San José State University Aviation and Technology Department Tech 20A Computer-Aided-Graphics, Spring 2018

Contact Information

Instructor: Kiarash Haydari Shayesteh	Office Hours: TBA
Telephone: (530) 304 – 1195	Class Times : Th 9:30 AM – 10:20 AM Lect 10:30 AM – 1:15 PM Lab
Email: kiarash.haydarishayesteh@sjsu.edu	10.50 AW - 1.15 FW Lab
Office Location: TBA	Classroom: ENG 103
Course Information	

Prerequisites: None

Course Format

The course relies on lecture materials presented in class and students are strongly encouraged to attend.

Course Materials

Copies of the course materials including the syllabus, lecture slides, homework assignments, etc. may be found on the SJSU Canvas site for the courses. Login instructions can be found at http://online.sjsu.edu.

You must be registered in the course to receive access

Course Description

Introduction to Computer-Aided-Graphical communication tools. Orthographic projections, section and auxiliary views and dimensioning standards. Development of visualization and technical sketching skills in conjunction with orthographic and pictorial projections. Dimensioning and tolerancing utilizing 2D and 3D commercially available software. 2 units, 1-hour lecture and 3 hours lab

Course Learning Outcomes

Upon successful completion of this course, students will be able to:

- Freehand sketch a 2 D and 3D view of an object (isometric, oblique and perspective).
- Draw the standard two-dimensional views (top, front and profile) of an object.
- Draw section and auxiliary views.
- Properly dimension standard views for fabrication.
- Apply the proper tolerances to parts.
- Draw complicated two-dimensional views of an object using Computer-Aided software tools.
- Draw three-dimensional objects (solid modeling).

Required Text/Readings

Textbook

Bertoline and Wiebe "Fundamentals of Graphics Communication", 6th ed., 2011, McGraw-Hill

Other

AutoCAD (2D) tutorial

Course Requirements and Assignments

Homework will be assigned weekly.

Final Examination or Evaluation

The final exam will be comprehensive, covering all material presented in class.

Grading Information

Homework	5%
Labwork	15%
Midterm Exam 1	20%
Midterm Exam 2	20%
Group Project	20%
Final Exam	20%

Determination of Grades

Course grade will be based on homework assignments, exams, project, and final exam. There will be no curving of grades. Final grades will be assigned as follows:

	А	94-100		A - 90-93	
B +	87-89	В	83-86		B - 80-82
C +	77-79	С	73-76		C - 70-72
D +	67-69	D	63-69		D - 60-62
		F	< 60		

Examinations

Two 75-minute midterm exams and one 2-1/4 hour final examination.

Class Project

Teams of 3 students each will be involved in preparing a proposal for design and fabrication of a product within the size limitation of the 3D printers to demonstrate the form and functional goals of the design. The design is expected to culminate the learning in the course and the application of the equipment, material selection and inspection for form and function.

Class Protocol

Class participation and attendance are strongly encouraged. Use of cell-phones are not allowed. Laptop computers and tablet are allowed only for taking lecture notes.

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs" Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/"

Tech 20A Computer-Aided-Graphics Spring 2018 Course Schedule/Outline

Week/Subjec	t	Reading Assign. (Chapter)		
1	Lect -	Introduction, course organization, project discussion		
	Lab-	No lab		
2	Lect-	Orthographic projection and standard 2D views		
	Lab	AutoCAD; Intro to the CAD lab. and Tutorial 1 (lab. work #1)		
3	Lect	Auxiliary views; classifications and applications		
		Section views; full, half and broken, conventions		
	Lab	Project design discussion, AutoCAD; Tutorial 2 (lab. work #2)		
4	Lect	Pictorials; Isometric, oblique and perspective		
	Lab	AutoCAD; Lab. work #3 (Multiview)		
5	Lect	Dimensioning and Tolerancing; rules and standards		
	Lab	AutoCAD; Lab. work #4 (section and auxiliary views)		
6	Lect	Freehand sketching techniques, spatial visualization, exam review		
	Lab	AutoCAD, Lab. work #5 (dimensioning and tolerancing)		
7	Lect	Exam 1 (one hour)		
	Lab	Intro to solid modeling, Lab. work #6 (sketching, extrusion)		
8	Lect	Introduction to parametric modeling		
	Lab	Solid modeling and shop drawings, Lab. work #7 (solid modeling)		
9	Lect	Formal engineering drawing and practices, shop drawings		
	Lab	Assembly and exploded views Lab. work #8 (assembly)		
10	Lect	Engineering Design Process; Concurrent engineering, Refinement		
	Lab	Exam 2 (one hour)		
11	Lect	Introduction to 3D drawings; wireframe, surface and		
		solid modeling, primitive solids, Boolean Operation		
	Lab	Solid modeling; assembly and exploded views, Lab. work #9 (design a table)		
12	Lect	Solids modeling; Extrusions, Revolutions, Sweeps and Rendering		
	Lab	Design project documentation		
13	Lect	Solids modeling; Top-down and bottom-up design approach		
	Lab	Design project documentation		
14	Lect	Structural, welding and electrical drawings, manufacturing processes		
	Lab	Design project documentation		
15	Lect	Review discuss projects		
	Lab	Final Exam		