
Parametric Study of an Electric
Propulsion Spacecraft for Mission

Time Optimization

a project presented to
The Faculty of the Department of Aerospace Engineering

San José State University

in partial fulfillment of the requirements for the degree
Master of Science in Aerospace Engineering

by

Rafael Gutierrez

December 2018

approved by

Dr. Periklis Papadopoulos
Faculty Advisor

i

Contents

1 Introduction 1

1.1 Motivation . . . 1

1.2 Literature Review . 1

1.2.1 Monte Carlo Method . 7

1.2.2 Computational Limits and the Call Stack 7

1.3 Project Proposal . 9

1.4 Methodology . 9

2 Approach 10

2.1 Electric Propulsion System .. 10

2.2 Requirements ... 12

2.3 Monte Carlo Method ...13

2.4 Orbit Determination and ∆v Requirement ... 14

2.4.1 Numerical Solution Method for F(z) ... 16

2.4.2 Propagator for Orbit Visualization .. 18

2.5 Design of Experiments ... 19

2.6 C++ Implementation of the Code ... 20

3 Results 20

3.1 Parametric Optimization .. 20

3.2 Orbital Mechanics .. 22

3.2.1 Challenges with Lambert’s Problem and Propagator 23

3.3 Electric Propulsion Parameters ... 23

3.4 Design of Experiments Results .. 26

3.5 Implementation of C++ Code/MATLab Script ..31

ii

4 Conclusion 36

4.1 Discussion of Results ... 36

4.2 Future Remarks .. 38

5 Appendix 41

iii

List of Figures

1 Goddard’s electrostatic ion accelerator. 2

2 Maximizing Payload Mass Fraction for EP 6

3 Visualization of the Call Stack . 8

4 Bisection Method Case 1 .. 17

5 Mission Visualization .. 22

6 First Iteration Power Distribution ...24

7 First Iteration Thrust Distribution ..25

8 First Iteration Total Efficiency Distribution ..25

9 First Iteration Propellant Mass Distribution .. 26

10 Mass, electrical efficiency, and Isp Response Surface 27

11 Mass, electrical efficiency, and thrust Response Surface 27

12 Mass, Isp, and thrust Response Surface ... 28

13 Power, electrical efficiency, and Isp Response Surface 28

14 Power, electrical efficiency, and thrust Response Surface 29

15 Power, thrust, and Isp Response Surface .. 29

16 Output of C++ Code ... 35

List of Tables

1 Preliminary Design of Nuclear EP Missions 5

2 Initial Optimal EP Configurations .. 21

3 Run Time for Current Simulation ... 31

4 Final Table of Optimal Systems ... 37

iv

Abstract

The study varies key parameters and trajectories of a spacecraft mission

using an electric propulsion (EP) system. For consistent comparison, the space-

craft is assumed to be on a mission to Mars. The spacecraft is assumed to have

started at LEO and should be able to travel to Low Mars Orbit and return

to LEO. This would assume that the spacecraft has been transferred to LEO

via a chemical propulsion launch vehicle. Optimal trajectories are determined

and examined based on previous studies of trajectory optimization and optimal

launch windows. The key independent variables of the EP system are the input

power, the input current, the mass flow rate, and the exhaust velocity. The key

parameters observed for variation are thrust, efficiency, total mass, and total

mission time. The variation is examined to determine the effect those param-

eters have on the mission time. The purpose for examining these parameters

is to determine if the issue of mission time can be addressed when using EP.

EP is an appealing propulsive system in spacecraft because of the significant

weight reduction, but at the cost of an increased mission time in comparison to

chemical propulsion. This study is a preliminary determination of the possible

time optimization for a space mission to Mars. The total mission time is being

set for a time of 150 days in order to provide a decreased amount in mission

time. The trajectory optimization is still in progress.

v

Nomenclature

g Acceleration due to gravity, m/s2

mB Mass at burnout, kg

md Mass delivered, kg

mp Propellant mass, kg

ṁp Propellant mass flow rate, kg/s

-r Position Vector, km

q Electrical Charge, C

vex Exhaust Velocity, m/s

-v Velocity Vector, m/s

B- Magnetic Field, T

E- Electric Field, N/m

F- Force Vector, N

Ib Beam current, A

Isp Specific Impulse, s

Pdis Power Dissipated, W

Pin Input Power, W

Pjet Jet Power, W

T Thrust, Newtons

X- State Vector, [m,m,m,m/s,m/s,m/s]

Van Anode Voltage, V

Vb Beam Voltage, V

ηe Electrical Efficiency

ηT Total Efficiency

µ Standard Gravitational Parameter, m3/s2

vi

∆v Velocity change requirement, m/s

∆θ Change in Angle, rad

1

1 Introduction

1.1 Motivation

Electric propulsion (EP) systems are an option in spacecraft. The issue with electric

propulsion is that it increases the required mission time. It does, however, allow for

a lower spacecraft mass. It would be ideal to decrease the mission time and mass

simultaneously. This EP system requires a larger power source. In some cases, the

idea is to implement nuclear power sources. The issue with nuclear power plants is

mainly political in nature so there has be minimal advancement in nuclear technologies

in spacecraft. The main goal is to increase the thrust, the total efficiency, minimize

mass, and decrease the mission time.

The reduction in mission time will be used to also observe the type of power

requirements necessary for a propulsion system of this type. Though not under current

consideration, the power requirement would determine the size of the spacecraft as

well. With current technology, the more power the system requires, the bigger the

power supply tends to be in the spacecraft.

1.2 Literature Review

Robert Hutchings Goddard is one of the earlier mentions who considered EP for use in

spacecraft. The initial intent was to electrostatically accelerate electrons to provide a

propulsive thrust. Goddard was knowledgeable about canal rays so it was interesting

that he had not yet thought of accelerating ions rather than electrons. The idea,

eventually, arose and one of the first concepts of an ion thruster began to develop.

Ions can be accelerated and ejected to create the propulsive force needed to provide

thrust. This means that positively charged particles in equal parts are also ejected.

2

Goddard would use these ideas to patent the idea of an electrostatic ion accelerator.

Figure 1 shows the schematic of the electrostatic ion accelerator [1].

Figure 1: The figure shows the third variation of Goddard’s electrostatic ion acceler-
ator from 1917.

The development of EP has been hindered by the high power requirements of the

system. Because of the high power requirements, Yuri V. Kondratyuk argued against

focusing on EP due to the relationship between the exhaust velocity and the power

requirement. The relationship can be seen in Equation 1.

T η
= 2

P ve

(1)

Equation 1 shows that the power and the exhaust velocity are directly proportional.

For this reason, Kondratyuk suggested that the focus for propulsion research should be

on chemical propulsion rather than electric propulsion. From 1917-1919, the propul-

sion system of choice was chemical propulsion.

Hermann Julius Oberth was one of the next major influences on electric propul-

sion. Oberth came along to suggest that the use of electric propulsion would result

3

in significant mass reduction in spacecraft. Oberth’s schematics included the use of

Goddard’s idea of the electrostatic ion accelerator that would later be used to develop

the ion thruster. This was the major breakthrough of this era.

This era was followed by an era of scientist using the designs and concepts to

create an electric propulsion system. Up until the 1970s, most EP systems were tested

experimentally. One of the first ion thrusters was flown in 1994 and since then has

remained a popular research area. They have become more popular for commercial

use. With EP, it is typically easier to perform station keeping on satellites.

In electric propulsion, systems are separated into 3 general categories of propulsion

which go as follows: electrothermal, electrostatic, and electromagnetic.

