
Simple, Fast and Accurate Hyper-parameter Tuning

in Gaussian-kernel SVM

Guangliang Chen

Department of Mathematics & Statistics
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Abstract—We consider the parameter tuning problem for
Gaussian-kernel support vector machines, i.e., how to set its two
hyperparameters – σ (bandwidth) and C (tradeoff). Among the
many methods in the literature, the majority handle this task by
maximizing the cross validation accuracy over the first quadrant
of the (σ,C) plane. However, they are all computationally expen-
sive because the objective function has no explicit formula so that
one has to resort to numerical methods (which require training
and testing the classifier many times). Additionally, these methods
ignore the intrinsic geometry of training data and always operate
in a large set, thus being computationally inefficient. In this paper
we propose a two-step procedure for efficient parameter selection:
First, we use a nearest neighbor method to directly set the value
of σ based on the data geometry; afterwards, for the tradeoff
parameter C we employ an elbow method that finds the smallest
C leading to “nearly” the highest validation accuracy. By slightly
sacrificing the validation accuracy our method gains additional
attractive properties such as (1) faster training (i.e., much less
candidate points to be examined) and (2) better generalizability
(due to larger class margins). We conduct extensive experiments
to show that such a combination of simple techniques achieves
excellent performance - the classification accuracy of our method
is comparable to its competitors in most cases, but it is much
faster.

I. INTRODUCTION

Due to its great flexibility and superior performance, the

Gaussian-kernel Support Vector Machine (GkSVM) [1], [2] is

one of the most popular classifiers used by machine learners.

In the binary setting where the training data X = [x1 . . .xn] ∈
R

d×n has only two kinds of labels yi = ±1, GkSVM first

maps the training examples into some feature space F by using

a function Φ : Rd 7→ F that is defined by

Φ(x) · Φ(x′) = κ(x,x′) := e−‖x−x
′‖2/(2σ2)

= e−γ‖x−x
′‖2

, ∀ x,x′ ∈ R
d (1)

in which ‖ · ‖ represents the ℓ2 vector norm and γ, σ are fixed

constants with γ = 1/(2σ2). Afterwards, it finds a maximum-

margin separating hyperplane w ·Φ(x) + b = 0 in the feature

space via a quadratic program

min
w,b,{ξi}

1

2
‖w‖2 + C

n
∑

i=1

ξi subject to

yi(w · Φ(xi) + b) ≥ 1− ξi and ξi ≥ 0, ∀ i. (2)

Here, the first term measures the (inverse) margin between

the two classes in the feature space F , and the second term

“counts” the number of feature points Φ(xi) not in ideal

locations1. The constant C > 0 is a tradeoff parameter whose

value must be carefully tuned. This formulation is often called

the primal problem, to distinguish from the Lagrange dual:

max
λ1,...,λn

∑

i

λi −
1

2

∑

i

∑

j

λiλjyiyjκ(xi,xj)

subject to 0 ≤ λi ≤ C, ∀ i and
∑

i

λiyi = 0. (3)

The dual formulation shows that the GkSVM learning problem

depends on the training data only through their dot products

in the feature space and thus eliminates the need to explicitly

use the feature map Φ (which is often very high dimensional,

and here infinite-dimensional). For a thorough tutorial on SVM

and its various formulations we refer the reader to [3].

When there are more than two classes, a multiclass ex-

tension of the SVM is needed. Two simple and commonly-

used extensions are the one-vs-one and one-vs-rest multiclass

SVMs (see e.g. [4]). The former trains an SVM model between

every pair of classes while the latter considers every class

against all the other classes. Classification of a new instance

for the two methods is done by assigning it to the “winning”

class.2 There are also other extensions which directly use a

multiclass loss [5]. In this paper we focus on the one-vs-one

extension (however, the techniques to be proposed later are

independent of the multiclass extension used).

A practical difficulty with the GkSVM, however, is to set the

two parameters γ and C which crucially affect the predictive

performance. The majority of the existing methods in the

literature handle this task solely as an optimization problem

and try the best to achieve the highest cross validation (CV)

accuracy:

max
γ>0, C>0

CVaccuracy(γ, C). (4)

1That is, they lie within the margin or on the wrong side of the hyperplane.
In these cases, the slack variables ξi are positive; otherwise, they are zero.

2For one-vs-one multiclass SVM, the winning class is the most frequent
prediction of the binary models, while for one-vs-rest multiclass SVM it is
the class with the strongest positive prediction.



