CS 216 Geometric Modeling

Course Information

• Instructor: Kevin M. Smith

Telephone: (415) 960-7085Email: kevin.smith@sjsu.edu

o Office Hours:

■ Mondays & Wednesdays 3:30 PM - 4:30 PM

■ Location: DH 288

You do NOT need to make an appointment for these office hours. You can simply stop by my
office

Class Days/Time: Mondays & Wednesday 1 30 PM – 2 45 PM

Class mode: Hybrid

Class Location: Clark Hall 238 (Monday only, Wednesday Online)

 Prerequisites: CS 116A with a grade of C- or better or equivalent or permission from instructor. Limited to MSCS, MSBI, and MSDS students and undergraduates who have taken CS116A and have received permission from the instructor.

Course Description

This course will cover the modern theory and techniques of geometric modeling with applications in 3D games, feature animation, visual effects and computer-aided design. Topics will include: polygonal meshes, NURBS curves and surfaces, ray marching, fractal surfaces, subdivision surfaces and volumetric modeling. Case studies in procedural modeling, design, character animation will be covered with programming projects implemented in C++, using Houdini and Maya.

Course Learning Outcomes (CLO)

Upon successful completion of this course, students will be able to:

- Describe in detail the mathematics and algorithms required to implement the geometric models covered
 in class which include polygonal meshes, spline surfaces, subdivision surfaces and ray-marched rendered
 surfaces.
- Implement three types of geometric models which can be demonstrated interactively. The students will use C++ and an embedded programming language in a 3D modeling package, depending on the project.
- Determine which surface type can be best applied to solving different use-cases in the fields of animation, design and engineering based on evaluating performance criteria and specific application requirements.
 Case studies will be covered along with the theoretical content.
- Combine several geometric modeling techniques and a *use case* to create a comprehensive final project prototype and presentation.

Textbooks and Recommended Reading

- Steve Marshner, Peter Shirley, Fundamentals of Computer Graphics (Fourth edition), CRC press, 2016 (Required)
- Elbert, Musgrave, Peachy, Perlin, Workey, *Texturing and Modeling, A Procedural Approach (Third Edition)*, Morgan Kaufmann 2003 (Recommended Reading)
- Piegel, Tiller, The NURBS Book (Second Edition), Springer 2003 (Recommended Reading)

Other Equipment

- OpenFrameworks C++ Development environment available on Windows and Mac (free)
- Houdini (Apprentice Student Edition) (free)
- Maya Educational Version (free)
- Student is required to have a reasonably fast laptop or desktop computer capable of running 3D software and development tools.

Grading

Exams, Assignments, and Projects

- A minimum of four (4) Programming Projects
- Five (5) Quizzes (in class on Canvas, multiple choice)
- Labs (typically in class)
- Final Project (includes prototype and presentation)

Item	% in Final Grade	
Programming Projects	60%	
Quizzes	5%	
Labs	5%	
Final Project	30%	

Grading Table

Total Grade	Letter Grade	
97% and above	A plus	
93% to 96%	А	
90% to 92%	A minus	
87% to 89%	B plus	
83% to 86%	В	
80% to 82%	B minus	
77% to 79%	C plus	
73% to 76%	С	
70% to 72%	C minus	
67% to 69%	D plus	
Total Grade	Letter Grade	
63% to 66%	D	
60% to 62%	D minus	
59% and below	F	

Extra-credit and Reworks

No additional extra credit assignments or rework opportunities will be given.

Late Submission

Late submissions within 24 hours will be deducted 10% of its final grade. Submissions over 24 hours late will have 20% grade deducted. Late submissions over 2 days will not be accepted.

Laptop and Cell Phone Policy

With exception of labs that are completed in class, laptops are only permitted for taking notes for the class. Cell phones are not permitted to be used in class unless required to login into the SJSU system.

Attendance

Class attendance is required to gain maximum benefit from the course material. Students not attending either of the first two classes will be dropped to make room for students on the waiting list. Attempting to get marked as present (by having someone else attend in your place or using technological deceptions) will be considered academic dishonesty and at a minimum will result in you getting dropped from the course.

Course Content Policy

The class materials (including any lecture slides, notes, videos and PDF files) are protected by copyright. It is illegal to copy or distribute the class materials without permission from the instructor. There is no photography allowed (including mobile phone cameras) or recording of the lectures permitted without permission of the instructor.

Grading Policy

The University Policy S16-9, Course Syllabi (http://www.sjsu.edu/senate/docs/S16-9.pdf) requires the following language to be included in the syllabus:

"Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus."

Fall 2022 Announcement: COVID-19 and Monkeypox

Students registered for a College of Science (CoS) class with an in-person component should view the CoS COVID-19 and Monkeypox Training slides for updated CoS, SJSU, county, state and federal information and guidelines, and more information can be found on the SJSU Health Advisories website. By working together to follow these safety practices, we can keep our college safer. Failure to follow safety practice(s) outlined in the training, the SJSU Health Advisories website, or instructions from instructors, TAs or CoS Safety Staff may result in dismissal from CoS buildings, facilities or field sites. Updates will be implemented as changes occur (and posted to the same links).

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs' Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/. Make sure to review these policies and resources.

Tentative Schedule and Topics

Date	Topic	Reference	Note
1/25	Overview		
1/30	Polygon Meshes		
2/1	Polygon Meshes and Intro to OpenFrameworks		
2/6	Case Study – Procedural Modeling in Houdini		
2/8	Subdivision Surfaces		
2/13	Subdivision Surfaces		
2/15	Case Study – Subdiv modeling in Maya	1	
2/20	Basic Ray Tracing		
2.22	Case Study – PBRT (Physically -Based Rendering)		
2/27	Case Study – PBRT rendering a simple scene		
3/1	Ray Marching and SDF's		
3/6	Ray Marching and SDF's		
3/8	Case Study – Rendering SDF-based geometric Primitives		
3/13	Fractals 2D		
3/15	Fractals 3D		
3/20	Case Study – Creating the Mandelbulb 3D fractal		
3/22	NURBS Curves and Surfaces		
3/27	Spring Recess (no classes)		
3/29	Spring Recess (no classes)		
4/3	NURBS Curves and Surfaces		
4/5	NURBS Curves and Surfaces		

4/10	Delaunay Tessellation and Surface Fitting – Point Clouds	
4/12	Final Project Discussion	Project Topic Due
4/17	Case Study – Reality Capture	
4/19	Case Study – Cloth Simulation	
4/24	Volumetric Modeling	
4/26	Volumetric Modeling	
5/1	Case Study – Modeling Clouds and Natural Phenomena	
5/3	Advanced Topic 1	
5/8	Advanced Topic 2 (or Guest Speaker)	
5/10	Final Presentations	Final Project Content Due
5/15	Final Presentations	