San José State University Department of Aerospace Engineering

AE173, Uncrewed Air Vehicle Design, 01, Fall, 2022

Course and Contact Information

Instructor(s): Nick Cramer Office Location: Online Telephone: (810) (874-0562) Email: nick.cramer@sjsu.edu Office Hours: TuTh 4:30-5:30 PM AE162 Class Days/Time: TuTh 6:00-7:15PM Classroom: Engineering Building 340 Prerequisites: AE 30.

Course Description

Introduction of unmanned aircraft systems (UAS) and relevant design and operation considerations. Vehicle dynamics and flight controls. UAS flight path planning and optimization. Computer simulations.

Faculty Web Page and MYSJSU Messaging

Course materials such as syllabus, handouts, notes, assignment instructions, etc. can be found on my faculty web page at https://www.sjsu.edu/ae/faculty_staff/part-time/nickcramer.phpand/or on <u>Canvas Learning</u> <u>Management System course login website</u>. You are responsible for regularly checking with the messaging system through <u>MySJSU</u> on <u>Spartan App Portal</u> (or other communication system as indicated by the instructor) to learn of any updates. For help with using Canvas see <u>Canvas Student Resources page</u>.

Course Goals

The goals of this course are to study:

- Unmanned air vehicle (UAV) design and analysis for flight missions
- UAV models
- Flight control design utilizing successive loop closure
- UAV sensors and actuators
- Advanced UAV configurations

Course Learning Outcomes (CLO)

Upon successful completion of this course, students will be able to:

- 1. Design a UAV mission.
- 2. Design a basic UAV platform.
- 3. Design flight controller and estimator for UAVs

Required Texts/Readings (Required - Delete the word "Required" in final draft)

Textbook

R.W. Beard, T.W. McLain, *Small Unmanned Aircraft: Theory and Practice*, Princeton University Press, 2012Other Readings

Tischler, Mark B., and Robert K. Remple. *Aircraft and rotorcraft system identification*. Reston, VA: American Institute of Aeronautics and Astronautics, 2012.

Jategaonkar, Ravindra V. *Flight vehicle system identification: a time domain methodology*. American Institute of Aeronautics and Astronautics, 2006.Grant, Barbara Geri. "Getting Started with UAV Imaging Systems: A Practical Guide." SPIE, 2016.

Klein, Lawrence A. Sensor and data fusion: a tool for information assessment and decision making. Vol. 138. SPIE press, 2004.

Other technology requirements / equipment / material

MATLAB

Course Requirements and Assignments

The course will have homework assignments every week. Each assignment will normally have 1.5 to 2 weeks for completion. Attendance is not recorded or required but project check-ins during office hours or outside are required on a weekly basis by at least one team member.

"Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus."

Final Examination or Evaluation

The final project will be a group project. The initial proposal process will be the midterm. The midterm and the final will both include presentation and report components that will provide a UAV mission and the UAV design to achieve the specified mission.

Grading Information

Grading is based on the following:

- Homework: 30% (due online)
- Project: 70%
 - Literature survey: 10%
 - Mid-term reviews: 20%
 - Final presentation/report: 40%

Grade	Points	Percentage
A plus	950 to 1000	95 to 100%
Α	900 to 949	90 to 94.9%
A minus	85. to 899	95 to 89.9%
B plus	800 to 849	80 to 84.9 %
В	750 to 799	75 to 79.9%
B minus	700 to 749	70 to 74.9%
C plus	650 to 699	65 to 69.9%
С	600 to 649	60 to 64.9%
C minus	55. to 599	55 to 59.9%
D plus	500 to 549	50 to 54.9%
D	450 to 499	45 to 49.9%
D minus	400 to 449	40 to 44.9%

Classroom Protocol

GENERAL EXPECTATIONS:

Students are expected to work on projects of their choice. In addition, they are encouraged to dovetail their own interests with the class projects.

ONLINE CLASS EXPECTATIONS:

- The lecture period of the classes will be recorded for later watching.
- This is for students who might not be comfortable joining the class or might feel sick. Please do not come to class if you are feeling ill.

University Policies

Per <u>University Policy S16-9</u>, relevant university policy concerning all courses, such as student responsibilities, academic integrity, accommodations, dropping and adding, consent for recording of class, etc. and available student services (e.g. learning assistance, counseling, and other resources) are listed on <u>Syllabus Information</u> web page (https://www.sjsu.edu/curriculum/courses/syllabus-info.php). Make sure to visit this page to review and be aware of these university policies and resources.

Course Number / Title, Semester, Course Schedule

Course Schedule

Module	Topics, Readings, Assignments, Deadlines	
1	Introduction	
2	Euler angles and coordinate transformation	
	 Kinematics 	
	 Quaterions 	
3	Derivation of equations of motion	
	 Linear models 	
	 Quadcopter dynamics 	
4	Avionic sensors – Data fusion	
	 IMU/GPS 	
	 LIDAR/RADAR 	
5	Flight control design	
	 Inner-loop 	
	 Successive loop closure 	
6	System identification	
	 Multi-rotor vehicles 	
	 Frequency domain 	
7	Mid-Term Project Reviews	
8	Guidance control design	
	 Outer-loop 	
	 Waypoint following 	
	 Trajectory/path planning 	
9	State-Estimation	
	 Dynamic observer design 	
	 Kalman filter 	
10	State-Estimation	
	 Dynamic observer design 	

Module	Topics, Readings, Assignments, Deadlines	
	 Kalman filter 	
11	Summary & future application	
12	Project presentation	