Electrothermal propulsion is the use of an electrical method to heat up a propel-

lant inducing a thermodynamic expansion in a nozzle. This is the category where

resistojets and arc jets typically fall into. Electrostatic propulsion is the when ion are

accelerated through an electric field to create a propulsive force. Hall thrusters and

ion thruster fall into this category of EP. Electromagnetic propulsion occurs by driv-

ing a current through a plasma to create a force. The force created in electromagnetic

propulsion is governed by the Lorentz force found in equation 2 [2].

F- = qE- + q-v × B- (2)

Some examples of electromagnetic propulsion are pulsed plasma thrusters (PPT) and

magnetoplasmadynamic thrusters (MPDT).

The long mission times have been reduced through research by developing new

electric propulsion systems. The development of ion thrusters, hall thrusters, pulsed

plasma thrusters and magnetoplasmadynamic thrusters are example of EP systems

that have a significant mass reduction. The magnetoplasmadynamic thruster (MPDT)

4

has been considered by some to be the electric propulsion of the future [3]. The prob-

lem with this EP system is the high power requirement necessary for most MPDT

designs. Some of these systems range from the order of MW to GW requirements

in power. Many of these design are experimental and few have gone through a test

flight.

Although the MPDT system is considered the future of EP, it would be of use to

determine whether or not other forms of EP could also be designed and optimized with

respect to the mission time and total efficiency. The main issue in either case would

be the power input and the power requirement to be able to significantly decrease the

mission time [4].

Decreasing mission time with EP is a current research topic due to the smaller

size of EP powered spacecraft. There are several ways being researched to decrease

mission time. Several options include trajectory optimization, increasing power levels,

and increasing the exhaust velocity. One suggestion is to use nuclear energy to provide

larger amounts of energy.

The more feasible of the three options at this time is trajectory optimization[5].

There are ways to efficiently optimize trajectories and they will be taken into account

in this analysis[6]. Research on trajectory optimizations has been done for nuclear

electric propulsion systems[7]. Typical flight times between Earth to Jupiter for

these systems ranges from 4-6 years [8]. The optimization was also done for various

destinations between Jupiter and Pluto with a maximum flight time of 14 years from

Earth to Pluto.

5

Table 1: This table was taken from ”Preliminary Design of Nuclear Electric Propul-
sion Missions to the Outer Planets” [8]]. It shows the summary, including flight times,
of traveling to several planets.

Another method is to increase the exhaust velocity which would have an affect

on the payload mass fraction[9]. Changing the payload mass fraction, by extension,

can optimize the parameters of the EP system. The payload mass fraction method

examines the parameter space to determine viable configurations. This was done

by examining the space after trying a range of values for the Isp, the power, and

launch energy (km/s2)[10]. Figure 2 shows an example of the data obtained through

variations in the payload mass fraction.

6

Figure 2: The figure shows variation of Isp and launch energy with the power sys-
tems specific mass. The plot is taken from ”Maximizing Payload Mass Fractions of
Spacecraft for Interplanetary Electric Propulsion Missions [10].”

To begin the optimization process, there was a set of assumptions made to simplify

the problem[11]. Because of the inter-dependencies between variables, the list of

variable to set as independent variable requires though in order to solve a system

of equations. Since the optimization is highly computational and numerical, the

set of boundaries and constraints are an important starting point for this process.

Therefore, only values that are representative of current EP designs will be considered

regarding the random generation of the independent values. The process is iterative

and must be done for a different set of values. The set of important dependent

variables for which the optimization is done must also be defined. This allows the

analysis of any parameter that are considered crucial.

It is important to look at the performance parameters and the trajectory [12].

Trajectory optimization has been done using electric propulsion by setting some rea-

sonable values for the performance parameters in an EP system. The key for this

mission and optimization is to reduce the mass of the system.

7

1.2.1 Monte Carlo Method

The Monte Carlo Method is a statistical computation method used to solve analytical

problems. An optimization problem can take advantage of statistical information to

select an optimal set of condition for a problem. This method will allow for the

statistical optimization of an electric propulsion system.

The way the Monte Carlo method is initiated is as follows:

1. Decide on a group of values (inputs) to randomly generate

2. Based on those values, calculate a set of observational values

3. Run N number of trials

4. Use statistical methods to measure the observational data

The simulation has to be run in a set number of trials in order to provide for enough

sampling information. The essence of the N number of trials is to create a large

enough sample size to work with while also following a random sampling method.

The mean and standard deviation of the set of information can be determined and

the observed values can be measured and compared to the rest of the data in the set

[13].

1.2.2 Computational Limits and the Call Stack

In most programming languages and implementation, the call stack of the program

should be a consideration. The call stack occurs every time the program makes a call

to a function. The reason for considering this is due to the limitations this may put

onto the processing of the code itself.

A call stack can be broken down to its individual stack frames. Every call to a

function would contribute a stack frame to the program as a whole. Each stack frame

8

will contain the inputs and the outputs of said function. In C++, there is at least

1 stack frame in the execution of the program. The main function is considered the

initial stack frame. The call to the function which the program is currently on, is

considered the innermost stack frame. A backtrace of the program can be found. The

backtrace provide a summary of the steps or frames the program took to arrive to

the final product. This will provide for a flow for the user to follow into the order in

which the program called the functions[14]. Figure blank, contains a visual guide for

the flow and direction of a calls stack.

Figure 3: The figure shows the flow and direction of the call stack in programming
languages such as C++.

This develops a direction and a flow for the way the program will execute the steps

to get to a final result. The limitation of the program and the number of iterations

or executions it may run may be limited by the amount of memory taken by the call

stack.

9

1.3 Project Proposal

The main objective of this project is to reduce the mission time through key per-

formance parameters of the EP system(i.e. the specific impulse, thrust, electrical

efficiency, and total efficiency). These values will be randomly generated to create

a several EP system configurations. The parameter will be used to determine the

efficiency and effectiveness of the system. Once that is done, the optimal trajectory

will be determined. The initial simulation and optimization will be done in MATLab.

The trajectory optimization will be based on previous trajectory optimization or may

be calculated in MATLab as well. The systems ∆v requirement will be based on

the idea that the system does not travel to LEO using electric propulsion. The EP

system will transfer from LEO to Low Mars Orbit and back to LEO.

1.4 Methodology

The initial MATLab simulations for the main parameter study of the EP system

will be based on some of the essential EP equations. The rocket equation can be

applied to an EP system but the parameter are slightly different and the values of

the exhaust velocity are much higher than chemical propulsion system. Ions will be

assumed of single charge, rather than a mixture of single and double charged ions [2].

This allows for simpler calculations. The trajectory optimization will be determined

using software or running simulations for optimal orbital transfers [15]. The orbital

transfers will assume that there are no perturbations. The EP system will operate in

a regime that is near vacuum conditions.

The general scheme of the optimization will follow that of the Monte Carlo simu-

lation scheme. The randomization has been doing using a normal distribution scheme

in MATLab. With the difficulty of generating a truly random numbers, the random

10

number generator is dependent on the time itself. Different schemes may be used

dependent on the ideal randomization. The optimization will be slightly statistical to

select the optimal space system. Based on this, a decision on the type of propulsive

system can be made that matches the constraint parameters. Further statistical con-

straints are applied to narrow down the candidate option down to, at most, 5. This

allows for an easier selection process.

2 Approach

2.1 Electric Propulsion System

To perform the parametric study, several assumptions are made regarding the per-

formance parameters of the system. In some cases, the assumption is that there is

a power supply large enough to power the propulsive system. The mass being deliv-

ered in the mission will stay constant throughout the process at 20kg until a better

spacecraft mass is determined. The other parameters that are assumed to be given

are ηe, Isp, T, ∆v, ηT , md. These parameters, aside from the delivery mass (md) and

∆v will be randomized within a reasonable range of values based on preexisting EP

systems [2].

