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Symbol Definition Units 

Ixx Measurement of the 

resistance to accelerate a 

mass about an axis 

lb in2 (kg m2) 

Iyy Measurement of the 

resistance to accelerate a 

mass about an axis 

lb in2 (kg m2) 

Izz Measurement of the 

resistance to accelerate a 

mass about an axis 

lb in2 (kg m2) 

M Moment Nm 

P Solar pressure N 

B Magnetic pressure N 

G Gravitational force N 

T Thermal pressure N 

Q Uniform load on the beam lb/in (kg/m2) 

L Length of the beam in (m) 

E Modulus of elasticity psi (pa) 

I Area moment of inertia in4 (m4) 

∋ Elastic deflection in (m) 

∅ Angle of deflection rad (m) 

B End of the uniformly loaded 

cantilever beam 

 

B’ Point on the wall of the 

uniformly loaded cantilever 

beam 

 

ρ Density of the beam kg/m3
 

A Area of the beam cross 

section 
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kv Stiffness of the spring kg/m 

mv Mass of the sprung mass kg 

w Transverse deflection of the 

beam 

m 

u Vertical displacement of the 

mass 

m 

q Modal coordinate  

t Time sec 

γ, β, α Newmark integration 

parameters 

 

pv Iteration sprung mass 

parameter 

 

PB Iteration beam parameter  

𝜂 Relaxation coefficient  

a Iteration coefficient  

𝜓 Mode shape  

T Time offset sec 

𝜆 Substitution variable  

n Number of modes  

i, j Integer between 1 and n  

l Arbitrary length  

x Arbitrary position m 

X NASTRAN axis  

X’ Rotated axes  

Y NASTRAN axis  

Y’ Rotated axes  

Z NASTRAN axis  

Z’ Rotated axes  

b Iterative beam subscript  

𝛿 Dirac delta function  



Dynamic Modeling of a Large Solar Array iii 
 

 
 

M Mass matrix  

K Stiffness matrix  

sv Newmark sprung mass sum  

SB Newmark beam sum  

g gravity m/s2
 

r Moment arm m 

ω Angular rates Rad/s 

F Arbitrary force N 

𝜖 Convergence criteria  
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Dynamic Modeling of a Large Solar Array in a Deep Space Orbit 

 

Chapter 1 – Introduction 
 

1.1 Motivation 

 

The problem at hand is the lack of a Large Space Structure (LSS) that can adequately power 

something as massive as a space habitat, or otherwise large spacecraft in interplanetary orbits. No 

such structure has been designed that is strong enough to survive the maneuvers required to keep 

itself in interplanetary orbits. Without research into how to hold an LSS together, and without an 

in-depth understanding of their dynamics, these structures cannot exist. During the present time, 

this issue hasn’t come to practical concern. LSSs have only been theorized and haven’t been put 

into practice. The closest thing that comes to an LSS would be the International Space Station 

(ISS), and it isn’t as large as what would be considered in this paper’s analysis. The size of the 

LSS in the paper will be on the order of a kilometer long. LSS will be necessary for the spacecraft 

of the future to support large payloads in interplanetary orbits. So how is an LSS modeled? It’s 

incredibly difficult to model a spacecraft on the order of a kilometer in size. It may require a super 

computer, depending on exactly how complicated the structure is. This paper will focus on the 

solar array surface, and to be as efficient as possible with whatever Finite Element Analysis (FEA) 

software is used. 

1.2 Literature Review 

 

It is important to note that the scope of modeling a Large Solar Array (LSA) is not in the 

same scope as most fundamental research in control theory or flexbody dynamics. Most other 

analysis on the stability of spacecraft are focused on the design of a satellite in an Earth orbit. It is 

very common to find papers on rigid bodies with flexible attachments. An example of a rigid body 
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with a flexible attachment would be the main body of a communications spacecraft with attached 

reflectors and solar arrays. Creating a model for an LSA generally assumes one massive flexible 

structure. The focus of modeling an LSA as a massive flexible structure is to find a way to simplify 

the flexible structure into smaller, computable parts. The idea of a massive flexible structure is 

kept in mind during this review. 

To set a good baseline of appropriate assumptions of external influences and forces on LSS 

and how to control LSS, Gasbarri, Monti, Angelis, and Sabatini (2014), is considered. Robustness 

of the design once the control law has been developed is going to be critical to future LSAs. If the 

system is not robust (neglects disturbances), such a large structure would not be useful. There is a 

tremendous amount of mass in an LSA, and that gives the structure more dynamic uncertainty. 

Elastic characteristics are also discussed in Gasbarri, Monti, Angelis, and Sabatini (2014) and these 

elastic effects would greatly affect the dynamics of an LSA. When the dimensions are on the order 

of a kilometer in size, a spacecraft will stretch and compress a considerable distance. Thus, the 

elasticity will certainly affect the dynamics on any LSS. How the inertia and elasticity relate to the 

robustness of an LSA are going to be critical design points in developing the model of this paper. 

Gasbarri, Monti, Angelis, and Sabatini (2014) also defines the kinematic equations of motion, 

applies Euler and quaternion rotations, defines a very large spacecraft transfer orbit and attitude 

delta, considers gravity influences, elastic influences, applies a PD controller, and uses NASTRAN 

for the Finite Element Analysis (FEA). This is a good front to back analysis of the flexible modes 

of a solar array including an impulse torque, however it only extends to a PD controller. A PD 

controller is very likely not powerful enough of a controller to consider in the design of an LSA. 

Although the focus of this paper is not the analysis of the controller, however, a modern controller 

should be considered so that the constraints of the model developed in the paper are useful. The 
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application of NASTRAN provides a good example of FEA and the derivation of equations of 

motion for a three-dimensional spacecraft body will directly aide the model of the LSA. 

In contrast, Wang (2017) describes the basics of the equations of motion of a rigid body 

spacecraft with flexible appendages. The LSA is one massive flexible body, so it is hard to imagine 

an attached rigid body that is large enough to dominate the dynamics of the model. With that being 

said; coupling dynamics will still exist on the LSA because the solar array is so large that one part 

of the solar array will couple with other parts, or attachments, of the solar array in unique ways. 

Part of the motive behind doing an analysis on an LSA is to discover an efficient way to scale a 

model of an LSS, knowing that it could couple with itself. Although the LSA is not a rigid body, 

it will still be useful to have the first order time derivate matrices required to transform one part of 

a spacecraft to another. FEA was used to model the flex dynamics of the solar array on the 

spacecraft, but all that was mentioned for analysis was MATLAB. Wang (2017) is a good paper, 

which could be useful as an example to set up equations of motion. 

And in Wallrapp (2002), there is a detailed description of the kinematics of a generic 

flexible body. Although it should be noted that the simulation case given was the deployment of a 

solar array. In the model of an LSA, deployment will not be considered. It is assumed that the solar 

array was assembled in space, and not folded and deployed. Kinematic analysis is good to be 

mindful of with respect to orbital mechanics. However, the use of kinematics in this paper with 

respect to LSS would only be useful if an orbital analysis was necessary to determine the external 

forces exerted on the LSA. It is also another reminder that the assumption of a multibody system 

will likely be necessary to set up the model for the analysis on the LSA. It will also be necessary 

to use FEA software to find a solution to the LSA system. Making a scalable model that can be 

applied to multiple FEA softwares will prove the model has flexibility to be used on any computer. 



