=0;
 uint8_t thisState=0x00, prevState=0x00, changed=0x00;

Eric B. Wertz 2010/06/29 (v0.04)

SJSU ME106

 init();

 while (1) {
 thisState = PINA;
 if (thisState == PINA_END_VALUE)
 break;
 changed = thisState ^ prevState;
 if (changed != 0) {
 for (int i=0; i<8; i++) {
 uint8_t theBit = (1 << i);
 if ((changed & theBit) && (thisState & theBit)) {
 buttonPresses++;
 PORTB = buttonPresses;
 }
 }
 }
 prevState = thisState;
 }

 PORTB = buttonPresses; // just a place to put a final breakpoint
 while (1)
 ;
 /*NOTREACHED*/
}

simcounter-PORTA.sti:

00000000:00
00010000:01
00011000:00
00012000:01
00013000:00
00014000:01
00015000:03
00016000:01
00017000:03
00018000:01
00019000:00
00020000:0F
00021000:00
00022000:03
00023000:02
00024000:01
00025000:00
00100000:FF
99999999:00

Eric B. Wertz 2010/06/29 (v0.04)

