San José State University College of Engineering / Aerospace Engineering AE 160, Aerodynamic I, Section 04, Fall 2022

Course and Contact Information

Instructor(s):	Xuanhong An
Office Location:	272E
Email:	xuanhong.an@sjsu.edu
Office Hours:	Monday and Wednesday, 1800-1900 & by appointment
Class Days/Time:	Monday and Wednesday, 1500-1550
Classroom:	Engineering Building 340
Prerequisites:	Grade of C or better in MATH 31 (or MATH31X) and PHYS 50, or graduate standing

Corequisite of ENGR 100W

Course Description

Introduction to incompressible, inviscid and viscous aerodynamics through problem solving, computer simulations, water and wind-tunnel experiments, films, and service learning. Topics include aerodynamic forces and moments, flow classification and similarity, conservation laws with applications in the calculation of lift and drag, and boundary layer theory with emphasis on calculation of skin friction and pressure drag.

Program Information

This class is administered in support the Bachelor of Science in Aerospace Engineering and Master of Science in Aerospace Engineering degree programs for the Aerospace Engineering Department. For any questions regarding the programs or department please refer to the Aerospace Engineering Department webpage (<u>www.sjsu.edu/ae</u>) or office (Engineering building, room 272)

Course Goals

Introduce students to:

- A. Modeling of low speed, viscous and inviscid flows.
- B. Calculation of aerodynamic forces on aerospace and ground vehicles.
- C. Aerodynamic design for low drag.
- D. Water and wind tunnel testing.

Course Learning Outcomes (CLO)

Upon successful completion of this course, students will be able to:

- 1. Explain the nature of aerodynamic forces.
- 2. Define the aerodynamic center and the center of pressure for an airfoil.
- 3. Calculate aerodynamic forces and moments on bodies by integrating surface pressure and shear stress distributions.
- 4. Use flow similarity to design wind tunnel tests.
- 5. Classify a flow as 1-D, 2-D or 3-D, uniform / non-uniform, viscous / inviscid, compressible / incompressible, steady / unsteady, subsonic, transonic, supersonic or hypersonic.
- 6. Design and perform flow visualization tests to study the characteristics of the flow around 2-D and 3-D aerodynamic bodies and analyze the results from such experiments.
- 7. Use the momentum equation to calculate (a) lift from given pressure distributions on the top and bottom of an aerodynamic body and (b) drag from given velocity profiles ahead and downstream of an aerodynamic body.
- 8. Describe qualitatively and quantitatively laminar and turbulent boundary layers in terms of thickness, velocity profiles, and shear stress variation.
- 9. Predict transition from laminar to turbulent flow on an aerodynamic surface.
- 10. Calculate the skin friction drag and estimate the pressure drag of aerodynamic bodies.
- 11. Predict location on an airfoil surface and inside a nozzle, where boundary layer separation is likely to occur.
- 12. Design and perform wind tunnel experiments to measure the drag of a 2-D aerodynamic body and analyze the results from such experiments.
- 13. Design and perform wind tunnel experiments to study boundary layer characteristics on an aerodynamic surface and analyze the results from such experiments.
- 14. Work effectively in teams to (a) define and solve open-ended aerodynamics problems, (b) design and perform water / wind tunnel experiments, and (c) analyze and present results from such experiments.

Required Texts/Readings

Textbook

John D. Anderson, Jr.'s Fundamentals of Aerodynamics (5th Edition) is RECOMMENDED but not mandatory ISBN: 978-0-07-339810-5

Available from common online retailers.

Aerodynamics I, AE160-04, Fall, 2022

NOTE: Any edition of the book is acceptable. Instructor shall be referring to the 5th edition but relevant material difference between editions is minimal

Other Readings

Course slides (available on Canvas shortly after the respective lecture)

Course Requirements and Assignments

Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus.

This course shall have quizzes, assignments, labs, and the final exam contribute to the final overall grade.

Quizzes shall be open book and open note, given synchronously during a normally schedule course time.

Assignments shall be completed individually (though collaboration is encouraged) and submitted per the schedule on Canvas.

Labs shall be completed in groups of not more than 4 and submitted per the schedule electronically on Canvas. Any issues regarding fair participation in the lab or completion of respective reports should be addressed as soon as feasible prior to the submission of the report. Provisionally labs shall be available in person however there shall be arrangements made for those who cannot feasibly attend an in-person lab.

Final Examination or Evaluation

Date and time of the final exam is TBD

Grading Information

Grade Categories and contribution to total grade:

Homework	20%
Quizzes	30%
Final Exam	20%
Lab*	30%

Grade	Percentage
A plus	95 to 100%
Α	90 to 95%
A minus	85 to 90%
B plus	80 to 85 %
В	75 to 80%
B minus	70 to 75%
C plus	67 to 70%
С	65 to 67%
D	60 to 65%
F	59.9% or
	lower

*The lab is a separate section but is assessed into the letter grade for the course. The grading for the lab shall be covered in the lab syllabus and shall be factored into the overall grade with a 30% weight, per above, to determine the final overall letter grade.

Late work shall at the discretion of the instructor be penalized by up to 20%. No late work shall be accepted after two weeks from the original due date. Absence during a quiz or final shall result in a zero for the score unless a suitable makeup can be mutually determined between the instructor and student.

Classroom Protocol

In class discussion is encouraged but respect for others is required and expected.

University Policies

Per <u>University Policy S16-9</u> (*http://www.sjsu.edu/senate/docs/S16-9.pdf*), relevant university policy concerning all courses, such as student responsibilities, academic integrity, accommodations, dropping and adding, consent for recording of class, etc. and available student services (e.g. learning assistance, counseling, and other resources) are listed on <u>Syllabus</u> <u>Information web page</u> (http://www.sjsu.edu/gup/syllabusinfo), which is hosted by the Office of Undergraduate Education. Make sure to visit this page to review and be aware of these university policies and resources.

AE160 / Aerodynamics I, Fall 2020, MW 1630-1745

Course Schedule

Week	Date	Topics
1	08/23	Introduction to fluids, density, pressure, viscosity.
1	08/25	"
2	08/30	Aerodynamic forces and moments
2	09/01	۰٬
3	09/06	Aerodynamic forces and moments.
4	09/08	Aerodynamic coefficients. Center of pressure. Aerodynamic center.
4	09/13	۲۵
5	09/15	Flow similarity. Application in wind tunnel testing.
5	09/20	"
6	09/22	Flow description. Streamlines. Flow classification
6	09/27	6
7	09/29	Continuity. Flow quality. Wind tunnel design.
7	10/04	<u>،</u>
8	10/06	Bernoulli. Airspeed measurement. Airfoil pressure distributions.
8	10/11	"
9	10/13	Momentum equation.
9	10/18	"
10	10/20	Drag calculation for 2-D bodies
10	10/25	<u>،</u>
11	10/27	Boundary layers: qualitative description
11	11/01	"
12	11/03	Laminar boundary layers: thickness, velocity and shear stress distribution
12	11/08	4

Week	Date	Topics
13	11/10	Turbulent boundary layers: thickness, velocity and shear stress distribution.
13	11/15	.(
14	11/17	Skin friction and pressure drag calculation
14	11/22	"
15	11/24	Boundary layer transition and separation –Boundary layer control
15	11/30	"
16	12/01	Final Review
16	12/06	"
Final Exam		TBD

This schedule is subject to change as circumstances develop and notice of any change shall be delivered via Canvas announcement for quizzes and exams. Changes regarding the topic schedule or assignments will generally be made by canvas announcement but may be communicated during normally scheduled lecture for minor changes.