
Multiscale Geometric and Spectral Analysis of Plane Arrangements

Guangliang Chen∗, Mauro Maggioni∗,†

∗Mathematics and †Computer Science Departments, Duke University, PO Box 90320, Durham, NC 27708, USA

{glchen,mauro}@math.duke.edu

Abstract

Modeling data by multiple low-dimensional planes is an

important problem in many applications such as computer

vision and pattern recognition. In the most general set-

ting where only coordinates of the data are given, the prob-

lem asks to determine the optimal model parameters (i.e.,

number of planes and their dimensions), estimate the model

planes, and cluster the data accordingly. Though many al-

gorithms have been proposed, most of them need to assume

prior knowledge of the model parameters and thus address

only the last two components of the problem. In this paper

we propose an efficient algorithm based on multiscale SVD

analysis and spectral methods to tackle the problem in full

generality. We also demonstrate its state-of-the-art perfor-

mance on both synthetic and real data.

1. Introduction

It is of interest in various applications to model data by

hybrid linear models, i.e., using a union of low-dimensional

planes. In applications such as image processing [10],

computer vision [15], and pattern recognition [14], these

models have shown promise in solving modeling, cluster-

ing and classification tasks. Notwithstanding much recent

work [18], the problem of finding a set of planes approxi-

mating a point cloud is still open at least from two perspec-

tives: from a theoretical standpoint most existing algorithms

do not have finite-sample guarantees, and from a practical

standpoint they require that the number of planes and their

dimensions be given. Finally, computational efficiency is

also important, and several existing algorithms are slow in

theory and in practice. We formulate the following prob-

lems:

Problem 1. (Model Selection) Given a data set X =
{x1, . . . ,xN} ⊂ R

D sampled around a collection of K
planes π1, . . . , πK of dimensions d1, . . . , dK respectively

(where K and dk are both unknown), determine the model

parameters K, (dk)
K
k=1 and {πk}

K
k=1.

Problem 2. (Subspace Clustering) With the same data as

in Problem 1 and prior knowledge on the model parameters

K, (dk)
K
k=1, cluster the data into K groups corresponding

to the (unknown) model planes {πk}
K
k=1.

The two problems are sometimes confused in the liter-

ature, which has mostly focused on Problem 2. We think

it is important to keep them separate as their complexities

are quite different, and so should be algorithms attempting

their solution. Problem 2 has been studied extensively dur-

ing the past decade, leading to a handful of proposed algo-

rithms [15, 19, 20, 13, 8, 14, 1, 5, 21, 12]; for a compre-

hensive review of the subspace clustering methods, we re-

fer the reader to [18]. However, even several latest methods

[14, 1, 5, 21, 12] require K and/or (dk)
K
k=1 as inputs. To the

best of our knowledge, the only method that can solve Prob-

lem 1 is Agglomerative Lossy Coding (ALC) [13]. Never-

theless, ALC has an unknown tolerance parameter whose

different values lead, in theory and in practice, to differ-

ent numbers of clusters. Moreover, ALC is observed to

be a slow method (see Section 3), with an unknown num-

ber of iterations needed for convergence, and has no finite-

sample guarantees, albeit it seems to perform well with

small amounts of data and with ideal settings of the tol-

erance. Iterative methods [6, 16, 9] that alternate between

the subspace estimation and data clustering steps also ex-

ist. Typically, these methods are initialized with a random

guess of the planes or of the clusters. Though extremely

fast, they often converge to a local optimal solution, far from

the global optimal one, especially in the cases of affine sub-

spaces and of mixed dimensions. This makes iterative meth-

ods more suitable as a post-optimization tool for improving

other algorithms, than as a clustering method on their own.

Therefore, we will not discuss iterative methods in the rest

of the paper.

In this paper, we propose a new algorithm solving Prob-

lems 1, 2. Our approach is inspired by ideas from the Mul-

tiscale Singular Value Decomposition (MSVD) [11] and

spectral methods [20, 1]. It only requires as inputs upper

bounds Kmax and dmax for the number of planes and their

dimensions, respectively. Then, it automatically determines

the model parameters (K; d1, ..., dK , π1, . . . , πK) with a

2825

near-optimal number of samples and computational cost,

and, upon request and with additional cost, clusters the data

accordingly. Moreover, it is robust to noise and extremely

fast. Finally, it may also be used to estimate crucial model

parameters needed by other state-of-the-art algorithms such

as those mentioned above.

The rest of the paper is organized as follows. Section 2

presents our methodology for solving Problems 1 and 2.

Numerical experiments are then conducted in Section 3 to

test the algorithm against existing methods. Finally, the pa-

per is concluded in Section 4.