Using the randomized variables, some of the other performance parameters will

be determined. The first parameter that can be determined is the exhaust velocity,

vex. The exhaust velocity can be determined through the Equation 1 [2].

vex = Ispg (3)

Since the thrust is being randomly generated, the value of the mass flow rate can be

11

v

determined through Equation 2[2].

T
ṁp =

ex

(4)

The jet power generated by the propulsive force of the system can be determined from

the value of the propellant flow rate and the exhaust velocities. Equation 3 shows

the relationship[2].

Pjet
1

= ṁp 2

2 ex (5)

For the initial estimates, the ∆v requirement will be assumed to be a constant value.

This would suggest that the requirement should stay the same since the mission

would be staying the same. The requirement can be determined through previous

missions to Mars. The secondary analysis can be done through calculations of orbital

determination. The ∆v requirement can be used to determine the mass of propellant

required for the mission. Equation 4 shows this relationship[2].

mp = md

 ∆v
vex − 1

,
(6)

This will allow us to determine how large the system will be during deployment.

The input power can be determined by using the total efficiency of the system,

ηT . Equation 5 shows the relationship[2].

Pin =

Pjet
η

(7)

T

The power dissipated, once Pin is determined, is found by equation 6[2].

Pdissipated = Pin (1 − ηe) (8)

v

(−
e

12

These set of equation will be used to determine the effect that the change in parameter

has on the mission.

2.2 Requirements

Although the set of equations are known, the requirements will determine which

design configurations will move on in the selection process and which design con-

figurations fail the initial constraints. A set of tests are initialized to narrow down

possible EP system configurations.

The following initial parameter requirements are as follows: 1)The mass of the

propellant should be equal to or less than the delivered mass 2) The electrical efficiency

should be above 75 percent 3) The total efficiency of the electric propulsion system

should be above 50 percent 4) The total efficiency shall not exceed the electrical

efficiency. The last requirement allows for a realistic configuration. Total efficiency

is dependent on the efficiency of the components of the system.

To further narrow the options, the average of each of the parameters will be

determined along with the standard deviation. The attempt will be to choose the

systems above or below two standard deviations depending on the intent of the design.

That is, two standard deviation will be chosen if the parameter is supposed to be

minimized and two standard deviation above will be chosen if the goal is to maximize

the parameter. This is done to determine the optimal configuration. Based on the

number or resulting configurations, the requirement may change. Neither of the

efficiencies should exceed 100 percent and the total efficiency should not exceed the

value of the electrical efficiency.

The trajectory still needs to be determined. Whether doing a gravity-assist trans-

fer or a powered transfer would prove more efficient still needs to be determined. The

13

window of opportunity for orbit transfer was done based on NASA’s InSight Lander’s

launch windows. For the first iterations, a previous orbit window will be used along

with the optimal ∆v requirement to get to Mars[16]. The optimization of the orbit

itself was more difficult to approach due to the number of factor and the number

of factors and methods considered in finding an initial orbit and in the Monte-Carlo

method. The requirement is driven through a Lambert Method approach of calculat-

ing the propellant requirements.

Once an initial set of the requirements are used to eliminate electric propulsion

configurations, the next criteria used is elimination through the use of the mean of

the data. The initial intent was to use the standard deviation as well but there was

too much conflict in the parameter to try to maximize parameters using this method.

The requirements are as follows:

1. The propellant mass is less than the average propellant mass

2. The electrical efficiency is greater than the average electrical efficiency

3. The total efficiency is greater than the average total efficiency

2.3 Monte Carlo Method

Following the steps of the Monte Carlo Method, the thrust, specific impulse, and the

electrical efficiency are the input parameters that are randomly generated. Though

more values were included, the observational parameter of interest are the propellant

mass and the input power needed for the system. The input power will suggest the

feasibility of an EP system considering the amounts of power one of these systems

14

requires and the existing technology to provide for the power requirement. The

propellant mass is, ideally, minimum while still performing the mission in the require

amount of time. The number of trials designated for this simulation is not set, but

will be above 10000 trials. Once the preliminary designs have been discarded using

the requirements mentioned earlier, the standard deviations of the data sets will be

used to further eliminate any other designs.

The design and all the pertinent information will be stored in data structure

within MATLab. The information for all the designs will be stored in that structure

and a new data structure will be created will all the designs that have passed the

initial and final requirements. The set of configurations are eliminated until the data

structure is left with less than 10 EP designs to ease the decision-making of the ideal

configuration.

2.4 Orbit Determination and ∆v Requirement

To determine the ∆v requirement, the orbit transfer and orbit determinations analysis

must be performed. To do so, I chose a launch date, that was current with the analysis

of this project. The launch from Earth to Mars would begin on June 8, 2018 with a

return date of October 8, 2018. This is the proposed launch window for this project.

The position of the planets will be taken at these dates in order to determine the

velocity vectors using Lambert’s method. The velocity vectors will dictate the ∆v

requirement for this mission as well as the proposed 4 month duration.

Lambert’s method states that the orbit of a particle can be determined through

the use of two position vectors as well as the time between the two points. The first

step is to find the magnitudes of the position vectors and define the trajectory of the

15

(\

I

−

2

2

µ∆t (15)

flight as either prograde or retrograde to find ∆θ.

r1 =

r-1 · r-1 (9)

r2 = r-2 · r-2 (10)

∆θ = arccos
r-1 · r-2 (11)
r1r2

The spatial ambiguity is determined by the the z component of the cross product of

the first position vector crossed with the second position vector. Once the value of

∆θ is found, the value for A can be determined.

A = sin(∆θ)
 r1r2

1 − cos(∆θ)

(12)

The Stumpff functions C(z) and S(z) are used to determine the value of z to be used

for orbit determination. The equations used are as follows:

y(z) = r1 + r2 + A

zS(z) 1

C(z)
(13)

√
(

y(z)
\3

µ∆t =

(
y(z)

\3

C(z)
S(z) + A

y(z) (14)

√

The idea at this point is to find the value of z by iterating through given values of z

to find the point where F (z) is about 0. Once the value of z is found, it is plugged

into equation 27 to get a value for y. This value will be used to find the Lagrange

C(z)
C(z)

F (z) = S(z) + A y(z) −

16

values in the following equations:

f = 1 −

y(z)
r1

(16)

g = A y(z)
µ (17)

ḟ =
√µ

y(z)
(zS(z) − 1) (18)

r1r2 C(z)

ġ = 1 −
1

y(z)
r2

(19)

v-1 = g (r-2 − fr-1) (20)

1
v-2 = g (ġr-2 − r-1) (21)

With this information, the ∆v requirement can be determined by comparing the orbit

velocity with the required velocity of the spacecraft[17].

2.4.1 Numerical Solution Method for F(z)

There are several methods to determine the 0 of the function of F(z). In this analysis,

the solution to F(z) will be found using the bisection method. The bisection method

is typically used for finding roots of a nonlinear function. The bisection method works

by searching for a change of sign between two points. If there is no such change in

sign, the root of the function in that interval is inconclusive and either a new interval

is tested or the search may also be concluded. The purpose of the bisection method

is to hone in on two points opposite in sign to determine the possibility of a root in

the function. The ideal case is that the function has 1 root and the sign change is

found. This would be the case in Figure 3.

17

Figure 4: The figure shows the ideal case when running the bisection method to find
a root of the function.