Dynamic Modeling of a Large Solar Array 7 
 

 

With the application of linear algebra, Wallrapp (2002) had a lot of very good examples describing 

how to mathematically set up solar array flexibility models. Wallrapp (2002) concludes with 

saying that its investigation could use more research to determine what the best set up of the 

problem is i.e. how to model something that only has a certain number of flexible bodies. 

Once equations of motions are established, it is necessary to know whether a system is 

controllable. Controllability and observability are described in Williams (2002). The impression 

of Williams (2002) is a general overview of controllability and observability on flexible structures 

in certain vibrational modes. A big focus were the modes that occur at natural frequencies. Natural 

frequencies will be important to identify for the LSA for any simulations that are run, or any 

analysis that is done on the stability of the solar array. Knowing ahead of time if different modes 

natural frequencies of the LSA are controllable and observable will indicate if the model is 

practical. If the chosen design of the LSA cannot be controlled and predicted through its modes, 

then the model is not useful. Williams (2002) does makes some conclusions about the magnitude 

of the damping ratio relating to the controllability and observability. 

Again, controllability and observability will be critical parts of developing the model. And 

to describe all the real systems of a spacecraft, Bainum (1984), is a good start. It covers: open- and 

closed-loop beam dynamics, solar radiation torques, and thermal effects. The discussion of Bainum 

(1984) pertains to plants, and noise and such involved with large flexible structures. Although 

Bainum (1984) discusses the solar arrays and antenna of the spacecraft as lumped masses, it still 

provides analysis for a closed-loop system of the spacecraft with time delayed actuators, thermal 

disturbances, and solar radiation pressures. A lumped mass assumption will not be used on the 

LSA, however solar radiation and thermal disturbances will be considered. It is seen in the analysis 

in Bainum (1984), that there is a breakdown of exactly what all the vectors and forces are being 
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applied to the structure (bending, solar, and thermal effects). The dynamic models are boiler plate, 

along with equations describing solar radiation forces. Solar radiation torque will likely be a large 

contributing factor to the model of the LSA given the shear surface area exposed to the sun. An 

equivalent observation about the solar radiation can be applied to the thermal forces from diurnal 

effects of the orbit of the LSA. 

More classical control theory is described in Thau (1985). Four different methods were 

used to study adaptive learning control. Those methods were: a modal model, a least-squares 

identification scheme, a separable nonlinear least-squares approach, and a dual-adaptive control 

strategy. Although a lot of the content in Thau (1985) is not modern, it does breakdown how to 

model large structures and identify modes, find the function of all the models, and estimate pole- 

zero parameters. Classical methods for discussing and setting up the model of a control system are 

discussed such as; rank, linear dependence, and eigenvectors. A simulation software was used to 

generate a solution to their model, however the software was not modern. 

Maghami (1995) used simulations to obtain its results. However, it also developed a way 

to design a large spacecraft (in this case a geostationary spacecraft) while doing the structures 

analysis, and the controls analysis at the same time. This method would streamline the design 

process of an LSA because the size of the structure and its stability are highly coupled. A massive 

solar array must maintain pointing to be useful, and every bit of mass on LSSs matters. There were 

two control system designs presented in the paper, the first was an analytical solution, and the 

second of the two design approaches used CSI-DESIGN. CSI-DESIGN was what was used as the 

primary solution in the paper. The first design is an Earth Pointing System, and the second is a test 

bed at Langley. In both design processes, the goal was to achieve a certain amount of mass/stiffness 



Dynamic Modeling of a Large Solar Array 9 
 

 

in the spacecraft that would be adequately controllable, and still reject disturbances. The spacecraft 

structures between the two problems were similar, but not the same. 

In Mu (2018) it was found that with an increase in size of the spacecraft, and if the structural 

fundamental frequency and attitude frequency are close, that the orbit would decrease in altitude. 

System instability was also found to be very closely related to structural vibrations. The discussion 

of how structural excitation relates to stability is critical in developing an LSA model. An 

uninformed reader that knew little or nothing about the orbital mechanics and structural dynamics 

of an LSS would find Mu (2018) very informative. The thesis was classic, and it broke down the 

equations of motion for an LSS in a GEO orbit in a way that could be understood. Mu (2018) was 

modeling flexible body dynamics to some degree, but it was in the form of beam bending. The 

analysis done was purely two dimensional, however still applicable to LSS. The paper discusses 

the adverse effect of delta-v on an LSS as it orbits around a body. At the beginning of constructing 

the model of an LSA, it will be necessary to build equations of motion from solar pressure forces, 

gravity, and some thermal effects. 

For a modern look at how to design controllers specifically for LSS, we have Hyland 

(1993). The scope of this paper was broad and covered several different kinds of control. Active 

control of LSS is stated to require the use of a multiple-input-multiple-output (MIMO) systems. 

Utilization of a MIMO state-space equation will be required to model an LSA. A single-input- 

single-output (SISO) system will not suffice given the large amount of disturbances and inputs to 

an LSA. LGQ controllers and their limitations were the most emphasized analytic control method 

in Hyland (1993). The rest of this literature seemed to discuss LSS as a whole; including things 

like in–orbit-test, and hardware application. However weak in analysis, this paper has many helpful 

references and suggestions. 
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Stability is a big concern in the integrity of a solar array, because the modes at which it is 

stable aren’t necessarily the same modes that won’t cause the solar array to break. Bloch (1992) 

discusses a method of expressing the stability of a system with velocity and momentum. The 

torques on the spacecraft are applied by gas jets and a multi-rotor system using a quadratic 

feedback control law. A Hamiltonian is then applied to a Lie-Poisson bracket. The overall topic 

was focused on the analysis of internal rotor control on a rigid body. Bloch (1992) utilized things 

like Hamilton Structures, Lie-Poisson, and Energy-Casimir. Bloch (1992) mathematically 

describes systems in terms of velocity and momentum for the dynamic behavior of a rigid body 

controlled internally by wheels of different kinds. It discusses three- and single-wheel situations, 

as well as phase shifts. And to see more about stabilization Bloch (1990) is discussed. Bloch (1990) 

has a method of using angular momentum applied to a rigid body to provide stability. Bloch (1990), 

however, is unique because it takes the case of only one applied torque. Normally the stability of 

a spacecraft needs at least two torques to stabilize a spacecraft about its principal axis. From the 

point of stability, using one torque may be useful to an LSA. Stability will depend on the shape, 

size, and trajectory of the LSA. Knowing the analysis required to stabilize the solar array, use of 

one torque could simplify the solar array structure. The method of Energy-Casimir was applied to 

single axis the torques. 

Kaplia (1999) contains a discussion of the Ricatti equation and how it is applied to 

stabilization. A direct application of the Ricatti equation can be seen in Gasbarri, Monti, and 

Sabatini (2014). However, in Kaplia (1999), it was realized that open-loop dynamics applied at the 

wrong time can cause undesirable dynamics. By closing the loop, the input is shaped so the 

flexbody vibrations change and better the performance of the output. There is a trade in adding 

impulses to the system between speed and robustness. Kaplia (1999) seems to contain much more 
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modern control theory and is closer to what is taught in academics today compared to other papers 

applying classical control theory. The application of time-delay control, however, may not be 

applicable in an LSA. Kaplia (1999) is a healthy discussion of modern control theory techniques 

like the use of LQR controllers, poles and zeros, and Lyapunov stability. Stability being applied 

directly to rigid and flexible bodies is of interest to an LSA model. Krishnaprasad (1985) is a good 

place to start for determining the stability of a rigid or flexible body. A model is developed using 

Poisson manifolds on a rigid body with attached flexible beams (a spacecraft main body with 

attachments like solar arrays). Energy-Casimir was also applied to determine if a model had 

stability. Having reviewed rigid body models and Hamiltonian methods, Krishnaprasad (1985) 

also assumes that the reader has had some exposure to Possion manifolds. There is a brief review 

of Lie-Poisson brackets in Krishnaprasad (1985). Lie-Poisson represent flexible structures in the 

coordinates of the body. Rigid bodies with flexible attachments have smooth, nonlinear solutions. 