2. Methodology

We start by tackling Problem 1. First of all, we discuss

the complexity of the problem at hand: the cost of encod-

ing the K planes (in generic position) is
∑

1≤k≤K dkD =
O(KDmaxk dk), since in order to encode πk we need to

store dk vectors in R
D. Ideally, we would like to produce

an algorithm with comparable computational and sampling

complexity. Note that this is independent of N , and in

particular much smaller than the complexity of Problem 2,

which requires at the very least visiting every one of the

N points in the given data. Our algorithm will indeed have

computational complexity O(Kmaxdmax(dmax+Kmax)D),
where dmax,Kmax are given upper bounds on dk and K, up

to some logarithmic factors in dmax and Kmax, and with a

constant that depends only on a notion of geometric com-

plexity of the problem and on the size of the noise that

affects the points. Our approach will favor configurations

of the K planes such that a random point x ∈ πk has

a large R
D-neighborhood that only intersects πk, and no

other plane. The average size of such neighborhoods is a

natural measure of complexity of the underlying geometry

that captures the intuition that configurations with planes

with many intersections and/or close-by are harder to re-

solve, i.e., it will require more samples and possibly smaller

noise for the planes to be correctly identified.

Our approach to Problem 1 makes use of this assumption

and starts by finding n0 = O(Kmax logKmax) good lo-

cal regions, together with their dimension estimates (d̂i)
n0

i=1

and best approximating planes {π̂i}
n0

i=1 by using a Multi-

scale SVD analysis [11, 3]. Then these planes {π̂i}
n0

i=1

are aligned together by a spectral method to generate the

final estimates of the model parameters (K; d1, ..., dK ,

π1, . . . , πK). At this point, upon request and with addi-

tional cost, we may proceed to solve Problem 2 and assign

points to planes. This type of approach was inspired by

[11], suggested in [3] and independently in [21].

2.1. Setup and assumptions

Our assumptions are that the probability of sampling

from each plane is roughly 1/K and that the points on

each plane are well-distributed. More precisely, let µX

be a probability measure in R
D which is supported in

(

∪K
k=1πk

)

∩ [−M,+M]D where {πk} are affine dk-planes.

We shall assume that µX (πk1
∩ πk2

) = 0 if k1 6= k2, and

that the probability is well-distributed across the planes, i.e.,

∃c1 > 0 : µX (πk) ≥ c1/K, for all k. Conditioning µX to

πk we obtain a probability measure µk,X , for which we as-

sume two types of regularity around a point x ∈ πk: (a)

volume regularity, i.e., ∃c2 > 0 : ∀r ≤ M, c−1
2 rdk ≤

µk,X (Bx(r)) ≤ c2r
dk , where Bx(r) is the R

D-ball cen-

tered at x of radius r; (b) shape regularity, i.e., for any

r > 0 and a random variable Xk,x,r ∼ µk,X (restricted

on Bx(r)), the set of eigenvalues of its covariance sat-

isfy λ(cov(Xk,x,r)) ⊂ r2

dk
[λmin, λmax] for fixed constants

λmin, λmax > 0. Let Ex := {r > 0 : Bx(r) ∩ (∪K
j=1πj) ⊆

πk}, and R∗
x
:= supEx. We call the r ∈ Ex good scales

at x, and R∗
x

the maximal good scale. R∗
x

is large if x is

far from other planes. We assume that the points xi are

corrupted by random Gaussian noise ηi ∼ σD− 1

2N(0, ID),
albeit assuming subgaussian distributions would be enough,

and we will abuse notation to still denote the noisy samples

by xi. Finally, we assume that ∃c3 < 1 (small enough) :
µk,X (R∗

x
> σ) ≥ 1 − c3, i.e. there is a substantial proba-

bility that a µk,X -distributed random sample has a maximal

good scale above the noise scale.

2.2. Sketch of the analysis

Suppose we sample x1, . . . ,xn0
according to µX : as

soon as n0 ≥ c4K logK we have with high probability

(w.h.p.) Ω(n0µX (πk)) = Ω(n0

K) = Ω(c4) samples in

each πk (as in the coupon collector’s problem, with the

K planes representing coupons). If we continue to sam-

ple n = c5n0dmax log dmax points to form a random sub-

set Xn, with c5 = c5(c2, c3, σ) large enough, then w.h.p. a

large fraction of such points has a maximal scale R∗
x
> σ,

which is large enough to contain Ω(dmax log dmax) points

in Xn. For any xi ∈ πk among such points, at appropriate

scales σ . r ≤ R∗
xi

, with only Ω(dk log dk) noisy sam-

ples it is possible to obtain an accurate empirical estimate

of cov(Xk,xi,r) [11]. The MSVD analysis of such matri-

ces, for varying values of r, yields accurate estimates d̂i
and π̂i for dk and πk respectively. Moreover, by monitor-

ing an empirical estimate of the fitting error of the data by

the planes constructed as we increase n0, with n points as

above we produce a model with O(K) planes, that w.h.p. is

accurate in the sense that 1
n

∑

x∈Xn
mini dist

2(x, π̂i)
2 ∼

1
n

∑

x∈Xn
mink dist

2(x, πk) and this error is w.h.p. as

small as can be expected. At this point we use spectral clus-

tering on a matrix of assignments of points to planes to esti-

mate K and the model planes πk, and, if requested to solve

Problem 2, make the final point assignment. This reasoning

can be made rigorous with the following result [4]:

Theorem 2.1. With the above assumptions there exists

2826

an algorithm whose inputs are upper bounds Kmax, dmax

for the number of planes and their dimensions, re-

spectively, such that the following holds: by accessing

O(dmaxKmax log dmax logKmax) samples distributed ac-

cording to µX , it returns w.h.p. the correct model param-

eters K, (dk)
K
k=1 and accurate approximations to {πk}

K
k=1,

in time O(DKmaxdmax(dmax+Kmax) logKmax log dmax).