In the case of Figure 3, the bisection method would work to find the zero of the

function. Typically a tolerance can be set in order to get a pretty accurate value of

the root while decreasing the number of iterations the program may need to find the

root. When the initial interval is found the next interval is shrunk to begin honing

in on the root of the function.

There are cases where the bisection method has its downfall when trying to find

the root of the function. There are cases when the sign is different and there exists no

root. One example is the case of rational functions. The graph of 1/x has a change

in signs if you pick a point less than 0 and a point greater than 0, but there is no

root to that function.

The next case is when you do have a root but there is no interval in the domain

where the values of the function have different signs. If the function is of the form

(x − a))2, where a is a constant, then there the bisection method of root finding would

18

fail even though there exists a root to the function[18].

The last case to mention is when there is more than one root to the function.

This would cause the bisection method run into the issue of having no change in sign

even though there is a root within such interval. This scenario would result into the

inspection of a different interval or, possibly, ending the search for the root. The issue

is in this case is, also, determining which root to use to satisfy the function if a new

interval is examined to determine the roots in this case.

2.4.2 Propagator for Orbit Visualization

To generate visualization for the spacecraft mission, a propagator was developed to

plot the points in the trajectory. The Runge-Kutta (i.e. RK4) method was used

for the propagator. The method would be implemented to develop a function in

MATLab taking in the initial state vector as an input. The initial state vector would

be read as follows: [-x : -v] where -x =[x,y,z] and -v =[vx, vy, vz]. For the purpose of this

propagator, 6 coefficients need to be determined.

b(1) = vx (22)

b(2) = vy (23)

b(3) = vz (24)

µx
b(4) = − | -x |3

(25)
µy

b(5) = − | -x |3
(26)

µz
b(6) = − | -x |3

(27)

These values, let’s call it -b, are used to determine the value of the position and velocity

in the next time step, ∆t. The value for -b is a function of µ and the state vector

19

X- . The calculations for the next values in the position and velocity are calculated as

follows:

k1 = b(Xn, µ)∆t (28)

k2 = b(Xn

k3 = b(Xn

+
k1 , µ)∆t (29)
2

+
k2 , µ)∆t (30)
2

k4 = b(Xn + k3, µ)∆t (31)
1

Xn+1 = Xn + 6 (k1 + 2k2 + 2k3 + k4) (32)

This method runs under the assumption that there are no perturbations in the system.

The orbit is running under ideal conditions. The name of this numerical scheme

suggest a 4th order accurate numerical scheme. For the purpose of a visualization

and mission trajectory, this numerical scheme is sufficient.

2.5 Design of Experiments

To further test some of the values that were determined in the optimization process, a

design of experiments can be done. In this case, based on the variable and parameter

that were randomized, three of those value are examined and a response surface will

be generated for each scenario. The 3 values in question are the thrust, specific

impulse, and electrical efficiency. One of the 3 parameter is varied while the other

time are kept constant in order to test the sensitivity of each input parameter. One

the data is gather, a response surface is generated to aid in visualizing the sensitivity

of the system.

The data, at this point, should be fairly optimized so the response surface plots

should not need to have a wide range of values but it serves to help visualize how

2

much more optimal the system can get and the sensitivity of the system after the

optimization. This could be used later on to generate more trials and can serve to

further optimize the design configurations.

2.6 C++ Implementation of the Code

The C++ code can be generated by mimicking the MATLab script and following the

same set of instruction using the C++ syntax. Since MATLab has some of the built-in

math function already defined, these function may need to be designed in C++. Such

functions include the function to perform dot products and cross products. The arrays

and the structure for the EP systems have to be designed to develop the functions to

calculate for the required velocity using Lambert’s Problem.

The purpose of the implementation of this code is to create a comparison between

the run-time of the MATLab script and the C++ code. To provide for a fair com-

parison, the plots and the figures generated in MATLab will not be generated for the

comparison. The initial development of the C++ code will not include the graphics

created using MATLab. If time permits, the entirety of the C++ code will be written.

Otherwise, the sections of the code can be compared.

3 Results

3.1 Parametric Optimization

To arrive to the optimal electric propulsive system, the values are randomly gener-

ated through the use of a normal distribution via the Monte Carlo simulation. The

randomly generated values are used to determine the remaining parameters of the

propulsive system. The requirements mentioned before are implemented in a MAT-

21

Lab script in order to organize the EP systems. To provide for a fair amount of

options, 100000 iterations were run to find propulsion system parameters matching

the minimum scope. By doing so, there were approximately 3000 options left to

choose from once the simulation was run. From those results, the next criteria needs

to be implemented. The ∆v requirements and the delivered mass were kept constant

for the first step in this process. The following step, the orbit determination, is to

determine the most efficient ∆v trajectory for the mission. This will still need to be

determined.

The current trajectory is based on the launch windows that were provided for

NASA’s InSight Lander. There may be a better way to optimize the trajectory of the

flight. The methods of trajectory optimization still need to be examined to provide

for a more efficient spacecraft flight.

From those 100000 iterations, the EP system configurations have been narrowed

down to 5 systems. The following table gives a table of the 2 configurations found in

MATLab.

Table 2: The table shows the initials set of optimized EP configurations.

The MATLab code is set to have a maximum of 5 EP configurations so the code

eliminated values until it had 2 EP configurations left. Based on the table of values

the same Monte Carlo process can be followed to further optimize the system. This

provides for a baseline of values to use for the sensitivity analysis done in the DOE

portion.

22

3.2 Orbital Mechanics

The launch window for this flight was chosen to start on June 8, 2018 and the mission

was to last until November 15, 2018. From these values, the ∆v requirement can be

determined. The assumption was made that the time it took from June 8th to July

18 to get from Earth to Mars. The spacecraft stayed in Mars orbit from July 18 to

August 27. Then it goes from August 27 to November 5 on its return trip to Earth

from Mars. The problem was solved using Lambert’s Problem. The mapping seen in

the following figure was found using the propagator.

Figure 5: The figure shows a plot of the trajectory of the mission where the sun in
considered the origin of the plot.

Lambert’s Problem is used when the spacecraft is going from Earth orbit into

Mars orbit. This helped provide the parameters needed as input for the propagator

to provide the visual of the orbit transfer. The ∆v requirement based on this analysis

was found to be 34.64 km/s. The goal is to minimize the cost of the mission, but this

comes at the cost of increasing the ∆v requirement of the mission.

23

3.2.1 Challenges with Lambert’s Problem and Propagator

The initial issue with the propagator occurred with the bisection method when solving

for the root of the function F(z). Originally, there were issue with determining a root

of the function and MATLab script would throw and error stopping the code at

Lambert’s Problem. After inspection of the value of the function, there were complex

root to consider in this solution set. To adjust for this scenario, only the real portion

of each solution was considered. This allowed for the correct trajectory visualization.

The trajectory was compared to the existing Lambert code shared on an open

source website. Once the prior code was debugged for this issue, the two trajectories

were compared to ensure that the solutions were similar.

3.3 Electric Propulsion Parameters

The requirements are used to narrow down the possible options for an electric propul-

sion system. The systems that are left can be used to determine an ideal electric

propulsion system to launch. The system will determine the mission time needed to

achieve the goal of orbiting to Mars and back to Earth. With the script finished for

the initial step in the optimization, there are around 3000 viable configurations for

the EP system after the initial requirements were applied.

The drawback is the power requirement for a system to fulfill this mission. The

initial input power requirement distribution can be seen in Figure 5.

24

Figure 6: The figure shows the distribution in power requirements for the remaining
configuration after the initial constraints.