The Energy-Casimir method provides an algorithm for determining sufficient conditions for the 

nonlinear stability of equilibria for systems whose underlying Hamiltonian structure has a rich 

collection of Casimir functions. All the proceeding methods are applied at the end of 

Krishnaprasad (1985) to find the stability of the equilibrium solution. 

Bathe (2014) is a textbook about FEA methods. Bathe (2014) will be useful when the 

techniques are applied an LSA. Slicing the LSA will require FEA to determine if the methods are 

feasible to use on computers with different computational levels. 

There are several methods to approach constructing a model of an LSA. Most published 

research pertains to specific methods with respect to either stability, constructing a model, structure 

design, mode analysis, or a combination of all of them. Not all angles of analysis will be required 
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to construct a model for an LSA. However, mindfulness of all the tools available through published 

research to create a model is helpful. 

1.3 Project Proposal 

 

The objective of this project is to model the flex dynamics of a very large solar array in a deep 

space orbit. The solar array in reality would have the dimensions on the order of kilometers long, 

although the model in this paper will be 1 meter. The solar technology itself is not of interest in 

this project. The focus of this paper will be on how to most efficiently model the dynamics of a 

solar array that is very large. The efficiency of the model is driven by the desire to be able to scale 

this analysis to any workstation. The need for a very large solar array has not become necessary 

yet, however because one day a very large solar array will be required for things like space habitats, 

a dynamic model will be developed and analyzed here in this paper. 

1.4 Methodology 

 

The methodology to completing this scalable mathematical model will be approached with 

classic equations of motion of the dynamic system. Once a proper dynamic system has been 

established, a computer with finite element analysis software will be used to compare different 

vibrational mode shapes of the large solar array. The modes will be components that can be stitched 

together to represent the full dynamics of the very large solar array. Having the first mode shapes 

of the LSA allows for further analysis to iterate and predict all mode shapes of the LSA. 

The model of the very large solar array will be used to discover the most efficient way of 

slicing the structure into scalable components to find a solution to the dynamics. 
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Chapter 2 – Purpose 
 

2.1 The Model 

 
The goal of the FEA software (NASTRAN) model’s initial setup is to create a set of slices 

that can appropriately model an LSA as a uniformly loaded cantilever beam. Computation time 

and accuracy shall be the parameters used to qualify success. The least computation time for the 

most amount of accuracy is desired. Requirements of each slice much fall within a list of assumed 

condition that keep the simulations within the realm of usefulness. 

Having an accurate model of the cantilever beam enables the ability to predict the flex 

dynamics of the LSA. However, developing an accurate model for an LSA would be 

extraordinarily difficult. With that in mind, a model will not be developed in this paper. 

NASTRAN will allow for a computational analysis on how an LSA would flex. 

2.2 Flexible beam 

 
The use of a large flexible beam instead of solar array is for a few reasons. The first reason 

is to perform a proof of concept on something simple. The slicing method must be feasible on a 

simple object like a bending fixed beam to apply it to an LSA. The flexible beam solution will 

yield details about how something very large bends over a large distance given a bunch of scaled 

slices. 

There is no total defined area that will be used for the first FEA models. The simulation 

needs to be accurate enough answer when scaled to the total area of whatever dimensions that a 

fix beam has. The flexible modes that result from the computations can be compared to an 

analytical solution from theory. The total area of the flexible body should be built from a certain 

number of elements (number of slices). The number of elements could approach infinity until the 

Nikos Mourtos 

2019-05-29 00:28:59 

-------------------------------------------- 

PURPOSE OF WHAT? 



Dynamic Modeling of a Large Solar Array 14 
 

 

displacement of the beam becomes impractical to imagine. An LSA is very large, and thus the 

scaled computation could be applied to a spacecraft that is multiple kilometers in magnitude. Each 

slice does not need to be rectangular, but it is likely that a massive rectangular will be the shape of 

an LSA of the future. 

Accuracy of the simulation is going to depend on the software chosen and how sparse nodes 

in the mesh are. A software that has sufficient fidelity and speed should be chosen to complete the 

simulation. The shape of a real LSA is likely going to be vastly different than in these simulations, 

however properly constructing a mesh of elements allows these simulations to be applicable to a 

high variety of possible LSA shapes. Gravity gradients, temperature, and solar torque are only 

considered instantaneously in time. No diurnal analysis of forces will be included in this 

simulation. A picture of the LSA is given in Figure 1. 



Dynamic Modeling of a Large Solar Array 15 
 

 

 

 
 

 
 

 

Figure 1: An LSA On Orbit 

 

The first model of the beam is going to be something very simple. It will be a small, 

symmetric, slice of what should be scaled to become the whole solar array. 

2.3 Assumptions 
 

A list of assumptions has been made to simplify the LSA into a problem that’s more 

manageable for the proof of concept in this paper. 

2.3.1 The solar array is in deep space. 

 
Having a deep space spacecraft comes with a slew of different conditions compared to a 

spacecraft that is near earth. The most obvious implication of having a deep space LSA is the 

distance from the sun. Because the LSA is at a much further distance from the sun than the earth 

Sun 
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is, the solar pressure, and available solar flux are much lower. Solar pressure and solar flux are 

affected by the inverse square law, meaning that the solar pressure and solar flux are decreasing at 

the inverse squared distance from the suns center. Depending on where the Solar array is in its 

orbit, the LSA could have a solar pressure and a solar flux like earths, or near zero. 

The second most obvious implication of having a deep space solar array is the varying 

degrees of gravitational acceleration. The gravity gradient that is being imposed on the LSA is 

going to completely depend on the nearest, and largest objects to the LSA. For the purposes of the 

paper, the LSA is going to be assumed to be near mars and circularized around the sun. 

Given that the LSA is in orbit around the sun and not another, closer, planetary body, 

eclipse conditions can be neglected. 

2.3.2 The solar array is a homogenous material 

 
Solar arrays are almost always made from several layers of materials, attached to various 

electronics, and structurally reinforced so that they are rigid (or can bend a certain amount). Given 

the complication and scope of doing a structural analysis on several layers of a solar array, the 

assumption of a homogenous material is sensible. With a homogenous material, one elastic 

modulus can be used, and it will be much easier to benchmark the accuracy of solution to the LSA 

bending dynamics without corrupting the proof of concept. The proof of concept only needs to 

show that it is possible to model the mode shapes and normal modes of the LSA, and to find a 

displacement solution. To find the solution of a structurally complicated LSAs bending dynamics 

is outside the scope of the paper. 

2.3.3 The deflections of the solar array are small 
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If deflections are too large, bending gets to the point where the structure may begin to 

deform. A plastic structure is not useful to model because if an LSA were to be built, it would need 

to be flexible enough to retain its strength and shape. This papers proof of concept is focused on 

the bending dynamics and not a structural failure of the LSA. The small deflections assumption 

also simplifies the analysis. 