The finite sample and running time guarantees are the

strongest among the existing algorithms (most of which

have in fact no guarantees), and near optimal. Because of

space constraint we cannot provide here the fully quantita-

tive result, nor the most general version of the above state-

ment, nor its proof, and we focus instead on the algorithm

itself, its implementation and performance, on synthetic and

real data, relative to the current state of the art.

2.3. Multiscale SVD analysis for multiple planes

The first step of the algorithm is to estimate several lo-

cal planes from random samples from the distribution µX .

Our technique is based on the Multiscale Singular Value

Decomposition (MSVD) [11], originally applied for esti-

mating the intrinsic dimension of a point cloud. Singu-

lar values computed in increasingly larger neighborhoods

(scales) of each point are used to identify a range of scales

within which the singular values corresponding to the local

tangent plane, curvature and noise exhibit different growth

rates (as functions of scale). Here we only discuss our adap-

tation of MSVD to the case of plane arrangements, to yield

a collection of good local pieces of the underlying planes,

together with estimates of their intrinsic dimensions, best

fitting planes and approximation errors.

We fix a sequence of J = O(1) positive integers nj ∼
⌈jdmax log dmax⌉, j = 1, . . . , J . We randomly pick a point

x ∈ X , say x ∈ πk, and for each j, let y1, . . . ,ynj
be

the nj nearest neighbors of x in X . We compute the top

singular values σjp, p = 1, . . . , dmax, of the nj + 1 points

Yj := (nj+1)−1/2 [x−mj ,y1−mj , . . . ,ynj
−mj], (1)

where mj is the mean of x and the y’s (points are thought

of as column vectors). We let rj :=
∥

∥x− ynj

∥

∥, for

j = 1, . . . , J , be the local scales. The σjp and rj depend

on the particular point x, but we have dropped this depen-

dence from the notation. We will use the multiscale sin-

gular values σjp, 1 ≤ p ≤ dmax and the local scales rj to

determine the local dimension at x. In [4] we prove that

w.h.p. for σ < rj < R∗
x

the top dk singular values σjp grow

linearly in rj (as do their expected values, by our assump-

tions on cov(Xk,x,r)), while the remaining σjp are O(σ)
(by the assumptions on the noise). At scales rj > R∗

x
, at

least σjp, p = dk + 1 also starts growing linearly, as in-

tersections and points on other planes πk′ , k′ 6= k, enter

the neighborhood of x. Algorithm 1 below implements this

Algorithm 1 Linear-manifolds Multiscale SVD (LMSVD)

Input: Data set X , upper bound dmax for all dk, and sampling

parameter n0.

Output: n0 sampled points xi, maximal good regions R̂i, lo-

cal dimensions d̂i, best d̂i-planes π̂i approximating R̂i and the

least squares errors ǫ̂i.
Steps:

. Randomly select n0 points {x1,x2, . . . ,xn0
} in X . Let

nj = ⌈jdmax log dmax⌉, 1 ≤ j ≤ J = 50, and set α0 =
0.3/

√
dmax.

. for i = 1 : n0

– For each 1 ≤ j ≤ J , perform SVD analysis on xi

and its nj nearest neighbors in X using (1).

– Detect and discard the first few scales rj where all

the σjp grow linearly with slope ≥ α0 due to noise

(this corresponds w.h.p. to rj < σ).

– Find the maximum R̂∗
xi

of subsequent scales within

which the first few σjp grow linearly while the

remaining ones are relatively flat, by thresholding

slopes at α0.

– Let R̂i be the subset containing xi and its nearest

neighbors that are within distance R̂∗
xi

, and d̂i, the

number of the singular values with linear growth in

the range, be the local dimension at xi.

– Compute the best d̂i-plane π̂i approximating R̂i and

the corresponding least squares error ǫ̂i.

end

strategy to infer the local dimensions at a subset of n0 ran-

domly selected points in X ; Figure 1 illustrates its behavior

on a toy data set.

We estimate the model error by the quantity

τ2 =
D

n0

n0
∑

i=1

ǫ̂2i

D − d̂i
, (2)

where d̂i, ǫ̂i are the local dimensions and errors returned by

Algorithm 1. Observe that an unbiased estimator for the

true error may be obtained by using a validation set of size

no larger than the set of points used to estimate π̂i. τ is

w.h.p. close to the expected error, and it will be used in

Section 2.4.2 to estimate K (when not given). We remark

that many state-of-the-art algorithms such as ALC [13],

SSC [5], and GPCA [14] crucially rely on the parameter

τ , therein referred to as a tolerance level. The ALC method

when given the correct error tolerance returns the true num-

ber of clusters while clustering data, and otherwise fails to

do so, in general, as we shall discuss later.

2.4. Plane alignment for modeling data

Given the upper bound dimension dmax and the sam-

pling parameter n0, Algorithm 1 returns n0 random samples

xi, their optimal local regions R̂i and associated parame-

ters (d̂i, π̂i, ǫ̂i). In this section we present how to use these

2827

−0.500.5
−0.5

0

0.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Pointwise Dimension Estimates

 1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

−0.500.5
−0.5

0

0.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Optimal Local Scales

10

15

20

25

30

35

40

45

50

(a) Dimension estimates of n0 = 60 randomly chosen samples (left) and

corresponding values of maximal good scale R∗
x

(right).