Based on the mission requirements, the amount of power required for this system

is in the range of tens to hundreds of kW for a delivery mass of 20 kilograms. It

has not been determined yet whether solar panels would provide enough energy for

any of the EP configurations found. For a larger payload mass, the required power

would increase. It is typical for larger spacecraft to require power on the order of

MW if they are using an EP system. Some of the EP parameters were refined due to

the occurrence of negative values. A further process of elimination will be invoked to

check for these extraneous solutions.

The initial distribution for the other parameter of interest can be found in figures

7, 8, and 9. The MATLab script is designed to check for negative values in the thrust

and in the input power, as this was a previous issue.

25

Figure 7: The figure shows the distribution in thrust for the remaining configuration
after the initial constraints.

Figure 8: The figure shows the distribution fulfilling the initial total efficiency re-
quirements.

26

Figure 9: The figure shows the distribution of initial propellant masses fulfilling the
requirements.

3.4 Design of Experiments Results

The response surfaces generated do not supply a wide range of values and this would,

in part, be a result of optimizing the system before the sensitivity check. In effect, it

seems the least variable combination of parameter was the interaction space between

the power, thrust and electrical efficiency, but this would require further analysis.

The outlier in the data must first be examined and fixed to reach this conclusion.

27

Figure 10: The figure shows the response surface of the interaction between the
electrical efficiency and the Isp and their implication on the propellant mass.

Figure 11: The figure shows the response surface of the interaction between the
electrical efficiency and the thrust and their implication on the propellant mass.

2

Figure 12: The figure shows the response surface of the interaction between the Isp
and the thrust and their implication on the propellant mass.

Figure 13: The figure shows the response surface of the interaction between the Isp
and the electrical efficiency and their implication on the input power.

29

Figure 14: The figure shows the response surface of the interaction between the thrust
and the electrical efficiency and their implication on the input power.

Figure 15: The figure shows the response surface of the interaction between the Isp
and the thrust and their implication on the input power.

The response surface found in Figure 10 makes complete sense, the higher the

3

value of the Isp and the electrical efficiency the lower the mass of the propellant

required. The value of Isp is known to be indicative of the amount of propellant

required regardless of it being a chemical, solid, or electric propulsion system. In this

case the darker the blue the more optimal the system.

Figure 11 needs further analysis. There is an outlier in the response surface that

should be determined and omitted from the response surface. The response surface

with this scheme would suggest that propellant mass will not change drastically with

the change in the propulsive thrust.

Figure 12 suggest that there is an optimal range or value for the thrust that would

result in the decrease of the propellant mass. The value is between 1.5 and 1.6 based

on the response surface. This visual would allow us to run another set of simulations

based on these values to further optimize the system.

In contrast to Figure 10, Figure 13 shows that the lower the Isp the lower the input

requirement. The higher the value of the Isp the more energy that is required for the

EP system. This would imply an need for compromise between the input power and

the propellant mass because of conflicting influence of the Isp on both of those values.

Figure 14 shows that the lower the thrust of the EP system, the lower the required

input power. Because of the direct correlation, the higher the electrical efficiency, the

lower the required input power.

Figure 15 shows that the higher the Isp, the higher the input power requirement

and the higher the electrical efficiency, the lower the input power requirement. The EP

configuration will have to balance the Isp in order to compromise a decrease in both the

input power and the propellant mass. Running more possibilities and configurations

will increase the run time for the MATLab script but testing the difference in the

result can prove useful.

The current run time for the MATLab script is nearly 110 seconds. This is due to

31

the process of the Monte Carlo Method along with the generation of 100000 different

configurations. It would be useful to compare the results to determine whether it is

efficient to generate this number of configurations. This could also help determine

whether or not the number of configurations should be increased. This test of con-

vergence is limited by the amount of processing power needed and the amount of

processing power available. The following table shows the current distribution of the

run time for the simulations done with 100000 generated configurations.

Table 3: The figure shows the major components of the run time of the Monte Carlo
simulation. The total time is roughly 110 seconds.

Based on this result, it would be interesting to attempt to examine the difference

in run-time if the simulation were done in a programming language. This resulted in

an attempt to begin writing the coded in C++ but under the time given the C++

code is incomplete. This will be turned into future work, but it would be interesting

to begin and observe some of the differences between MATLab and C++ as well as

any differences in writing the functions needed to run the simulation.

3.5 Implementation of C++ Code/MATLab Script

The development of the code is still in progress. So far, the functions for the cross

product, the dot product, and the magnitude have been developed. The random

generator has been tested so that the numbers are randomized based on the run-time

32

of the code execution. It is desired that the code develop a random number between

0 and 1 so the cstdlib library is being used to create a function to do this task.

The random generator, as mentioned earlier, takes the time-based random number

and divides it by the library defined RAND MAX. Upon testing the random number

generation, the issue of the hardware limitations became apparent. This along with

the large call stack may have caused the program to compile the code but prevent

the code from generating the required output. The program was asked to generate

300000 random numbers and this resulted in the lack of an output. Once the desired

array size of the randomly generated numbers was brought down to 200000 random

numbers, the program worked fluidly through the execution.

This would lead to the testing of the MATLab script to examine if the program

would run under the desired conditions of increasing the number of elements in the

array. Upon testing an array of this magnitude, the MATLab script began to take too

long or even cause MATLab to stop responding. To work around this there is either

a need for better hardware to generate a larger number of random EP configurations

or continue to iterate through the same number of configurations more than one

time around. Multiple iterations of the same process could cause the solution set to

converge towards a certain set of EP parameters. Generating more configurations

than 200000 would cause the program to fail to execute properly.

The call stack takes up a place in the computers memory so adding more function

calls could result in the inability of a program to complete the task. The number of

configurations will be kept under 200000 to conform to the hardware limitations at

hand.

The first challenge in creating the C++ code thus far was creating a function to

allow for an array of values as the output. There are many solutions to this problem

but both manipulate and use pointers to solve this issue. The following pseudocode

33

shows the approach taken to achieve the solution to this issue.

This would force the use of pointer to this problem in order to access the value of the

desired array.

The next step in this process would be to work on the Lambert Solver function as

well as the necessary function to complete the Lambert Solver. The initial plan was to

create a structure for the Lambert Solver, but a similar solution to the one mentioned

above can be used. A pointer to the array can be used to extract all the values needed.

The array would contain the initial velocity needed, the final velocity needed, and

the solution to the set of Stumpff functions. The current state of the C++ code can

be found in the Appendix but it has not been completed. There was not enough

time to turn the MATLab script into C++ code and that portion of the project is

considered to be possible future work. There were several issues when beginning the

C++ implementation, such as the understanding of returning the pointer to an array,

that may have come up and taken even longer for the implementation of the C++

code. As it stands, the functions work correctly and the main script was simply used

to debug or test some of the functions.

To serve as a point of comparison in C++, the ∆v requirement was considered

constant and the number of configurations developed was set to 10000. The visual

plots were also taken out of the MATLab script and this would allow for a fair com-

outputType * myFunction(inputType varName1, inputType varName2...){

static double returnVariable;

some lines of code here

...

return returnVariable;

}

34

parison between the script and the C++ code. Using the clock functions C++ and

using the ”Run and Time” debugger in MATLab, the times of the two implemen-

tations could be determined. The following figure shows the output given from the

C++ script:

Figure 16: The figure shows the output of the C++ code with the time the code took
in the process.

As can be seen in the figure, the time it took for the C++ code to run was about

35

half as much as the time it took for the MATLab script to run. MATLab took 0.346

seconds where as the C++ code took 0.156 seconds. This is minimal in this case but

this could make a bigger difference if the inclusion of visuals was also done in C++.