2.3.4 The solar array is a beam shape 

 
There are many kinds of shapes that a solar array can be. The shape of a future LSA is not 

only unpredictable, but arbitrary. No matter the shape of the future LSA, there is still quite a bit of 

practicality in a beam shaped solar array. Solar arrays are built as sheets and a long, thin sheet it 

effectively a beam. The equations of motion are very well defined for a fixed beam, and a beam is 

a plausible macro shape for an LSA. It then makes sense to use a fixed beam in the simulation of 

an LSAs bending dynamics. 

2.3.5 The solar array (beam) is originally straight 

 
An LSA in an actual orbit is likely never going to be perfectly straight. However, to validate 

the analysis in this paper, it is necessary to start from a predictable equilibrium. The bending from 

equilibrium (a straight beam) is valid given that the range of motion of the beam is reasonable. 

2.3.6 The summed forces of gravity, solar pressure, thermal expansion/contraction, and 

magnetic field act uniformly on the beam 

Different spacecrafts may experience many different forces on orbit. Exercising different 

mechanisms to apply a load will not provide a more accurate simulation to the reality of a flexible 

LSA. It is however, noteworthy to understand the variety of forces that are acting on the solar 

array. A force distribution is being used to simplify the analysis with the equations of motion. The 
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forces are acting in a downward direction (like gravity on earth), however in this paper they 

represent the summed deep space forces. 

2.4 Equations of Motion 

 
To better understand the dynamics involved with a flex body, some equations of motion 

are given. The equation at the core of all motion is Newton’s Second Law. 

 

∑ �⃗�  = ∑ 𝑚 �⃗� 2.1 
 

Newton’s Second Law tells us that the LSA must react in response to a sum of all forces 

acting on it. In this case; gravity, solar pressure, thermal expansion/contraction, and magnetic field 

are all the external forces that are acting on the solar array. Given is a symbolic representation of 

all the forces acting on the LSA: 

∑ �⃗�  = �⃗� + �⃗⃗� + �⃗⃗� + �⃗⃗� 2.2 

 
The sum of forces F shall be represented for a force distribution on a cantilever beam. The 

uniformly loaded cantilever beam in this case is representing the LSA under all the forces of F. 

See Figure 2 for a representation of F on the cantilever beam. F is described per unit length of the 

beam as f. 
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Figure 2: A Uniformly Loaded Cantilever Beam 

 

 

 

 
Following is Newton’s Second Law in the form of moments. 

 
∑ �⃗⃗� = ∑ 𝐹 𝑟 2.3 

 
Moments can be used to describe beam bending, so Newton’s Second Law in this form 

will be more useful than Equation 2.1. A sum of moments can be used to derive equations for beam 

bending. To find the point of maximum deflection, the following equations are expressed in 

common literature as Equations 2.4 and 2.5. 

 

∋𝐵 = 
𝑄𝐿4 

8𝐸𝐼 

 
2.4 

 

∅𝐵 = 
𝑄𝐿3 

6𝐸𝐼 
2.5 

B’ 
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The subscript B is indicating the end of the beam. If the conditions for breakage of the 

cantilever beam are known, maximum deflection with a certain amount of safety factor can be 

used as a certain amount of allowed bending in the design. 

Equations 2.6 and 2.7 describe the deflection of a uniform load on a cantilever beam at a 

point x along the line connecting points B’ and B. These equations will be useful by providing a 

function to plot the deflection. Plotting the deflection of the cantilever beam will show the critical 

point of stress, transitioning into plastic regions of the solar array. 

 

∋𝑥 

 
∅𝑥 

=  
𝑄𝑥2  

(6𝐿2  − 4𝐿𝑥 + 𝑥2) 2.6 
24𝐸𝐼 

 

=  
𝑄𝑥  

(3𝐿2 − 3𝐿𝑥 + 𝑥2) 2.7 
6𝐸𝐼 

 

Equations 2.6 and 2.7 provide the deflection at the end of a cantilever beam with a uniform 

load. These equations will be useful by providing a sense of how far a piece of a solar array will 

deflect along its length. The station along the beam is indicated by the subscript x. 
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Figure 3: Dimensions of the Cantilever Beam 
 
 

 

 

Figure 4: Displacement of the Cantilever Beam 
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Euler’s equations of rotational motion will be useful while describing the rigid body 

dynamics involved in this LSA problem. These equations (2.8 – 2.10) can be applied to the LSA 

problem by describing how the LSA is rotating with respect to its external forces. 

𝑀𝑛𝑒𝑡𝑥 = Ixx𝜔̇ 𝑥 + (Izz − Iyy)𝜔̇𝑦𝜔̇𝑧 

𝑀𝑛𝑒𝑡𝑦  = Iyy𝜔̇ 𝑦  + (Ixx − Izz)𝜔̇𝑧𝜔̇𝑥 2.8 - 2.10 

 
𝑀𝑛𝑒𝑡𝑧 = Izz𝜔̇ 𝑧 + (Iyy − Ixx)𝜔̇𝑥𝜔̇𝑦 

 
2.5 FEA in AutoCAD 

 
How the slices are comprised in the FEA is going to depend on the software. For the 

simulation of the LSA, AutoCAD NASTRAN In-CAD has been selected. NASTRAN In-CAD is 

easy to use and has proven reliability from its use in industry. 

The solution from the computation in NASTRAN will show how the normal modes (in this 

case caused by gravity, or solar radiation) will bend and flex the solar array. A theoretical solution 

should be compared to the computational solution to confirm the validity of the solution before it 

is iterated. 

A flexible beam FEA analysis will be benchmarked against a traditional analysis. 
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Chapter 3 – FEA 
 

3.1 Parts 

 

A certain number of different shapes have been chosen as examples for the LSA. Simple 

shapes have been chosen first to compare results. First a rectangle has been chosen because it is 

the easiest to imagine as a scalable shape. Most modern solar arrays are rectangular, so it is 

reasonable to extend that an LSA of the future could also be rectangular. Other shapes to be 

considered are the hexagon and the triangle. A hexagonal shape could be scalable to solar arrays 

that are circular, or at the very least, not perfectly rectangular. A triangle on the other hand can be 

applied to a very high variety of different shapes. For instance, two triangles can be rectangular, 

or many may be fitted together to assume any shape. Meshes in FEA are commonly comprised of 

triangles, and thus is designed to handle many different shapes and sizes of models. If triangles 

can be used to build a high variety of shapes in FEA, it is likely that triangles can also be used to 

build any slice of an LSA. 

All the parts in this FEA analysis were drawn in AutoCAD Inventor. Each part is a three- 

dimensional solid material. Once all the parts were drawn in Inventor, they were moved into the 

AutoCAD NASTRAN In-CAD environment. In NASTRAN the shapes had similar loads, 

constraints, and meshes applied to them. Loads are the forces that each part experiences. All the 

loads are distributed forces on one face of each part. For NASTRAN to come up with a solution 

to the loaded part, the part must be constrained. Constraints are sections of each part that cannot 

move or bend. The meshes are grids made up of triangles that are the points NASTRAN will 

calculate solutions for. Generally, the more points, the more accurate the solution. 

Figure 5 represents a slice of the solar array in the form of a rectangular prism. Simulating 

the summed forces acting on the slice is a distributed force on the top surface in the negative Y 
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direction. The slice is also constrained along its face parallel to the XY plane i.e. the XY face is 

rigidly attached to a wall. There is also a fine mesh of triangles that has been distributed over the 

slices surface. 