−2

−1

0

1

2
−0.8−0.6−0.4−0.200.20.40.60.8

−1

−0.5

0

0.5

1

Est. Dim. = 1

−2

0

2

−1−0.500.51

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Est. Dim. = 2

(b) Two points (indicated by black + symbols) among the ones above,

with corresponding dimension (title) and scale estimates (red regions).

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.05

0.1

0.15

0.2

0.25

0.3

Est. Dim. = 1

Scale

S
in

g
.V

a
ls

.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Est. Dim. = 2

Scale

S
in

g
.V

a
ls

.

(c) Plots of the multiscale singular values (for the two points above) and

the detected local dimensions and good scales (between red lines)

Figure 1. Illustration of Algorithm 1 (with n0 = 60) on a data set

of two lines and one plane in R
3, each containing 200 points and

corrupted with Gaussian noise with σ = .04.

information to recover the hybrid linear model and corre-

spondingly partition the data in X . We first assume that the

number of subspaces K is given to us (Section 2.4.1), and

then discuss (in Section 2.4.2) how to infer K when it is

unknown (using the tolerance of (2)). Finally, we formulate

an algorithm (Section 2.4.3).

2.4.1 When the number of clusters K is given

We set n0 = Ω(K logK): we can show that w.h.p. a con-

stant fraction of the n0 planes π̂i approximates well one of

the true planes πk. Define Xn =
⋃

1≤i≤n0
R̂i ⊆ X , the

collection of all samples and their nearest neighbors within

the optimal scales. We recall that the cardinality n of Xn

is O(n0dmaxlog dmax). This is the data that we will use,

together with the planes π̂i, to estimate the model.

We define an n× n0 affinity matrix

Aij := e
−

dist
2(xi,π̂j)
2ǫ̂2

j . (3)

Note that ǫ̂j , the local error estimate, serves as a tuning

parameter in the Gaussian kernel, and is locally adaptive.

Also, each row Ai : maps the point xi to a feature vector

in R
n0 encoding the distances from xi to the planes π̂j . We

expect points generated in the same plane to be clumped

together in the feature space, and conversely points from

different planes in almost orthogonal directions; this is ex-

emplified in the top left plot of Figure 2.

We next follow the corresponding steps of the SCC al-

gorithm [2] to partition the data in Xn into K subsets re-

specting the model. That is, after proper normalization of

the matrix A, we extract its top K left singular vectors and

use them as columns to form a matrix U. The rows of U

(regarded as points in R
K), again properly normalized, are

used as new coordinates of the data in Xn. We then apply

the K-means algorithm to these rows and obtain K clus-

ters Xkn of Xn, We use the Xkn’s to provide updated esti-

mates for the model parameters. For example the intrinsic

dimension dk of the plane πk is estimated through an inter-

nal voting procedure, i.e., it is set to be the most frequent

dimension d̂k of the samples xi that are assigned to this

cluster. Finally, we let π̂k be the d̂k-dimensional PCA plane

of the cluster Xkn, and partition the original data in X by

assigning points to their closest planes π̂k.

2.4.2 When the number of clusters K is unknown

When we do not know K, we will apply the strategy in

the preceding section to the data in Xn (but with n0 =
Ω(Kmax logKmax)), for K = k starting at k = 1 and in-

creasing it by one each time (or, better, by binary search).

In each iteration we compute the corresponding k planes

π̂jk, 1 ≤ j ≤ k of dimensions d̂jk approximating the clus-

ters X̂jk, and error

e2(k) =
D

n

k
∑

j=1

∑

x∈X̂jk

dist2(x, π̂jk)

D − d̂jk
. (4)

We gradually increase k until we find the first k so that e(k)
is below the tolerance τ estimated in (2): K̂ = min{k :
e(k) ≤ τ}. This K̂ is expected to be the true number of

clusters: for k < K̂, the corresponding k-plane model can-

not accurately fit the data because their dimensions are cho-

sen among local dimension estimates, thus always under-

fitting the data and leading to large errors e(k). Note also

that we do not need to check those k > K.

2.4.3 The Multiscale Analysis of Plane Arrangements

(MAPA) algorithm

We present in Algorithm 2 our solution to Problems 1 and 2

and illustrate it in Figure 2 on the data of Figure 1.

2828

Algorithm 2 MAPA

Input: Upper bounds dmax,Kmax.

Output: Model parameters (K̂; d̂1, . . . , d̂K̂ ; π̂1, . . . , π̂K̂), and

associated clustering.

Steps:

. Replace the original data X with a random subset, which

with abuse of notation we still denote with X , of size

min{100Kmaxdmax logKmax log dmax, N}.

. Apply Algorithm 1 to obtain n0 := 20Kmax logKmax

local regions R̂i and their associated statistics (d̂i, π̂i, ǫ̂i).
Also, compute the tolerance τ in (2).

. Set k = 1 and d = mode{d̂i | 1 ≤ i ≤ n0}. Compute

the d-dimensional PCA plane for X ; let e(1) be as in (4).