For example, the popular Grid Search algorithm – LIBSVM

[4], [6] – selects the best pair out of a fixed grid in a large

domain of the (γ, C) space, while Random Search [7], [8] uses

randomly selected points from the domain (still a considerable

fraction of the grid in size). Two other examples are Simulated

Annealing [9], [10] and Bayesian optimization [11], [12]

which employ sophisticated global optimization techniques

to obtain optimal parameters. The former is a probabilistic

technique for approximating the global optimum of a given

function by simulating the cooling of material in a heat bath

while the latter models a learning algorithm’s generalization

performance as a sample of the Gaussian process.

While some successes have been achieved by those meth-

ods, they suffer from the following drawbacks. First of all,

all those methods operate in the entire first quadrant of the

(γ, C) space and do not exploit the geometry of the training

data to narrow down the search range for either of the two

hyperparameters. Secondly, they all ignore the interpretation

of the two hyperparameters - σ (scale) and C (margin) -

and simply seek the highest possible CV accuracy. We point

out that this is not the best strategy as it may be prone to

overfitting and thus does not necessarily guarantee the highest

test accuracy (see Fig. 1 for two examples). Finally and most

importantly, these methods are all computationally very costly

which thus may limit their use in practice.
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Fig. 1. Plots of the validation and test accuracy rates against different
values of C for two data sets (γ is fixed in each plot). Observe that
in both cases the C value leading to the highest validation accuracy
does not lead to the highest test accuracy, but a preceding C value
with comparable validation accuracy actually works better. This is
because C controls the margin size of the trained SVM model; the
smaller the parameter C, the larger the margin. With comparable
validation accuracy rates, smaller C values thus lead to more robust
models.

In this paper we address those issues and propose a two-step

procedure for setting the two parameters:

(1) Setting σ directly. We point out that σ is a scale parameter

which determines the smoothness of the GkSVM decision

boundary and that its optimal value must reflect the

local geometry of the training data. In addition, GkSVM

is often more sensitive to σ than to C. Accordingly,

we estimate the optimal value of σ directly from the

training data by using the average distance of the training

points to their nearest neighbors in the same class. This

immediately reduces the two dimensional search domain

to a one-dimensional set.

(2) Picking C from a grid. Once σ has been fixed, we

will tune the C parameter in some finite grid. We have

observed in many cases that the CV accuracy either peaks

at, or stabilizes after, some C (as C increases); see again

Fig. 1. This motivated us to propose a procedure that

starts from the lower end of the C grid and gradually

computes the validation accuracy curve, until an elbow

point has been found (i.e., a point after which the valida-

tion accuracy practically stops increasing). Such a choice

of C leads to bigger margins (better generalizability) and

avoids testing the subsequent C values in the grid (faster

training).

Though the combined algorithm only aims to achieve a com-

parable validation accuracy, it yields more robust models while

checking significantly fewer candidate points (see Fig. 2, left

diagram for a graphical comparison with grid search).
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Fig. 2. Comparisons between the proposed method and existing
techniques such as grid search (left diagram) and the Caputo and
Jaakkola heuristics (right diagram). Left: The black dots represent
the (γ, C) values examined by grid search while the red squares
symbolize what our method tests. Right: The whole square (in red)
represents the matrix of pairwise distances between all training points
which have been sorted according to the labels. The Caputo heuristic
uses certain percentile of these pairwise distances for estimating γ
while Jaakkola is based on the pairwise distances between different
classes (represented by the blue blocks). In contrast, our method
uses only the distances that are between points in the same class
(represented by the green blocks).

Our σ tuning method has a close connection to two heuris-

tics in the literature, Caputo [13] and Jaakkola [14], which

also try to learn the parameter directly from training data. The

Caputo heuristic uses certain percentile (e.g., 10th, 50th and

90th) of all the pairwise distances among the training examples

while Jaakkola uses the median value of the distances from

each training point to the closest point from a different class.

See Fig. 2, right diagram for an illustration. Our method has

several advantages over these two heuristics. First, our method

has a clear interpretation as it implies a nearest neighbor graph

on the training data which is based on its local geometry.

Second, our method only depends on the pairwise distances

between points in the same class, and can be implemented very

efficiently by using fast nearest neighbor search algorithms

such as ANN [15]. Lastly, those two methods do not address

how to tune the hyperparameter C.



The rest of the paper is organized as follows. In Section II

we present our approach to parameter selection in GkSVM.

Numerical experiments are performed in Section III to test the

resulting algorithms. Finally, in Section IV, we conclude the

paper while pointing out some future directions.