 

 
Figure 5: Rectangular Slice 

Figure 6 shows a triangular slice and it is close in shape and size to the rectangular slice. 

The triangular slice is constrained on the face that is parallel to the YZ plane. The distributed load 

is applied in the negative Z direction on the XY face of the slice. The triangle slice has an 

equivalent fine mesh to the rectangular slice. 
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Figure 6: Triangular Slice 

Lastly is the hexagonal slice. The hexagon is similar in size to the rectangle and the 

triangular slices. The hexagon is constrained in the XZ plane. The distributed load is applied to the 

hexagon on the XY face of the slice. The mesh is also similar in size and shape to the rectangular 

slice and the triangular slice. 

 

 

Figure 7: Hexagonal Slice 

3.2 Simulations 
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NASTRAN was used to find the solutions of a uniformly loaded cantilever beam. Each 

slice is equivalent to a beam. All solutions are three dimensional. Solutions are represented in the 

following figures: 

 

 

 
 

 
Figure 8: Bending of the Rectangular Slice 

 

 

 
 

 
Figure 9: Bending of the Triangular Slice 
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Figure 10: Bending of the Hexagonal Slice 

Displacement and stress for all results were believable. Displacement was on the order of 

1x10-4 inches and stress was around 4 psi for all solutions. The material for all slices was aluminum 

and each of the slices were 12 inches long. 

The solutions of all three slices provide proof that NASTRAN is viable software to solve 

the problem of what slicing method is best. The processing power, and accuracy of the solutions 

from NASTRAN are enough to exercise various slices. Computation time appears to be heavily 

dependent on the size of the mesh. Finding a balance between computational requirement and 

solution accuracy are relevant to doing a practical analysis. The finer the mesh, the more accurate 

the solution and the more difficult it is to process. 

To get the solutions from NASTRAN closer to what an LSA would experience, a different 

constraint and loading should be used. From these first three simulations, the slices do not bend 

properly. The bending angle is much greater towards the wall than it is towards the free end. With 

many conjoined slices, each slice would experience wall stress from all directions -unless the slice 

happened to be at the edge of the LSA. 
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Chapter 4 – Normal Modes and NASTRAN 

 
4.1 Simulation Dynamics 

 

Modeling an LSA can be done with NASTRAN. To add to the question of how an LSA 

behave in a deep space orbit, it is easy to imagine a spacecraft used to repair the LSA. Something 

that walks across the surface of the LSA may be used to do maintenance. The vehicle that walks 

on the LSA will be referred to as the Robot in this report. 

The Robot is assumed to apply a normal force to the LSA at two points, and it is assumed 

to walk along the length of the LSA from the wall. The Robot is a pendulum type walker with two 

legs, one moving after the other. A sample picture can be in Figure 11. 

 

 

 

 

Figure 11: The Robot Walker on the LSA 

Simulating a robot walking across the solar array is going to be different than simulating 

the bending dynamics of an LSA only experiencing forces from its orbit. It can be assumed that 
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the Robot walking on the surface of the LSA is the only significant force. The next closest force 

in magnitude to the normal force of the Robot is gravity. 

The goal is to simulate a walker, or a pendulum type robot, moving across the surface of 

the solar panel. This is very complicated thing to try and simulated because the dynamics will not 

only vary with time, but with the distance that the robot has walked. Because the LSA is being 

assumed to have a fixed wall on one side of the length, the LSA will bend and flex more and more 

as the Robot walks away from the wall. With NASTRAN In-CAD being the software of choice 

for this simulation, there are limited options to modeling this robot. There is a way to simplify 

modeling distance and time in the same simulation, and that would be to run several simulations 

incrementing the location of the robot’s force along the length of the solar array, only varying time 

for each increment. However, that would not model the real dynamic response of the LSA, because 

every step the robot takes is likely not going to happen before the solar array becomes at rest or 

reaches an equilibrium. 

In Figure 2 is the LSA in AutoCAD Inventor. It is 1m long, 2.5mm thick, and 5mm wide. 

The LSA is this sized only to scale of what a real LSA might be. The exact dimensions are 

somewhat arbitrary. 
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Figure 12: The LSA in AutoCAD 
 

 
Figure 13: The LSA in AutoCAD with mesh 
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Figure 13 the same LSA in Figure 12, however there is a mesh applied in Figure 13. It also 

includes the set up for NASTRAN to run an analysis with its “Normal Modes” setting. The Normal 

Modes finds a user entered first number of modes frequencies and mode shapes that the model has. 

These mode shapes and frequencies are part of the output of the results. 

The mesh took almost no time to generate at all (4 seconds). To compare, running a normal 

modes simulation on a beam that was 1 km long took 4 days computation time. The workstation 

used to generate this mesh took about a day to generate, and if it generated any slower, the progress 

of this project would be severely hindered. The mesh applied to the 1m LSA will be used to find 

the normal modes of the LSA. The mesh is used by NASTRAN to calculate the bending dynamics 

at all elements of the mesh. A coarseness of 172 elements and 518 nodes was chosen to the ease 

of calculation by the workstation being used to run NASTRAN. The mesh is bound to all surface 

areas of the LSA volume, and none of the mesh is spread through the internal space of the LSA 

model. The green color on the LSA in Figure 13 is only to mark space that is covered by mesh 

elements. 

Some other constraints on the LSA in NASTRAN are as follows: 

 
 Mode outputs are restricted to the first 10 flexbody modes between 0.01 and 10 hz 

 

 NASTRAN is set to analyze the normal modes 

 
Once the constraints of the LSA were set, NASTRAN was set to run an analysis to identify the 

normal mode frequencies and shapes. NASTRAN was left to run on its work station for about 4 

days (the exact time can be seen in the output file) during a 1km simulation. However, the 1m 

simulation given in figure 14 took 4 seconds. The output file has all the details of the analysis by 
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NASTRAN. The first 10 modes were determined at the end of the simulation shown in Figure 14. 

 

 

 

 
 

Figure 14: Frequency Versus Mode Number 

 
Modes are certain frequencies that cause a specific object (in this can an LSA) to vibrate 

sinusoidally with a certain pattern that are going to be the same as other natural frequencies. 

Different natural frequencies that produce similar sinusoids are parts of an object’s normal modes. 

The first 10 modes found by NASTRAN are the frequencies at which the LSA naturally wants 

to bend. Each frequency has its own mode shape that is sinusoidal. Not all the sinusoidal modes 

of the NASTRAN output are useful for the purposes of this paper. Some of the mode frequencies 

are about axes that aren’t of interest. Some of the mode shapes are torsional, axial, or about other 

axes not analyzed in this paper.  However, some  mode shapes  (1,3,6,  and  8) observed from the 
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output of NASTRAN appear to be about a useful axis (+Y). A few of the output mode shapes from 

NASTRAN have consistent sinusoidal shapes. Figure 15 is an example of a believable mode shape, 

and Figure 16 is an example of a mode shape that is not useful. 
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Figure 15: Mode Shape 8 from NASTRAN 
 
 

 

Figure 16: Mode Shape 9 from NASTRAN 

 
Mode shape 9 appears to have axial bending, which is not of interest. None the less, normal 

modes have been identified, although some of the mode shapes need to be disregarded. The next 

step after obtaining the modes is to use the normal mode frequencies to construct plots for the 
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deflection of the LSA. An iterative method from Yang (2015) shall be applied. MATLAB is used 

to apply the iterative method. The remainder of the mode shapes can be seen in the Appendix. 