4 Conclusion

4.1 Discussion of Results

The input power required is in the magnitude of 100’s of kW. The value for this would

make sense given the designed mission time. There is a need for a greater ∆v in this

mission. The next step in this process would be to determine a power source capable

of providing the amount of power needed for this spacecraft. It would be interesting

to examine the number of existing viable EP systems for this mission, assuming a

power source is within the feasible spacecraft weight limits.

After an observation of some of the available power supplies that can produce

200kW of power, the size of the spacecraft desired, in this case, would not be feasible.

It would need to undergo a revision in order to make the sizing of the system more

realistic. The purpose of this study was to examine the amount of power needed to

run a mission to Mars under the assumption that the power supply was not much of

a concern. This would suggest that the amount of power needed is the largest factor

in the weight of the spacecraft. It would be useful to perform future work and run

another iteration of simulations under the assumption that the weight of the power

supply is known within a certain margin.

An initial set of design parameters has been established and a set number of

configurations has been determined based on the use of the initial requirements and

the use of statistics to narrow down the results to desirable parameters. The intent

36

writetable(struct2table(structVar),’fileName.xlsx’);

is to determine a method to optimize the orbital trajectory, as well, to decrease the

∆V requirement for this mission.

The result show that the propellant mass and the specific impulse are indirectly

proportional while the input power and the specific impulse are directly proportional.

This would direct the system to a compromise between the two values and the use of

statistics can attempt to quantify a system that is better suited for the mission. This

information is confirmed in the response surface shown earlier in this report. This

relationship can also be seen in the equations used to determine the EP parameters.

The following list shows the final list of optimal configurations. Many of the

configurations would revolve around these values because of the inverse relationship

between the power required and the specific impulse.

Table 4: The table shows a list of the configurations developed where each row
represents a configuration.

The table was generated by using the workspace and using the following line of

code in MATLab:

The major point made here is the need for higher electrical and total efficiencies for

an electric propulsion system. The values for the thrust, specific impulse and the

propellant mass revolve around a certain range of values. This would suggest that

in, most cases, there is an optimal range for the design on an EP system based on

minimizing the weight of the system as a whole. As a future work, it would be

interesting to possibly develop a cost function in order to more accurately optimize

37

the problem.

At this point in time, the number of configurations that can be generated by the

code is limited by the hardware in use. If more configurations are desired, then the

code can run multiple iterations of the Monte Carlo in order to increase the sample

space. Each time, it should only save the optimal configurations and at the end of

N configurations, compile each of the optimal configurations into one structure. This

would allow for a larger design space. As far as the simulation goes, doing further

research into increasing the processing power or improving the hardware at hand

would be useful if less iterations are desired. The goal of this project was to examine

the effects of attempting to shorten the mission time on the design parameters of an

EP system. The end goal after the completion of this project is to attempt to design

a software that could generate some possible EP configurations that may be within

reason. The current constraint to current EP technology is the size and amount of

a powering system needed for some of these systems. The MPDT would be a great

example of high power requirements. The typical power system needed for a system

such as this is typically large in size. The end goal after this project is to develop

some software or GUI that allows the user to input specific mission requirements and

the program would select some EP system options.

4.2 Future Remarks

Before continuing to optimize the trajectory, a method should be proposed to continue

cycling through the optimization. To get a better set of results, the optimal values can

be reused to run another iteration of Monte Carlo simulations. This time, the value

can be based off of one of the final designs. The comparison process can continue to

find even better options. The randomization can be done within a given percentage

3

of said values. The trouble is going to be the balance between Isp and its effect on

the input power and propellant mass.

The calculations are currently done for a specified ∆v. The value has not yet

been optimized and would be the next step in the process of designing the mission

using an EP system. A separate set of calculations will be done to determine the

most efficient orbit transfers. The ∆v requirement may decrease because it will be

assumed that the EP system was transferred to LEO via a chemical rocket. The orbit

determination remains a work in progress. This will be further explored to provide

for better optimization. The time window would ideally be planned and optimized

based on previous trajectory optimization algorithms.

In terms of the coding, it would be ideal to keep track of the run-time for the

MATLab script. If time permits, the code will be moved over to C++. This would

allow for a comparison in run-time in an attempt to optimize the code as well. Each

configuration could be defined as a class of its own in C++ so that it would store all

the necessary parameter of the system.

Based on some of the results, there may need to be a more strict criteria for the

configurations. There have been cases where the total efficiency has exceeded 100

percent. The total efficiency should also be lower than or equal to the electrical

efficiency. This method may decrease the number of steps required to narrow down

the option for EP configurations. Reducing the number of required steps may also

decrease the run-time of the MATLab script because each step would require less

data to store.

The next step would be to determine if there are any existing EP systems to satisfy

the optimal conditions. This would force us to examine all types of EP systems. The

biggest concern is the power source for the system. If there exists a power source for

this system that can provide enough energy, the size of that system would, ideally,

39

have to fall within the weight constraint enforced in the optimization. It would be

interesting to design the physical system and try to run simulations. Trying to utilize

the physics behind electromagnetism or plasma physics, though, would require more

research and time to provide for such a simulation.

The C++ code is currently under development before the trajectory optimization.

Ideally, the comparison of the run-time of the code can be performed. The current

C++ code needs more work and some of the function still need to be generated. If

there are workarounds for the call stack limitation, that would be interesting as it

would enable for a higher number of iterations to be executed in the program. This

would be done before the trajectory optimization is done.

The MATLab script could also be altered in order to run more than the 100000

configurations being generated. By dumping and filling up the data structure, the

simulations can be done for a larger amount of different electric propulsion parameters.

This would, then, allow for a better optimization of the EP system.

It would be ideal to use this information to begin designing and running simula-

tions an a system that can match the final parameters. It would be interesting to try

to run simulations either through development of the plasma physics in MATLab or

through the use of ANSYS. This would allow for a more accurate efficiency analysis

and this would allow for the observation of the exhaust flume effects on the system.

4

5 Appendix

Orbit Determination Script:

clc; close all; clear all;

%% Orbit Determination

% Assume a start date or launch from LEO to Mars on June 8, 2018 at

'→ 7:30AM UTC

% Mission should last between 120 to 150 days, this will determine

'→ the

% delta v requirements

% 1 au = 149,598,000 kilometers

%% Initial launch from Earth to Mars (all values in km or km/s)

earthInitPos=[-2.244542935534042E-1,-9.898623255903916E

'→ -1,4.560701155303384E-5]*149598000;

earthInitVel=[1.649999873155679E-2,-3.875737397365565E

'→ -3,4.005872971272586E-7]*149598000/86400;

marsInsPos=[4.000337515036055E-1,-1.366767680356064,-3.845438967555528

'→ E-2]*149598000;

marsInsVel=[1.395777605470139E-2,5.132183704069709E

'→ -3,-2.349802301687601E-4]*149598000/86400;

% deltaV1=norm(marsInsVel)-norm(earthInitVel);

%% Return trip from Mars to Earth (all value in km or km/s)

marsDepPos=[1.192813351251525,-6.969502737632471E-1,-4.387304975491351

'→ E-2]*149598000;

41

marsDepVel=[7.591205446206280E-3,1.327897806399470E

'→ -2,9.197681741173623E-5]*149598000/86400;

earthRetPos=[9.751904220415768E-1,2.205338163864697E

'→ -1,-1.485898354345033E-5]*149598000;

earthRetVel=[-4.072134829623000E-3,1.672285385762414E

'→ -2,-1.282508017134359E-6]*149598000/86400;