II. PROPOSED METHODS

In this section we present our approaches to efficient and

accurate selection of the parameters σ and C of the Gaussian-

kernel SVM.

A. A kNN approach for directly setting σ

The kernel matrix Kij = exp(−‖xi − xj‖
2/2σ2) has

different interpretations in different fields. In classification

(which is the subject of this paper) it represents the dot product

matrix between the images of the given training examples

in a high dimensional feature space. In clustering, especially

spectral clustering [16], K is understood as a similarity matrix

defined on the given data (with larger values meaning more

similar). Regardless of the interpretation, the common goal is

to make, by varying σ, K as close to being block diagonal

as possible (with the blocks corresponding to the classes). We

adopt the spectral clustering perspective here to help select the

optimal value of σ.

Ideally, all points in the same class should be assigned

large similarity scores between them and those in different

classes be given small similarity scores. However, for many

practical data sets the classes often have complex shapes (e.g.,

nonconvex). Thus, with a single σ, at best one can only

expect to assign large similarity scores to nearby points in

each class. The bandwidth parameter σ plays an important

role as it determines how fast the similarity score decays

around each point. If σ is too small, then the similarity score

decays too rapidly and consequently all points in each of the

training classes (except for extremely close points) have small

similarity scores between them. On the other hand, if σ is too

large, then the similarity score decays too slowly and training

examples from different classes may have large similarity

scores which will complicate the subsequent classification

task. Therefore, a tradeoff must be made when setting the

value of σ (see Fig. 3 for a demonstration).
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Fig. 3. Demonstration of the effect of σ on the structure of the kernel
matrix, shown as a graph with nodes representing the training points
and thickness of edges proportional to the corresponding entries of
the kernel matrix (here only the thickest edges are displayed).

The above observations motivated us to adopt a nearest

neighbor approach for directly setting the value of σ. To

explain our method clearly, we introduce some notation first.

Assume without loss of generality that X = [X1 | · · · |
Xc] ∈ R

d×n, where each Xℓ, 1 ≤ ℓ ≤ c represents a class

in the training set X. Denote the size of Xℓ by nℓ. For every

1 ≤ i ≤ n, let ℓ(i) represent the label of the class containing

the training point xi, that is, xi ∈ Xℓ(i). We fix a positive

integer k (typically between 6 and 10) representing the number

of nearest neighbors to be examined (for each training vector).

For any training example xi we denote its kth nearest neighbor

(kNN) in Xℓ(i) by x
(knn)
i .

For an arbitrary training point xi ∈ Xℓ, the distance from

the point to its kth nearest neighbor in the same class x
(knn)
i ,

i.e., ‖xi − x
(knn)
i ‖, can be used as an estimate of the local

scale of the class. We expect a considerable fraction of all the

training samples in X that fall within this radius around xi to

still belong to Xℓ. Since this estimate may slightly vary from

location to location, we use all training points of Xℓ to obtain

a robust estimate of its local scale:

σ̃ℓ =
1

nℓ

∑

xi∈Xℓ

‖xi − x
(knn)
i ‖. (5)

We then set σ as a weighted average of the class scales

σ̃ =
1

n

c
∑

ℓ=1

nℓσ̃ℓ. (6)

This is equivalent to calculating the global average of the

distances between all training points and their respective kNNs

within the same class:

σ̃ =
1

n

n
∑

i=1

‖xi − x
(knn)
i ‖. (7)

In [17] we used the same formula for estimating σ but x
(knn)
i

was defined with respect to the full training set X rather than

the associated class Xℓ(i).

When the data set is large (in size or dimension or both),

the nearest neighbor search for all points in their associated

training classes may become a computational burden. To

increase efficiency, we propose a stochastic kNN method to

estimate the deterministic quantity σ̃ by using only a small

stratified sample of s training vectors xi1 , . . . ,xis from X:

For each 1 ≤ ℓ ≤ c, we select at random sℓ = ⌈s · nℓ/n⌉
points from Xℓ proportionally to its size and set σ as

σ̃(s) =
1

s

s
∑

j=1

‖xij − x
(knn)
ij
‖. (8)

It is easy to see that this is also a weighted average of the

scales of the different classes which are estimated from a small

number of samples in each class.

Typically, we choose s = 50 due to the Law of Large

Numbers (LLN). Experiments conducted later in this paper

also examine other values of s and indicate that a sample size

as small as 10 may be already enough in many cases.