. If e(1) ≤ τ , stop and return; otherwise form A as in

(3) and normalize it to L = D
−1/2

A, where D =
diag(AA

′
1). Let U := [u1, . . . ,uKmax

] be the matrix

of the top Kmax left singular vectors of L.

. while e(k) > τ

– Increment k by 1 and let Uk = [u1, . . . ,uk].

– Normalize the row vectors of Uk to have unit length

to produce the matrix Vk, and apply K-means to the

row vectors of Vk to find k clusters {X̂jk}kj=1.

– Let the dimension d̂jk of X̂jk be the mode number

of the d̂i’s of the sampled points assigned to X̂jk.

– Compute the best PCA planes π̂jk of clusters X̂jk

and approximation error e(k) using (4).

end

. Return K̂ = k, d̂j = d̂jk, π̂j = π̂jk. If also solving

Problem 2, use π̂j to cluster the original data in X by

assigning points to their nearest planes.

2.5. Algorithmic complexity

For the solution of Problem 1, we assume the algo-

rithm has access, at the cost O(D), to any data point,

and do not include the data storage in the space require-

ments. We also drop log factors in the following calcu-

lation. The space requirement then is O(KmaxdmaxD),
driven by the cost of storing the n0 = Ω(Kmax) estimated

planes. The total computational cost of the algorithm is

O(Kmaxdmax(dmax+Kmax)D); in particular, it is indepen-

dent of N , and is only marginally higher than O(KdmaxD),
the cost of just encoding the planes. It is computed as fol-

lows: if we let n = O(Kmaxdmax), then in time O(n0nD)
we may compute the distances from n points to n0 points, in

time O(n0(dmax+d2maxD)) we can find the O(dmax) near-

est neighbors of each of the n0 points and perform MSVD,

in time O(nn0dmaxD) we can construct A and in time

O(nn0Kmax) we can compute U, and in time O(KmaxnD)
we may compute Kmax-means (as in [2]). In order to solve

Problem 2, we simply add the cost of assigning points to

planes, which is O(NKdmaxD).

Elements of the Matrix A

10 20 30 40 50

50

100

150

200

250

300

350

400

450

500

550

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Final Model: K = 3, d
k
 = 1 1 2

K

e
(K

)

−0.9
−0.8

−0.7
−0.6

−0.5

−0.8−0.6−0.4−0.200.20.4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Clusters in V Space (obtained by Kmeans)

−1

−0.5

0

0.5

1
−0.6−0.4−0.200.20.40.6

−0.5

0

0.5

Final Clusters in Original Space

Figure 2. Illustration of Algorithm 2 on the data of Figure 1. Note

that the errors e(k) = 0 when k > 3, indicating that MAPA

stopped at k = 3 and thus did not examine those larger k.

3. Experiments

We extensively test the MAPA algorithm on simulated

and real data and compare it with ALC [13], GPCA-

voting [14], SCC [2], SSC [5], LRR [12], and LBF [21].

Among these algorithms, only ALC estimates a model

given a tolerance level (though it is not completely clear

how ALC would infer the subspace dimensions once the

clusters are formed).1 The LBF algorithm estimates the

number of clusters only when all dk are equal and known.

Therefore, for each simulated or real data set, we will com-

pare MAPA only with ALC and LBF (for the latter we in-

put the maximum of the dimensions when not all equal) in

terms of the K-modeling error, i.e., frequency of incorrect

identification of the model parameter K, while reporting the

dk-modeling error for MAPA alone, i.e., frequency of in-

correct identification of the dimensions d1, . . . , dK . (Note

that the dk-modeling error is at least as large as the K-

modeling error.) In the meantime, we also report the clus-

tering error and running time of all algorithms (run on Core

2 Duo 8400 3.0Ghz machines with 4GB of RAM). The

Matlab code of MAPA, together with links to the other al-

gorithms’ webpages, can be found at http://www.math.

duke.edu/∼mauro/code.html.

3.1. Simulations

We generate many instances of artificial data using Mat-

lab code from the GPCA-voting package. We denote a

collection of planes of dimensions d1, . . . , dK in R
D by

(d1, . . . , dK ;D). We will test MAPA against other meth-

ods in the following six instances: (1, 1, 2; 3), (1, 2, 2; 3),
(2, 2, 2; 3), (1, 1, 2, 2; 3), (1, 2, 3; 4), and (1, 1, 3, 3; 6).

1The paper suggests to threshold the singular values of the clusters in

order to estimate their dimensions, however, neither it nor the Matlab code

provides any further detail regarding how to implement it in a robust way.