% deltaV2=norm(marsDepVel)-norm(earthRetVel);

%% Visual Aid for Mission

mu=1.32712440042E11;

mSun=1.989E30;

radiusSun=695508;

deltaT1 = 24*(3600*(JulianDay(2018,7,18,7.5)-JulianDay(2018,6,8,7.5)))

'→ ;

deltaT2 = 24*(3600*(JulianDay(2018,9,28,7.5)-JulianDay(2018,7,18,7.5))

'→);

[velFromEarth,velAtMars,f,yOfZ, zVal]=lambertSolver2(earthInitPos,

'→ marsInsPos,deltaT1,’prograde’, 1.989E30);

[posEarthToMars,velEarthToMars] = propagator(earthInitPos(1),

'→ earthInitPos(2),earthInitPos(3),velFromEarth(1),velFromEarth(2)

'→ ,velFromEarth(3),60,deltaT1,mSun);

[posMarsMissionOrbit,velMarsMissionOrbit] = propagator(marsInsPos(1),

'→ marsInsPos(2),marsInsPos(3),marsInsVel(1),marsInsVel(2),

'→ marsInsVel(3),60,deltaT2,mSun);

[earthOrbit,velEarthOrbit] = propagator(earthInitPos(1),earthInitPos

42

'→ (2),earthInitPos(3),earthInitVel(1),earthInitVel(2),

'→ earthInitVel(3),50,366*24*3600,mSun);

[marsOrbit,velMarsOrbit] = propagator(marsInsPos(1),marsInsPos(2),

'→ marsInsPos(3),marsInsVel(1),marsInsVel(2),marsInsVel(3)

'→ ,50,80000000,mSun);

[velFromMars,velAtEarth]=lambertSolver2(marsDepPos,earthRetPos,deltaT1

'→ ,’prograde’, 1.989E30);

[posMarsToEarth,velMarsToEarth]=propagator(marsDepPos(1),marsDepPos(2)

'→ ,marsDepPos(3),velFromMars(1),velFromMars(2),velFromMars(3),60,

'→ deltaT1,mSun);

figure(1)

hold on

[x,y,z]=sphere;

x=radiusSun*x;

y=radiusSun*y;

z=radiusSun*z;

surf(x,y,z,’DisplayName’, ’Sun’)

plot3(earthOrbit(1,:),earthOrbit(2,:),earthOrbit(3,:), ’DisplayName’,

'→ ’EarthuOrbit’)

plot3(marsOrbit(1,:),marsOrbit(2,:),marsOrbit(3,:), ’DisplayName’, ’

'→ MarsuOrbit’)

plot3(posEarthToMars(1,:),posEarthToMars(2,:),posEarthToMars(3,:), ’

'→ DisplayName’, ’TouMars’)

plot3(posMarsMissionOrbit(1,:),posMarsMissionOrbit(2,:),

'→ posMarsMissionOrbit(3,:), ’DisplayName’, ’OnuMars’)

43

plot3(posMarsToEarth(1,:),posMarsToEarth(2,:),posMarsToEarth(3,:), ’

'→ DisplayName’, ’TouEarth’)

xlabel(’Distanceu(km)’);ylabel(’Distanceu(km)’);zlabel(’Distanceu(km)’

'→);

legend

hold off;

%% Calculating Delta V

deltaV=abs(norm(earthInitVel)-norm(velFromEarth))+abs(norm(marsInsVel)

'→ -norm(velAtMars))...

+abs(norm(marsDepVel)-norm(velFromMars))+abs(norm(earthRetVel)-

'→ norm(velAtEarth));

deltaV=deltaV*1000;

n=100000; % number of iterations

%% Developing the Basic Random Generation of EP Systems

rng(’shuffle’);

electricPropulsionParameters.electricalEfficiency=zeros(n,1);

electricPropulsionParameters.isp=zeros(n,1);

electricPropulsionParameters.thrust=zeros(n,1);

electricPropulsionParameters.totalEfficiency=zeros(n,1);

electricPropulsionParameters.velocityExhaust=zeros(n,1);

electricPropulsionParameters.massFlowPropellant=zeros(n,1);

electricPropulsionParameters.powerJet=zeros(n,1);

electricPropulsionParameters.propellantMass=zeros(n,1);

44

electricPropulsionParameters.inputPower=zeros(n,1);

electricPropulsionParameters.powerDissipated=zeros(n,1);

electricPropulsionParameters.deltaV=deltaV;

electricPropulsionParameters.massDelivered=20;

for ii=1:length(electricPropulsionParameters.isp)

g=9.8;

electricPropulsionParameters.electricalEfficiency(ii)=(randn/3+1)

'→ /2;

electricPropulsionParameters.isp(ii)=100000*((randn/3+1)/2)+11000;

electricPropulsionParameters.thrust(ii)=(randn/3+1)/2+1; %Newtons

electricPropulsionParameters.totalEfficiency(ii)=(randn/3+1)/2;

electricPropulsionParameters.velocityExhaust(ii)=

'→ electricPropulsionParameters.isp(ii)*g;

electricPropulsionParameters.massFlowPropellant(ii)=

'→ electricPropulsionParameters.thrust(ii)/

'→ electricPropulsionParameters.velocityExhaust(ii);

electricPropulsionParameters.powerJet(ii)=0.5*

'→ electricPropulsionParameters.massFlowPropellant(ii)*

'→ electricPropulsionParameters.velocityExhaust(ii)^2;

electricPropulsionParameters.propellantMass(ii)=

'→ electricPropulsionParameters.massDelivered*(exp(

'→ electricPropulsionParameters.deltaV/

'→ electricPropulsionParameters.velocityExhaust(ii))-1);

electricPropulsionParameters.inputPower(ii)=

45

end

'→ electricPropulsionParameters.powerJet(ii)/

'→ electricPropulsionParameters.totalEfficiency(ii);

electricPropulsionParameters.powerDissipated(ii)=

'→ electricPropulsionParameters.inputPower(ii)*(1-

'→ electricPropulsionParameters.electricalEfficiency(ii));

counter=1;

for jj=1:length(electricPropulsionParameters.isp)

if((electricPropulsionParameters.propellantMass(jj)<=

'→ electricPropulsionParameters.massDelivered)&&(

'→ electricPropulsionParameters.electricalEfficiency(jj)>=0.75)

'→ &&(electricPropulsionParameters.totalEfficiency(jj)>=0.50)

'→ &&(electricPropulsionParameters.totalEfficiency(jj)<=

'→ electricPropulsionParameters.electricalEfficiency(jj))&&(

'→ electricPropulsionParameters.propellantMass(jj)>0))

electricPropulsionParameters2.electricalEfficiency(counter,1)=

'→ electricPropulsionParameters.electricalEfficiency(jj);

electricPropulsionParameters2.isp(counter,1)=

'→ electricPropulsionParameters.isp(jj);

electricPropulsionParameters2.thrust(counter,1)=

'→ electricPropulsionParameters.thrust(jj);

electricPropulsionParameters2.totalEfficiency(counter,1)=

'→ electricPropulsionParameters.totalEfficiency(jj);

electricPropulsionParameters2.velocityExhaust(counter,1)=

'→ electricPropulsionParameters.velocityExhaust(jj);