B. An elbow method for tuning C

The tradeoff parameter C also plays an important role in

the training of a Gaussian-kernel SVM model. Generally, it is

inversely related to the identified margin of the model: Large

values of C force SVM to penalize heavily on the number of

training errors and thus would lead to small margins between

the different training classes, with a risk of overfitting the

data. On the other hand, small values of C can tolerate many

training errors and lead to large margins which could underfit

the data. Therefore, caution has to be used when selecting the

optimal value of C and a tradeoff must be reached between

the number of training errors and the size of the margin.

With the introduction of the kNN tuning method for direct

selection of σ (and γ) in the preceding section, one can then

perform grid search solely for C (based on the fixed σ), that

is, to examine all values of C from a large candidate set and

choose the one that maximizes the cross validation accuracy.

While grid search guarantees that numerically the highest cross

validation accuracy be achieved (over the given candidate set),

we actually prefer smaller values of C that lead to very close

validation accuracy rates. The reason is that smaller values of

C imply bigger margins and thus produce more robust models

that may generalize better to previously unseen data (see Fig. 1

for examples). Therefore, we propose to use the smallest C
that leads to a comparable validation accuracy, which often

appears as an elbow point on the validation accuracy curve.

Specifically, we start from the smallest value of a chosen C
grid and gradually compute the validation accuracy curve.

We will stop as soon as an elbow point is detected. Such

a procedure avoids testing larger values of C and thus can

significantly reduce the amount of training time.

C. The combined algorithm

We combine the two parameter tuning techniques presented

earlier to form a new algorithm for hyperparameter tuning in

GkSVM (see Alg. 1). We note that in the elbow search step of

Alg. 1 we declare a C value an elbow point if the validation

accuracy for the first time does not increase more than a chosen

tolerance ǫ > 0 at the next two C values. In all experiments

of this paper we fix ǫ = 0.005 (i.e., 0.5%).

III. EXPERIMENTS

In this section we conduct extensive numerical experiments

to examine both the accuracy and speed of Alg. 1 relative to

existing parameter selection methods, namely Grid Search [6],

Random Search [7], Caputo Heuristic [13], Jaakkola Heuristic

[14], Simulated Annealing [18], and Bayesian [11].

A. Data sets and experimental setup

We choose 13 benchmark data sets from the LIBSVM web-

site at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

for our study; summary information of the data sets along

with their sources is displayed in Table I. These data sets are

already partitioned into training and test parts, which allows

for easy reproducibility of the results reported in this paper.

Algorithm 1 Proposed algorithm: kNN-GkSVM

Input: Training set X, # nearest neighbors k, sample size s,

# CV folds f , and bounds Cmin, Cmax for C
Output: Optimal σ,C as well as the trained Gaussian-kernel

SVM model

Steps:

1: kNN tuning for σ:

• Sample s points from X, with the number of samples

from each training class proportional to the size of

the class

• For each of the s points sampled, find the kth nearest

neighbor of that point in the class it belongs to.

• Use Eq. (8) to set σ and fix the value for below.

2: Elbow search for C (based on the σ obtained above):

• Randomly partition X into f equal subsets, and fix it

for the steps below.

• Initialize C = Cmin. Cross validate this choice of C
and the σ from Step 1 based on the fixed partition.

Compute the corresponding validation accuracy.

• Repeat

– Increase C by doubling it: C ←− C · 2
– Cross validate the new C and the same σ from

above based on the fixed partition of X to get a

new validation accuracy.

Until an elbow C has been found, or C = Cmax.

TABLE I
SUMMARY INFORMATION OF THE DATA SETS USED.

dataset source #classes #dims #train #test

astroparticle [19] 2 4 3089 4000
bioinformatics [19] 2 21 1243 41
dna Statlog [20] 3 180 2000 1186
letter Statlog 26 16 15000 5000
madelon [21] 2 500 2000 600
pendigits UCI [22] 10 16 7494 3498
protein [23] 3 357 17766 6621
satimage Statlog 6 36 4435 2000
shuttle Statlog 7 9 43500 14500
splice UCI 2 60 1000 2175
svmguide4 [19] 6 10 300 312
usps [24] 10 256 7291 2007
vowels UCI 11 10 528 462

Following the recommendation in [4] we rescaled all fea-

tures of the 13 data sets to the [0, 1] range (though this is not

necessary for our proposed methods). We kept all the features

and did not reduce the dimensionality of the data. For the

data sets with more than two classes, we adopted the one-

vs-one multiclass extension of the binary GkSVM classifier.