2829

(1, 1, 2; 3) (1, 2, 2; 3) (2, 2, 2; 3) (1, 2, 1, 2; 3) (1, 2, 3; 4) (1, 1, 3, 3; 6)
L A L A L A L A L A L A

dk MAPA 0 0 0 0 0 0 1 0 0 0 7 0

K MAPA 0 0 0 0 0 0 0 0 0 0 0 0

ALC 0 6 0 15 0 20 0 24 0 1 0 0

LBF 81 23 0 2 1 0 77 15 71 19 72 30

e% REF 3.2±0.8 1.9±1.2 3.8±0.9 3.1±1.6 5.5±1.2 3.6±1.3 4.6±0.8 3.6±1.5 3.3±0.8 2.1±1.1 2.5±0.5 0.0±0.0

MAPA 3.2±0.7 1.9±1.1 3.8±0.8 3.0±1.6 5.6±1.2 3.6±1.3 4.8±0.8 3.7±1.4 3.4±0.8 2.0±1.2 2.6±1.1 0.0±0.0

ALC 2.0±0.7 1.3±5.4 3.2±1.2 4.4±10.0 8.3±2.0 7.6±12.6 4.0±1.2 7.4±12.7 0.5±0.3 0.1±0.2 0.8±0.3 0.0±0.0

SCC 3.5±1.0 0.8±0.8 4.0±1.1 2.4±1.6 5.6±1.1 3.5±1.6 6.9±5.6 2.4±2.1 2.1±0.8 0.3±0.4 25±17.9 0.0±0.0

GPCA 6.0±9.4 5.4±9.8 4.0±1.0 9.6±9.9 5.7±1.1 5.1±2.8 11.8±12.9 24±13.9 4.2±4.9 5.2±7.8 19.9±14.8 0.0±0.0

LBF 33±3.6 11.0±13.1 5.6±1.2 4.8±6.6 6.0±4.6 3.8±1.5 27±3.8 9.2±8.5 31±7.2 10.0±12.5 19.5±10.3 7.5±11.5

SSC 29±16.6 23±13.6 28±12.2 34±13.1 35±11.4 40±10.8 40±12.1 39±11.2 17.5±11.5 15.4±12.2 4.2 ±8.0 1.1±1.7

LRR 39±5.6 27±11.3 48±5.4 34±12.2 55±3.9 34±11.7 53±3.3 39±8.1 39±7.0 23±12.7 18.8±5.4 19.5±13.0

t MAPA .69 .72 .64 .68 .60 .64 0.97 1.02 .70 .77 1.26 1.53

ALC 15.4 27.1 15.2 30.2 14.6 33.8 29.3 57.7 16.4 40.2 34.2 83.8

SCC 1.42 1.19 2.08 1.94 2.74 2.56 4.45 4.06 3.26 3.04 5.12 5.04

GPCA 3.44 4.18 3.74 7.36 1.39 2.04 5.97 11.65 12.0 12.9 32.1 34.6

LBF 10.5 11.5 10.4 11.3 17.4 19.3 12.2 13.5 17.9 19.4 25.2 27.4

SSC 167 120 171 126 165 124 251 180 179 134 298 222

LRR 240 236 272 267 288 284 694 684 290 286 731 678

Table 1. Comparison among various algorithms in six instances of hybrid linear modeling, including both linear (L) and affine (A) data.

The experiment in each instance is repeated 100 times, so that the means for e% (in percentage), t (in seconds) and standard deviation for

e%, as well as modeling error rates for K, dk, can be reported. The MAPA algorithm is applied using n0 = 20 ·K. All the other algorithms

are given the truth for the necessary model and tuning parameters. The clustering errors of all algorithms are compared with a reference

(REF) algorithm which directly assigns points to the nearest ground-truth planes.

In each instance (d1, . . . , dK ;D), we first randomly gen-

erate a collection of K linear subspaces of dimensions

d1, . . . , dK in R
D. We then randomly draw 200 samples

from each subspace, and corrupt them with 4% Gaussian

white noise. We refer to such data as linear data, as opposed

to affine data, i.e., data sampled from affine subspaces, gen-

erated by translating each cluster of the linear data by a ran-

dom vector c ∈ R
D, with c ∼ N(0, ID).

We apply the MAPA algorithm to such linear and affine

data with n0 = 20K. We examine both the K-modeling

and dk-modeling errors, and in addition, for the estimates

K, dk and an associated clustering of the data, compute a

clustering error e% (i.e., percentage of misclassified points).

We also apply the ALC and LBF algorithms to the same

data. In order to ensure the best possible results for ALC,

we (a) set its tolerance parameter equal to the true model

error; (b) use the optimal coding length function depending

on whether the planes are linear/affine. For LBF, we use

maxk dk as the common dimension of the planes, and also

provide the linearity information. We use the default values

for the other parameters in LBF, in particular, Kmax = 10.

We repeat the above experiment, for the three algorithms,

100 times and record in Table 1 the modeling errors, the av-

erage clustering errors (with standard deviation), and the

running times. Observe that both MAPA and ALC achieve

excellent results in all instances, while LBF performs well

only in two cases (where the dimensions are the same, or

can be regarded the same). It seems that ALC performs

worse when modeling affine data, which is the easier case

for MAPA (due to better separation). A significant advan-

tage of MAPA is its fast speed (at least 20 times faster

than ALC with a single tolerance), parallelizability, and

the fact that it can solve Problem 1 much faster than Prob-

lem 2. MAPA is essentially parameter free (it only needs

Kmax, dmax); in contrast, ALC has the tolerance as a crucial

parameter, often hard to acquire in practical applications.

Meanwhile, we report in the same table the clustering

errors and running times of SCC, GPCA, SSC and LRR on

the same data generated above. We give all the necessary

true model parameters to each of these algorithms. We set

the sampling parameter c = 100K in SCC and the tuning

parameter λ = 0.01 in LRR, as used in the corresponding

papers. The SSC algorithm also contains an important tol-

erance parameter for which we provide the true model error.