 

Chapter 5 – MATLAB and Iterative Analysis 

 

Yang, Ouyang, and Stacioiu (2015) is the primary paper to base the dynamic analysis of a 

robot walking on a large solar array, on. Like the solar array problem, is a train going over a bridge 

(a very common problem). A train going over a bridge is effectively a sprung mass moving across 

a fixed beam. The train car being the mass, the suspension being the spring, and the beam being 

the bridge itself. This can be compared to a mass (the robot) and the beam (the solar array). The 

spring may not be necessary in the solar array analysis because a walking robot does not have a 

suspension. 

There are some critical differences between a train and a spacecraft, however. For instance, 

a deep space environment is going to have different thermal conditions than a train would. 

Comparatively, a train is going to be in a rather controlled environment, given the atmosphere of 

the earth compared to deep space. A solar array is going to have dramatic thermal differences on 

its own body in space. This will affect how the solar array vibrates, and how stiff it is. The solar 

array may not have an even stiffness because of thermal asymmetries across its body due to the 

space environment. The second biggest difference is the magnitude of gravity. A solar array in 

space is not exposed to the same gravity as a train on earth. It is also assumed that the dynamics 

are such that the robot walker can apply a force to the solar array as it walks across it. A train has 

a very consistent pull of gravity from the earth, and this should be kept in mind when comparing 

the analysis of this paper, and Yang (2015). 
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A two-step process is used to find the dynamic solution of the solar array (beam bending) 

problem as seen in Yang (2015). 

The first step is Modal Superposition (MS) with numerical modes. MS will allow for a 

subset of Eigenmodes to be revealed. Space and time can be looked at separately, and the solution 

is equivalent to the total existing number of modes, using this method. The simplified solar array 

and train problems both include a mass and a beam, and therefore share similar equations of motion 

which can be found below from Yang (2015): 

𝜌𝐴 
𝜕2𝑤(𝑥,𝑡) 

+ 𝐸𝐼 
𝜕4𝑤(𝑥,𝑡) 

= 𝑘
 

  

 
(𝑢 − 𝑤(𝑣𝑡, 𝑡)) ∙ 𝛿(𝑥 − 𝑣𝑡) 5.1 

𝜕𝑡2 𝜕𝑥2 𝑣 

 

−𝑚𝑣 𝑔 − 𝑘𝑣 (𝑢(𝑡) − 𝑤(𝑣𝑡, 𝑡)) = 𝑚𝑣 
𝜕2𝑢(𝑡) 

 
 

𝜕𝑡2 
5.2 

 

These equations (5.1 and 5.2) are found in Yang (2015), and are for the mass, spring, and 

beam problem. Equations 5.1 and 5.2 will be different for the robot and solar array problem given 

the lack of spring, and the fact that the robot “walks”. A walking robot would apply a force on the 

surface of the solar array with discontinuous steps -in stark contrast to the continuous force applied 

by a train. Defined in Yang (2015) are the following variables: 

 E = Young’s modulus of the beam 

 

 ρ = density of the beam 

 

 A = area of the beam cross section 

 

 I = moment of inertia of beam’s cross section 

 

 kv = stiffness of the spring 

 mv = mass of the sprung mass 

 w = transverse deflection of the beam 
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 u = vertical displacement of the mass 
 

 

 

 

 
Figure 117: Mass spring model taken directly from Yang (2015) 

 

 

 

 
Figure 18: Arc Path of the Robot Walker Mass 

 
Figure 18 describes how the quantity vt in all equations of motion used for the Robot/LSA 

problem are described in the arcs of semi circles. The vertical velocity of the mass of the robot (the 

plumb of the inverted pendulum) changes with respect to where it is in the circular arc. At stations 

tn, the mass can be described are different extreme velocities. This change in velocity must be 

considered when solving the equations of motion of the Robot/LSA problem. 

Equations 5.1 and 5.2 need to be transformed into their vectors of analytical modes before 

they can be used in MATLAB. Once in MATLAB, an iterative method adopted from Yang (2015) 

can be used to describe the dynamic response of the beam. The iterative method in Yang (2015) is 
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taken from Yang and Fonder (1996). ABAQUS is used in Yang (2015) to find the initial numerical 

modes. NASTRAN was used in place of ABAQUS like in Yang (2015) to yield similar results in 

this paper. The ten modes are tabulated in the Appendix and plotted in Figure 14. 

To solve both equations of motion (with inputs from NASTRAN), an iterative method must 

be used. The iterative scheme used in Yang (2015) and Fonder (1996) is a combination of a 

convergence criteria, and the Newmark integration method. The convergence criteria is: 

𝑁𝑜𝑟𝑚(∆𝑡𝑞′−∆𝑡𝑞0) 
≤ 𝜖 5.3

 
𝑁𝑜𝑟𝑚(∆𝑡𝑞′−0𝑞 ) 

 

ϵ is recommended to fall between 1.0 x 10-5 and 1.0 x 10-8 in Fonder (1996). q in the 

convergence equation represents a certain modal coordinate. 

The equations of motion of the LSA are like the equations of motion of a mass spring 

system moving across a bridge. The proof of which can be is derived in the Appendix. 

Newmark integration method on the other hand uses the following equations: 

 
𝑢 𝑛+1  =  𝑢 𝑛 + ∆𝑡𝑢 𝛾 5.4 

𝑢 𝛾  = (1 − 𝛾)𝑢 𝑛 + 𝛾𝑢 𝑛+1, 0≤γ≤1 5.5 

In the Newmark integration method; u is the velocity and γ is a scalar. Equations 5.3, 5.4, 

and 5.5 are combined to make the iterative method described in Yang (2015) and Fonder (1996). 

The steps of the iterative method are repeated until the mass travels from one end of the beam, to 

the other. 

If there were a program that could find the dynamic solutions of the beam bending and the 

numerical modes (FEA software on its own does not), then that would have been the preferred 
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v v v 

 
path. However, because of the numerical limitations of FEA software at the time of writing, a 

combination of MATLAB and NASTRAN will be used to demonstrate the modes of a robot 

walking across a solar array. 

This next section of the report is taken directly from Yang (2015). It should be noted that 

this iterative process below is what is being used in MATLAB to ingest the output from 

NASTRAN: 

The time increments for this iterative process are time 𝑡0 to time 𝑡0 + ∆𝑡, and the steps are 
 

below: 

 
1. Calculate 0𝐒b = 𝐌(𝑎1 

0𝐪 + 𝑎3 
0�̇� + 𝑎4 

0�̈� ) and 0𝑠v = 𝑚v(𝑎1 
0𝑢 + 𝑎3 

0�̇� + 𝑎4 
0�̈� ), where 

𝑎1 = 1/𝛼∆𝑡2, 𝑎3 = 1/𝛼∆𝑡, 𝑎4 = 1/(2𝛼 – 1) and 𝛼 is a Newmark integration 

parameter; 

2. Assume the initial 𝐪 at time 𝑡 + ∆𝑡 as ∆𝑡 𝐪 (0) = 0𝐪; 

 

3. Calculate ∆𝑡𝐪 ̇ 0 = 𝑎2 (
∆𝑡𝐪0 − 0𝐪) − 𝑎5 

0�̇� − 𝑎6 
0�̈� and ∆𝑡𝐪 ̈ 0 = 𝑎1 (

∆𝑡𝐪0 − 0𝐪 ) − 𝑎3 
0�̇� 

− 𝑎4 
0�̈� , where 𝑎2 = 𝛽/2∆𝑡 , 𝑎5 = 𝛽/𝛼 – 1, 𝑎6 = ( 𝛽/(2𝛼 – 1)) ∆𝑡, 𝛼 and 𝛽 are 

Newmark integration parameters; 