The number of cross-validation folds was set to 10 in all

experiments.

To make the parameter tuning problem (4) practically

tractable and for the reason of fair comparison we followed

[4] to restrict all methods to work in the same (γ, C) domain

Ω = [2−10, 24] × [2−2, 212] ⊂ R
2. All experiments were

conducted on a compute server with 48 GB RAM and 2



CPU’s with 12 total cores. We recorded the CPU time for

each experiment.

We implemented all methods except Bayesian in MATLAB

2016a based on its Statistics and Machine Learning Toolbox

(mainly the two functions fitcsvm and predict). For Bayesian

optimization, we used Python’s SPEARMINT package at

https://github.com/HIPS/Spearmint for convenience (we also

coded up Deterministic kNN in Python in order to compare the

running time of the two algorithms). The parameters uniquely

associated to each algorithm are described below:

• Grid Search: We used the following candidate sets from

[4] for γ and C respectively: γ ∈
{

2−10, 2−9, . . . , 24
}

and C ∈
{

2−2, 2−1, . . . , 212
}

. We also used the same C
grid for Caputo, Jaakkola, Deterministic and Stochastic

kNN which all perform grid search for the parameter C.

• Random Search: We selected 60 points at random (in

log2 scale) from the fixed region Ω. Due to the random-

ness in sampling we repeated random search for each

data set 10 times to compute the average test accuracy

and CPU time.

• Caputo: We tried each of the 10th, 50th and 90th

percentiles of all pairwise distances for σ and found that

the 10th percentile consistently performed the best, so we

only report the results with this percentile.

• Jaakkola: We set σ equal to the median Euclidean

distance between all training vectors and their closest

neighbors from a different class.

• Simulated Annealing (SA): We employed hide and

seek SA [18] which performs an immediate annealing

whenever a better solution is found rather than waiting for

the current annealing cycle to end, in order to converge

more quickly to the global optimum. We used the recom-

mended parameter values in [18]. Like random search,

we performed 10 independent trials for each data set to

report the average test accuracy and CPU running time.

• Bayesian: We applied SPEARMINT with 50 iterations.

• Deterministic kNN: The number of nearest neighbors

used for computing σ was fixed to k = 7 for all data

sets. To perform nearest neighbor search we simply used

the MATLAB 2016a knnsearch function.

• Stochastic kNN: We used the same options for deter-

ministic kNN and additionally set s = 50 (number of

samples used) in all cases. Similarly to random search

and simulated annealing, we repeated stochastic kNN for

each data set 10 times to deal with randomness.

The test accuracy rates obtained by the different methods

are summarized in Table II. The following observations are at

hand: (1) Our methods achieve the highest test accuracy rates

(those highlighted), or stay within a 1% absolute difference

from the best ones (those underlined), on all but two data sets

(‘madelon‘ and ‘svmguide4’); (2) Between deterministic and

stochastic kNNs, the two of them are less than 0.5% apart in

all cases except for ‘bioinformatics’ (however, the difference

is still less than 2%). Overall, our methods obtained very

competitive accuracy rates.

TABLE II
ACCURACY RATES (%) OBTAINED BY GRID SEARCH (GS),
RANDOM SEARCH (RS), CAPUTO (CP), JAAKKOLA (JK),

SIMULATED ANNEALING (SA), BAYESIAN (BY), DETERMINISTIC

kNN (DkNN) AND STOCHASTIC kNN (SkNN). THOSE

HIGHLIGHTED NUMBERS ARE THE HIGHEST ACCURACY

ACHIEVED ON EACH DATA SET. FOR CONVENIENCE, WE ALSO

UNDERLINE THE ACCURACY RATES ACHIEVED BY OUR METHODS

WHEN THEY ARE LESS THAN 1% FROM THE BEST RATES.

dataset GS RS CP JK SA BY DkNN SkNN

astroparticle 96.2 96.5 96.8 96.8 96.5 97.2 96.5 96.3
bioinformatics 85.4 85.8 95.1 95.1 83.9 85.4 95.1 93.4
dna 93.9 94.8 95.6 95.3 95.0 95.0 95.3 95.3
letter 97.9 97.9 97.6 97.9 97.9 97.9 98.0 98.0
madelon 61.2 59.7 59.0 59.5 59.3 59.2 59.7 59.7
pendigits 98.3 98.2 98.5 98.3 98.2 98.5 97.7 97.6
protein 69.6 70.2 70.3 70.4 70.4 70.3 70.1 70.2
satimage 90.3 90.6 90.3 90.5 90.5 90.9 90.6 90.9
shuttle 99.9 99.9 99.9 99.9 99.9 99.9 99.4 99.8
splice 89.7 89.8 90.2 89.7 90.0 90.3 90.1 90.1
svmguide4 88.5 88.1 73.7 68.3 88.0 87.5 77.2 77.0
usps 95.3 95.3 95.3 95.2 95.3 95.5 95.4 95.3
vowels 61.7 62.6 64.9 63.6 48.9 62.3 64.5 64.3