We use the different versions of the SSC code to deal with

linear and affine data accordingly.

Observe that SCC also achieves excellent clustering re-

sults in all scenarios, with a relatively fast speed. The SSC

algorithm only works well in the last case where the am-

bient dimension D is relatively high, so that the subspaces

are nearly independent of each other, a known necessary

assumption for SSC. Also, note that SSC and LRR are the

slowest methods (several hundred seconds), primarily due

to the need to solve a sparse coding problem per point.

2830

3.2. Applications to real data

The algorithm could be applied to problems wherever

one needs to model data using a union of planes. However,

due to page limit, we only study two applications, motion

segmentation and face clustering, in this paper.

3.2.1 Motion segmentation with affine camera models

We investigate the motion segmentation problem that is al-

ready studied in a few papers [2, 14, 15]. Suppose that a

camera is tracking a dynamic scene and captures a video

sequence of F frames of the scene, and also that N feature

points have been selected from the moving objects. Then,

given only the trajectories of the feature points along the

sequence, the problem is to separate the different motions.

The papers [15, 14] show that this is a subspace clustering

problem, since under affine camera models the trajectory

vectors corresponding to different moving objects across F
image frames live in distinct linear subspaces of dimension

at most 4 in R
2F , or affine subspaces of dimension at most

3 within those linear subspaces. The bounds 4 (linear) and

3 (affine) have been used by the algorithms [2, 14] as the

common dimension of the subspaces in this setting.

However, the subspace dimensions are still not precisely

known. Moreover, the number of moving objects K is re-

vealed as input to those algorithms. Here, we use MAPA to

infer the best model (in particular, the parameter K which is

more important) from the motion data, in addition to clus-

tering the motions. We use as examples the three Kanatani

sequences that are originally produced in [15] and also part

of a large database of 155 video sequences [17], but due to

page limit we will not test our algorithm on this extensive

dataset. As a preprocessing step to suppress noise, we apply

PCA to project the data into R
10 in which we then test our

method against the ALC algorithm.

We first apply MAPA to the projected data with n0 = N
in order to avoid randomness: the results are reported in

Figure 3. The number of motions K is correctly identified,

the underlying planes are determined to all have dimension

2, and the clusters are also perfectly recovered (up to a few

errors in the third sequence). The model errors are esti-

mated to be .0507, .0405, .2391 using (2) for the three se-

quences, respectively. These numbers will be supplied to

ALC as its tolerance levels in the experiment below.

We next apply the ALC algorithm to the three sequences

and compare modeling and clustering errors. When ALC

is provided with the tolerance estimated by MAPA, it pro-

duces the correct K and achieves zero clustering error for

sequences 1 and 3, while overestimating K for sequence 2.

We also test a few other values to further study the sensi-

tivity of the tolerance parameter. We find that for sequence

2 ALC returns K = 3 whenever τ ≤ 0.0560, but K = 2
when τ ≥ 0.0565 (see Figure 3); for sequences 1 and 3,

τ = .001, .01, respectively, lead to incorrect K.

3.2.2 Clustering of facial images

We next consider the problem of clustering a collection of

images of human faces in fixed pose under varying illumi-

nation conditions. A well-known such dataset is the Yale

Face Database B [7]. In general we know that for a Lam-

bertian object the set of all its images under a variety of

lighting conditions approximately span a low-dimensional

linear subspace [9]. Moreover, images of different objects

lie in different subspaces, so that this problem may be tack-

led by segmenting an arrangement of linear subspaces.

We use the frontal face images of all ten human subjects

in the Yale database. Overall, there are 640 images (64 im-

ages per subject), each of size 640× 480. We would like to

separate these images into 10 groups, one per subject. We

apply the same preprocessing as in [14], i.e., downsample

the images to 160 × 120 and apply SVD to project them

into R
30. We apply both MAPA and ALC on the prepro-

cessed images to estimate the number of subjects in the col-

lection and cluster the facial images. For MAPA, we set

n0 = N to avoid randomness. It correctly identifies 10

groups and obtains zero clustering error. In addition, the di-

mensions of the planes are estimated to be a mixture of 2

and 3: dk = 3, 3, 3, 3, 3, 2, 3, 2, 3, 3. These results are sum-

marized in Figure 4. Also, MAPA estimates that τ = 1119
which is supplied to ALC as tolerance, in which case ALC

also correctly identifies K = 10 together with zero cluster-

ing error. However, with another tolerance τ = 100, ALC

returns 11 clusters.

4. Conclusions

We presented an efficient and effective algorithm for es-

timating plane arrangements. It starts by finding many local

pieces of the underlying clusters, via a multiscale approach,

and then aligns their best approximating planes, using a

spectral approach, to recover the plane arrangement. It has

a computational complexity essentially comparable to that

of encoding the answer to the problems; in particular it is in-

dependent of the number of points when solving Problem 1,

and it estimates the parameters of the model rather than re-

quiring them as inputs. The algorithm gives state-of-the-art

results when compared with the current best algorithms, on

both synthetic and real data, and is faster.

Acknowledgements

GC thanks Gilad Lerman for forwarding him preprints

and codes of his work [21] and for useful discussions, in

particular, for pointing out the use of the point-to-plane dis-

tance in the affinity of (3). The authors are grateful for

the support from NSF 0650413, 0808847 and 0803293, and

ONR N00014-07-1-0625.