4. Calculate ∆𝑡𝑝 0 = −𝑚 𝑔 + 𝑘 ∆𝑡𝛗𝑇 ∆𝑡𝐪0 ; 

 

5. The equation of motion of the mass after Newmark integration can be obtained as 

(𝑘v + 𝑎1𝑚v) 
∆𝑡𝑢0 = ∆𝑡𝑝v

0 + 0𝑠v, so ∆𝑡𝑢0 = (∆𝑡𝑝v
0+ 0𝑠v)/(𝑘v+𝑎1𝑚v); 

6. Calculate ∆𝑡�̇� 0 = 𝑎2 (
∆𝑡 𝑢0 − 0𝑢) − 𝑎5 

0�̇� − 𝑎6 
0�̈� and ∆𝑡 �̈� 0 = 𝑎1 ( 

∆𝑡 𝑢 0 − 0𝑢 ) − 𝑎3 

0�̇� − 𝑎4 
0�̈� ; 

 

7. Calculate ∆𝑡𝐏b
0 = 𝑘v ( 

∆𝑡 𝑢 0 − ∆𝑡𝛗𝑇 ∆𝑡 𝐪 0 ) ∆𝑡𝛗; 



Dynamic Modeling of a Large Solar Array 40 
 

b 

 

8. The equation of motion of the beam after Newmark integration can be obtained as 

(𝐊 + 𝑎1𝐌) ∆𝑡 𝐪′ = ∆𝑡 𝐏b
0 + 0𝐒b, so ∆𝑡𝐪′ = (𝐊 + 𝑎1𝐌) −1 ⋅ ( ∆𝑡𝐏 0 + 0𝐒b); 

9. The convergence criteria is as follows: 𝑁𝑜𝑟𝑚(
∆𝑡𝑞′−∆𝑡𝑞0) 

≤ 𝜖 
𝑁𝑜𝑟𝑚(∆𝑡𝑞′−0𝑞 ) 

 

where 𝜖 is suggested to be between 1.0 × 10−5 and 1.0 × 10−8. 

 
Once the time increment has completed all 9 steps, the next time step starts back on step 1. 

Each increment calculates ∆𝑡𝐪1 by ∆𝑡𝑞1 = ∆𝑡𝑞0 + 𝜂( ∆𝑡𝑞′ − ∆𝑡𝑞0 ) , where 𝜂 is a relaxation coefficient 

between 0 and 1. Step 1 through 9 are repeated until the time that the walker robot is not longer in 

contact with the LSA. 

Using this iterative process will produce plots of displacement of the LSA. 

 

Chapter 6 – Results and Recommendations for Future Work 

 

It is worthy to note that if the NASTRAN portion of this analysis was done again, it would 

be desirable to seek out more flexible mode shapes. The more mode shapes from NASTRAN 

available, the more data there is to input into MATLAB. Some of the NASTRAN solutions given 

in this paper are not useful. The normal modes from NASTRAN take a significant amount of time 

to be produced for a 1km LSA. Because the results of a 1km LSA are produced in days, more time 

is needed to solve that case in NASTRAN. More accurate results from NASTRAN are required to 

produce accurate beam displacements in the iterative step of MATLAB. A 1m solution is easier to 

produce and analyze. It is recommended that any continuation of this papers work, generate the 

flexbody modes in increments of LSA sizes starting from 1m (1, 5, 10 … 100 meters). 

Incrementing the LSA sizes can show at what size the solutions become incomparable to a full 

scale model. 
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At the time of writing, the displacement plots for the LSA are inconclusive. The MATLAB 

code of the iterative portion of the solution still need to be worked out and debugged in order to 

produce displacement plots. All the inputs required to do the final analysis are available to the 

MATLAB script, however they have not been solved yet. Given more time to develop the script 

further, it would be possible to produce displacement plots. Once the MATLAB script successfully 

produced displacement plots, the data could be used to judge the vibrational modes of an LSA. 

Judging the vibrational modes of the LSA would be critical to designing large space habitats, or 

other massive space structures. 

The results of this paper could be used to build other engineering analyses, such as; material 

choice of large space structures, orbital analyses on large space structures, sensor and actuator 

analyses, control law analysis, and many other engineering problems involved with building a 

massive orbital structure. All these aspects of engineering require some understanding of how a 

large space structure would tend to flex. The normal modes of a large space structure could answer, 

for example, where certain actuators should be placed, or where points of great stress could be. 

In summary, the dynamic analysis of an LSA needs to further develop its iterative process, 

and to increase the accuracy of its NASTRAN output. Given more development, the displacements 

of the LSA would produce useful results, that could be applied to several other dynamic design 

problems centered around the construction and dynamics of large space structures. 
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𝑖=1 

𝑖 𝑖 

𝑖 

 

Appendix 

 
Derivation of the Equations of Motion of a fixed cantilever beam: 

 

The equation of motion of a fixed beam are known from Yang (2015) … 
 

 
𝜌𝐴 

𝜕2𝑤(𝑥, 𝑡) 

𝜕𝑡2 + 𝐸𝐼 
𝜕4𝑤(𝑥, 𝑡) 

𝜕𝑥2 = 𝑘𝑣(𝑢 − 𝑤(𝑣𝑡, 𝑡)) ∙ 𝛿(𝑥 − 𝑣𝑡) 

 

The left side of the equation can be solved first, by setting it equal to zero. The left side 

of the equation is a classical description of a cantilever beams bending dynamics, and is well 

published in many statics textbooks that include flexible bodies. The free bending solution will 

have a similar solution to the forced bending solution due to the principle of super position… 

 
𝜌𝐴 

𝜕2𝑤(𝑥, 𝑡) 

𝜕𝑡2 + 𝐸𝐼 
𝜕4𝑤(𝑥, 𝑡) 

𝜕𝑥2 = 0 

 
 

𝜌𝐴 
𝜕2𝑤(𝑥, 𝑡) 

𝜕𝑡2 = −𝐸𝐼 
𝜕4𝑤(𝑥, 𝑡) 

 
 

𝜕𝑥2 

 

Where; 𝑤(𝑥, 𝑡) = ∑𝑛 𝜓𝑖(𝑥)𝑞𝑖(𝑡) 
 

 
𝜌𝐴 

𝜕2𝜓𝑖(𝑥)𝑞𝑖(𝑡) 

𝜕𝑡2 = −𝐸𝐼 
𝜕4𝜓𝑖(𝑥)𝑞𝑖(𝑡) 

 
 

𝜕𝑥2 

 
 

𝜌𝐴𝜓𝑖(𝑥) 
𝜕2𝑞𝑖(𝑡) 

𝜕𝑡2 = −𝐸𝐼𝑞𝑖(𝑡) 
𝜕4𝜓𝑖(𝑥) 

 
 

𝜕𝑥2 

 

1 𝜕2𝑞𝑖(𝑡) 1 𝜕4𝜓𝑖(𝑥) 
𝜌𝐴 

𝑞 (𝑡) 𝜕𝑡2 
= −𝐸𝐼 

𝜓 (𝑥) 𝜕𝑥2 

 
𝜌𝐴 1 𝜕2𝑞𝑖(𝑡) 1 𝜕4𝜓𝑖(𝑥) 