The CPU time taken by the different methods is shown

in Figs. 4 (MATLAB implementations of all methods except

Bayesian) and 5 (Python implementations of deterministic

kNN and Bayesian). We see that stochastic kNN is consis-

tently the fastest method (the deterministic method is close

except for ‘shuttle’) while simulated annealing, grid search

and Bayesian are the slowest methods (about two magnitudes

slower than stochastic kNN in all cases). We further plot

in Fig. 6 the elbow C values detected by the deterministic

method on all data sets. They seem to be around the value

22 which implies that on average only 5 values in the C
grid (plus a couple extra ones needed for elbow detection)

were actually tested by our method; this is in contrast to all

the other methods which exhaustively test all 15 values. An

implementation of the elbow C method for Jaakkola obtained

similar efficiency while maintaining comparable accuracy (see

Fig. 7).

Lastly, we test the stability of our methods in regards to the

two parameters k, s. In Fig. 8, we applied the deterministic

method with k = 1, 2, . . . , 12 to all data sets and display the

corresponding accuracy curves (as functions of k). We see

that all the curves stabilize after k = 6, showing that the

deterministic method is insensitive to the choice of k (as long

as 7 ≤ k ≤ 12). In Fig. 9, we fixed k = 7 for stochastic kNN

but set s = 10, 20, 30, 40, 50, 75, 100 respectively to study

the sensitivity of this parameter. Due to the randomness in the

subset selected for estimating σ we conducted 10 independent

trials for each value of s and took the average of the accuracy

results. We can see that like the parameter k, the choice of

s is insensitive either and an s value as small as 10 already

gives very close results to the deterministic method.

IV. CONCLUSIONS AND FUTURE WORK

We presented simple yet effective machine learning tech-

niques for efficiently tuning the two hyperparameters γ, C
of the Gaussian-kernel SVM. Unlike the existing techniques
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Fig. 4. CPU time of the different parameter selection methods (except Bayesian), all implemented in MATLAB.
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Fig. 5. CPU time of the deterministic kNN and Bayesian methods implemented in Python.
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which are all based on the formulation in (4), we exploit the

geometry of the training data to select γ directly and take

the margin size into consideration by choosing the elbow

C that leads to comparable cross validation accuracy rather

than spending expensive computational power in finding the

highest validation accuracy. Our combined algorithm has clear

interpretations and is expected to prevent overfitting to the

training data. Meanwhile, it enjoys a fast speed by significantly

reducing the number of candidate points to be checked while

maintaining comparable accuracy, both demonstrated through

extensive experiments. It has also been experimentally verified

that our method is insensitive to choices of the two parameters

used for calculating σ, namely, k (number of nearest neigh-

bors) and s (number of samples). Overall, our method proves

to be very robust and comparatively accurate, but significantly

faster than its competitors.

We mention a few directions that we are currently working

on or wish to explore in the near future. First of all, we would

like to compare different distance metrics such as ℓp in terms

of the prediction performance (as ℓ2 is not necessarily the

optimal choice) and find which one best adapts to the data

geometry. Secondly, since the parameter σ of the Gaussian

kernel is a global constant, it may not be able to capture the

full complexity of real data sets which often exhibit different

scales in different locations. We are currently working to

address this issue. Thirdly, we point out that the elbow C
method can also be used together with other parameter tuning

methods for Gaussian-kernel SVM (e.g. Caputo) or even in

other settings such as polynomial kernel SVM and neural

networks to improve their speed and/or accuracy. We plan to

explore this direction too. Lastly, we have observed that high

dimensional data sets (such as ‘protein’ and ‘usps’) require

significantly longer time to train a Gaussian-kernel SVM

model. Additionally, it is known that Gaussian-kernel SVM

is not better (and sometimes worse) than linear SVM when

there are a large number of features [19]. We are currently

experimenting with novel feature selection techniques to boost

the performance of Gaussian-kernel SVM in those situations.
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