2831

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Final Model: K = 2, d
k
 = 2 2

K

e
(K

)

−4
−2

0
2

4

−4

−2

0

2

−0.5

0

0.5

Final Clusters

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Final Model: K = 2, d
k
 = 2 2

K

e
(K

)

−6−4−202468

−5

0

5

−1

−0.5

0

0.5

1

Final Model: K = 2, d
k
 = 2 2

−2
−1

0
1

2

−2

−1

0

1

2

−0.4

−0.2

0

0.2

ALC with tol >= 0.0565

−2

−1

0

1

2
−2

−1
0

1
2

−0.4

−0.2

0

0.2

ALC with tol <= 0.0560

Figure 3. Results obtained by MAPA on sequences 1 and 3 (first

two rows) and by ALC on sequence 2 (last row) of the Kanatani

dataset. MAPA obtains perfect result on sequence 2 (not shown).

Elements of the Matrix A

100 200 300 400 500 600

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1

Top Singular Values of L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1000

2000

3000

4000

5000

6000

Final Model: K = 10, d
k
 = 3 3 3 3 3 2 3 2 3 3

K

e
(K

)

5.07 5.072 5.074 5.076 5.078 5.08 5.082

x 10
6

−5000

0

5000

−6000

−4000

−2000

0

2000

4000

6000

Final Clusters

Figure 4. Results obtained by MAPA on all 10 subjects in the Yale

database using only their frontal face images. The MAPA algo-

rithm determined the best model to be 10 planes of mixed dimen-

sions 2 and 3, and achieved zero clustering error.

References

[1] G. Chen and G. Lerman. Foundations of a multi-way spec-

tral clustering framework for hybrid linear modeling. Found.

Comput. Math., 9(5):517–558, 2009.

[2] G. Chen and G. Lerman. Spectral curvature clustering

(SCC). Int. J. Comput. Vision, 81(3):317–330, 2009.

[3] G. Chen, A.V. Little, M. Maggioni and L. Rosasco. Some

recent advances in multiscale geometric analysis of point

clouds, In Wavelets and Multiscale Analysis: Theory and

Applications, March 2011, Springer.

[4] G. Chen and M. Maggioni. Multiscale geometric methods

for data sets III: Multiple planes. In preparation.

[5] E. Elhamifar and R. Vidal. Sparse subspace clustering. In

CVPR, pages 2790–2797, June 2009.

[6] M. Fischler, and R. Bolles. Random sample consensus: A

paradigm for model fitting with applications to image anal-

ysis and automated cartography. Comm. ACM, 24(6):381–

395, 1981.

[7] A. Georghiades, P. Belhumeur, and D. Kriegman. From

few to many: Illumination cone models for face recogni-

tion under variable lighting and pose. IEEE Trans. PAMI,

23(6):643–660, 2001.

[8] A. Goh, and R. Vidal. Segmenting motions of different types

by unsupervised manifold clustering. In CVPR, pages 1–6,

Minneapolis, MN, June 2007.

[9] J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman. Cluster-

ing appearances of objects under varying illumination condi-

tions. In CVPR, volume 1, pages 11–18, 2003.

[10] W. Hong, J. Wright, K. Huang, and Y. Ma. A multi-scale

hybrid linear model for lossy image representation. In ICCV,

pages 764–771, 2005.

[11] A. Little, Y. Jung, and M. Maggioni. Multiscale estimation

of intrinsic dimensionality of data sets. In AAAI Fall Sympo-

sium Series, November 2009.

[12] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by

low-rank representation. In ICML, pages 663–670, 2010.

[13] Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation

of multivariate mixed data via lossy data coding and com-

pression. IEEE Trans. PAMI, 29(9):1–17, 2007.

[14] Y. Ma, A. Y. Yang, H. Derksen, and R. Fossum. Estimation

of subspace arrangements with applications in modeling and

segmenting mixed data. SIAM Review, 50(3):413–458, 2008.

[15] Y. Sugaya and K. Kanatani. Multi-stage unsupervised learn-

ing for multi-body motion segmentation. IEICE Trans. Inf.

& Syst., E87-D(7):1935–1942, 2004.

[16] M. Tipping and C. Bishop. Mixtures of probabilistic princi-

pal component analysers. Neural Computation, 11(2):443–

482, 1999.

[17] R. Tron and R. Vidal. A benchmark for the comparison of

3-D motion segmentation algorithms. In CVPR, volume 1,

pages 1–8, June 2007.

[18] R. Vidal. Subspace Clustering. IEEE Signal Processing

Magazine, 28(2):52–68, March 2011.

[19] R. Vidal, Y. Ma, and S. Sastry. Generalized principal compo-

nent analysis (GPCA). IEEE Trans. PAMI, 27(12):621–628,

2005.

[20] J. Yan and M. Pollefeys. A general framework for motion

segmentation: Independent, articulated, rigid, non-rigid, de-

generate and nondegenerate. In ECCV, volume 4, pages 94–

106, 2006.

[21] T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Randomized

hybrid linear modeling by local best-fit flats. In CVPR, pages

1927–1934, June 2010.

2832