−𝐸𝐼 𝑞𝑖(𝑡) 𝜕𝑡2 
= 
𝜓 (𝑥) 𝜕𝑥2 
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𝑖 

 

𝜌𝐴 1 𝜕2𝑞𝑖(𝑡) 1 𝜕4𝜓𝑖(𝑥) 

−𝐸𝐼 𝑞𝑖(𝑡) 𝜕𝑡2 
= 
𝜓 (𝑥) 𝜕𝑥2 = +𝜆 

 

By separation of variables… 

 

1 𝜕4𝜓𝑖(𝑥) 
= +𝜆 

𝜌𝐴 1 𝜕2𝑞𝑖(𝑡) 
= +𝜆

 
𝜓𝑖(𝑥) 𝜕𝑥2 −𝐸𝐼 𝑞𝑖(𝑡) 𝜕𝑡2 

 
𝜕4𝜓𝑖(𝑥)  

= +𝜆𝜓 (𝑥) 
𝜕2𝑞𝑖(𝑡)  

= +𝜆𝑞 (𝑡)  
−𝐸𝐼

 
   

𝜕𝑥2 𝑖 𝜕𝑡2 
𝑖 𝜌𝐴 

 
 

 

The right side of the equation of motion of the cantilever beam can be found by the 

following algebraic steps… 

 

𝑙 

= 𝑘𝑣(𝑢(𝑡) − 𝑤(𝜈𝑡, 𝑡))𝛿(𝑥 − 𝑣𝑡) ∫ 𝜓𝑖(𝑥) 𝑑𝑥 
0 

 

By property of the Dirac delta function… 

 
∞ 

∫   𝑓(𝑡)𝛿(𝑡 − 𝑇) 𝑑𝑡 = 𝑓(𝑇) 
−∞ 

 

And therefore, apply the property above to the previous step of the derivation yields… 
 

 

 

 

 

Combining the new forms of the left and right side of the equation of motion for forced 

 

beam bending becomes… 
 
 

  
− 𝜆 𝑞 (𝑡) = 0 

 
 

−𝐸𝐼  
  

− 𝜆𝜓 (𝑥) = 0  

 

  

𝑴𝒒̈  + 𝑲𝒒̈ = 𝑘𝑣(𝑢(𝑡) − 𝝍𝑇𝒒̈)𝝍 

𝑛 

= 𝑘𝑣[𝑢(𝑡) − ∑ 𝜓𝑗(𝑣𝑡)𝑞𝑗(𝑡)]𝜓𝑖(𝑣𝑡) 
𝑗=1 
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Derivation of the equations of motion from a moving mass robot: 
 

The equations of motion for the moving mass robot can be found by starting with 

Newton’s Second Law… 

 

∑ 𝐹 = 𝑚𝑥  
 
 

Which, for the vertical motion of the robot, can be written as… 
 

 
−𝑚𝑣𝑔 = 𝑚𝑣 

𝑑2𝑢(𝑡) 
 

 

𝑑𝑡2 

 

Given the way that the robot walker moves, the vertical acceleration is going to change 

depending on where the mass is on its arc (indicated by vt). 
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Tabulated Normal Mode Frequencies: 
 

Normal Mode 
Number 

Frequency in 
Hertz 

1 0.211791 

2 0.3394779 

3 0.5423266 

4 0.8077536 

5 0.8192063 

6 0.9703132 

7 1.413780 

8 1.455097 

9 1.558484 

10 1.621266 
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Mode Shapes of the LSA: 

Mode 1 
 

 
Mode 2 
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Mode 3 
 
 

 
Mode 4 
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Mode 5 
 
 

 
Mode 6 
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Mode 7 
 
 

 
Mode 8 
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Mode 9 
 
 

 

Mode 10 
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MATLAB Code 

Contents  

▪ Vectors and Variables 

▪ Iterative scheme 

Vectors and Variables 
 

n is equivalent to n, q is q, u is u, p is phi, and d is delta. 

 

Iterative scheme 
 

Iterative parameters 

 

%%Displacement of an LSA 

 
%Need the normal modes from NASTRAN for the iterative scheme 

syms n q u p pv_tstep p_tstep S_b esp; 

clear all, clc, close all; 

 
% Inputs 

E = 0.0001; 

I = 0.390625; 

rho = 2710; 

A = 0.125; 

l = 30; 

m_v = 1; 

g = -9.81; 

k_v = 1.06*10^6; 

 
% Normal Modes 

load('normal_modes.mat'); 

 
d = eye(57); 

w = sqrt((E*I)/(rho*A))*(((pi())/l)^4); 

M = d; 

K = (w^2)*d; 

alph = 0.5; 

 
beta = 0.5; 

 
 
 
 

% Convergence value 

esp = 0; 

 
% Initial conditions 

p = unnamed(:,2); 

q = unnamed(:,1); 

qd = 0; 
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qdd = 0; 

u = 0; 

ud = 0; 

udd = 0; 

t = 0; 

del_t = 1; 

net = 0.25; 

 

% Time derivatives 

%qd = diff(q)/diff(t) 

%qdd = diff(q,2)/diff(t,2) 

%ud = diff(u)/diff(t) 

%udd = diff(u,2)/diff(t,2) 

 

% Step 2 Initial conditions 

q_tstep_n = q; 

p_tstep = p; 
 

while t<200 

if (1.0*10^-8 > esp) | (esp > 1.0*10^-5) 

% Step 1 Calculate S_b s_v 

a_1 = 1/(alph*(del_t^2)); 

a_3 = 1/(alph*del_t); 

a_4 = (1/(2*alph))-1; 

S_b_init = M*(a_1*q + a_3*qd + a_4*qdd); 

s_v = m_v*(a_1*u + a_3*ud + a_4*udd); 

 

% Step 2 Outside the loop 

 

% Step 3 Calculate the rates of the q 

a_2 = beta/(2*del_t); 

a_5 = (beta/alph)-1; 

a_6 = (beta/(2*alph)-1)*del_t; 

qd_tstep = a_2*(q_tstep_n - q) - a_5*qd - a_6*qdd; 

qdd_tstep = a_1*(q_tstep_n - q) - a_3*qd - a_4*qdd; 

 

% Step 4 p_v calculation 

pv_tstep = -m_v*g + k_v*(p_tstep.')*q_tstep_n; 

 

% Step 5 Equations of motion of the mass after the Newmark integration 

% parameters have been applied 

u_tstep = (pv_tstep + s_v)/(k_v + a_1*m_v); 

 

% Step 6 Calculating rates 

ud_tstep = a_2*(u_tstep - u) - a_5*ud + a_6*udd; 

udd_tstep = a_1*(u_tstep - u) - a_3*ud - a_4*udd; 

 

% Step 7 Calculate P 

P_tstep = k_v*(u_tstep - (p_tstep.')*q_tstep_n)*p_tstep; 

 

% Step 8 Equations of motion of the beam after Newmark integration 

% parameters have been obtained 

q_tstepa = ((K + a_1*M)^-1)*(P_tstep + S_b_init); 
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Hello world! 

 

 

Published with MATLAB® R2015a 

% Step 9 Check the convergence criteria 

esp = norm(q_tstepa - q_tstep_n)/norm(q_tstepa - q); 

 
% Time step 

t = t + del_t; 

 
else 

% Increment for q (mode coordinate) 

q_tstep_n = q_tstep_n + net*(q_tstepa - q_tstep_n); 

 
% Time step 

t = t + del_t; 

end 

end 

 
disp('Hello world!') 

http://www.mathworks.com/products/matlab/