46

end

end

electricPropulsionParameters2.massFlowPropellant(counter,1)=

'→ electricPropulsionParameters.massFlowPropellant(jj);

electricPropulsionParameters2.powerJet(counter,1)=

'→ electricPropulsionParameters.powerJet(jj);

electricPropulsionParameters2.propellantMass(counter,1)=

'→ electricPropulsionParameters.propellantMass(jj);

electricPropulsionParameters2.inputPower(counter,1)=

'→ electricPropulsionParameters.inputPower(jj);

electricPropulsionParameters2.powerDissipated(counter,1)=

'→ electricPropulsionParameters.powerDissipated(jj);

counter=counter+1;

figure(2)

histogram(electricPropulsionParameters2.inputPower)

xlabel(’InputuPoweru(W)’)

title(’DistributionuofuInputuPower’)

figure(3)

histogram(electricPropulsionParameters2.propellantMass)

xlabel(’PropellantuMassu(kg)’)

title(’DistributionuofuPropellantuMass’)

figure(4)

histogram(electricPropulsionParameters2.totalEfficiency)

xlabel(’TotaluEfficiency’)

47

title(’DistributionuofuTotaluEfficiency’)

figure(5)

histogram(electricPropulsionParameters2.thrust)

xlabel(’Thrustu(N)’)

title(’DistributionuofuThrust’)

numberOfConfig=length(electricPropulsionParameters2.isp);

while(numberOfConfig>=10 && numberOfConfig~=0)

counter=1;

temp=electricPropulsionParameters2;

avgPropMass=mean(temp.propellantMass);

stdPropMass=std(temp.propellantMass);

avgElectricalEfficiency=mean(temp.electricalEfficiency);

stdElectricalEfficiency=std(temp.electricalEfficiency);

avgTotEfficiency=mean(temp.totalEfficiency);

stdTotEfficiency=std(temp.totalEfficiency);

electricPropulsionParameters3= struct(’isp’, [], ’thrust’, [], ’

'→ electricalEfficiency’, [], ’totalEfficiency’, [], ’

'→ velocityExhaust’, []...

, ’massFlowPropellant’, [], ’powerJet’, [], ’propellantMass’,

'→ [], ’inputPower’, [], ’powerDissipated’, []);

for kk=1:length(temp.isp)

if(temp.electricalEfficiency(kk)>0 && temp.isp(kk)>0 && temp.

'→ totalEfficiency(kk)>0 && temp.thrust(kk)>0 && temp.

'→ velocityExhaust(kk)>0 && temp.massFlowPropellant(kk)>0 &&

4

'→ temp.powerJet(kk)>0 && temp.inputPower(kk)>0 && temp.

'→ powerDissipated(kk)>0 && temp.propellantMass(kk) < (

'→ avgPropMass)&& temp.electricalEfficiency(kk) > (

'→ avgElectricalEfficiency) &&...

temp.totalEfficiency(kk) > (avgTotEfficiency))

electricPropulsionParameters3.electricalEfficiency(counter,1)=

'→ temp.electricalEfficiency(kk);

electricPropulsionParameters3.isp(counter,1)=temp.isp(kk);

electricPropulsionParameters3.thrust(counter,1)=temp.thrust(kk)

'→ ;

electricPropulsionParameters3.totalEfficiency(counter,1)=temp.

'→ totalEfficiency(kk);

electricPropulsionParameters3.velocityExhaust(counter,1)=temp.

'→ velocityExhaust(kk);

electricPropulsionParameters3.massFlowPropellant(counter,1)=

'→ temp.massFlowPropellant(kk);

electricPropulsionParameters3.powerJet(counter,1)=temp.powerJet

'→ (kk);

electricPropulsionParameters3.propellantMass(counter,1)=temp.

'→ propellantMass(kk);

electricPropulsionParameters3.inputPower(counter,1)=temp.

'→ inputPower(kk);

electricPropulsionParameters3.powerDissipated(counter,1)=temp.

'→ powerDissipated(kk);

counter=counter+1;

49

end

numberOfConfig=length(electricPropulsionParameters3.isp);

end

end

electricPropulsionParameters2=electricPropulsionParameters3;

%% The one at a time parametric study of the optimal values

% change one of the value that was being randomized by a small

'→ amount to

% determine the significance of each parameter will be observing the

% propellant mass, the input power and mass flow propellant and will

'→ be

% varying the thrust and the isp

THRUST_VAR=0.001;

INITIAL_THRUST_PERCENT=0.8;

initialThrust=mean(electricPropulsionParameters2.thrust);

initialIsp=mean(electricPropulsionParameters2.isp);

initTotEff=mean(electricPropulsionParameters2.totalEfficiency);

initEleEff=mean(electricPropulsionParameters2.electricalEfficiency);

newThrust=initialThrust*INITIAL_THRUST_PERCENT;

newIsp=initialIsp*INITIAL_THRUST_PERCENT;

newEleEff=initEleEff*INITIAL_THRUST_PERCENT;

ii=1;

50

while(newThrust <= 1.2*initialThrust)

g=9.8;

elePropThrusSens.electricalEfficiency(ii)=initEleEff;

elePropThrusSens.isp(ii)=initialIsp;

elePropThrusSens.thrust(ii)=newThrust; %Newtons

elePropThrusSens.totalEfficiency(ii)=initTotEff;

elePropThrusSens.velocityExhaust(ii)=elePropThrusSens.isp(ii)*g;

elePropThrusSens.massFlowPropellant(ii)=newThrust/elePropThrusSens

'→ .velocityExhaust(ii);

elePropThrusSens.powerJet(ii)=0.5*elePropThrusSens.

'→ massFlowPropellant(ii)*elePropThrusSens.velocityExhaust(ii)

'→ ^2;

elePropThrusSens.propellantMass(ii)=electricPropulsionParameters.

'→ massDelivered*(exp(deltaV/elePropThrusSens.velocityExhaust(

'→ ii))-1);

elePropThrusSens.inputPower(ii)=elePropThrusSens.powerJet(ii)/

'→ elePropThrusSens.totalEfficiency(ii);

elePropThrusSens.powerDissipated(ii)=elePropThrusSens.inputPower(

'→ ii)*(1-elePropThrusSens.electricalEfficiency(ii));

newThrust=newThrust+THRUST_VAR*initialThrust;

ii=ii+1;

end

figure(6)

plot(elePropThrusSens.thrust, elePropThrusSens.propellantMass)

51

ii=1;

while(newIsp <= 1.2*initialIsp)

g=9.8;

elePropIspSens.electricalEfficiency(ii)=initEleEff;

elePropIspSens.isp(ii)=newIsp;

elePropIspSens.thrust(ii)=initialThrust; %Newtons

elePropIspSens.totalEfficiency(ii)=initTotEff;

elePropIspSens.velocityExhaust(ii)=elePropIspSens.isp(ii)*g;

elePropIspSens.massFlowPropellant(ii)=elePropIspSens.thrust(ii)/

'→ elePropIspSens.velocityExhaust(ii);

elePropIspSens.powerJet(ii)=0.5*elePropIspSens.massFlowPropellant(

'→ ii)*elePropIspSens.velocityExhaust(ii)^2;

elePropIspSens.propellantMass(ii)=electricPropulsionParameters.

'→ massDelivered*(exp(deltaV/elePropIspSens.velocityExhaust(ii)

'→)-1);

elePropIspSens.inputPower(ii)=elePropIspSens.powerJet(ii)/

'→ elePropIspSens.totalEfficiency(ii);

elePropIspSens.powerDissipated(ii)=elePropIspSens.inputPower(ii)

'→ *(1-elePropIspSens.electricalEfficiency(ii));

newIsp=newIsp+THRUST_VAR*initialIsp;

ii=ii+1;

end

figure(7)

52

plot(elePropIspSens.isp, elePropIspSens.propellantMass)

ii=1;

while(newEleEff <= 1.2*initEleEff && newEleEff<=1)

g=9.8;

elePropEleEffSens.electricalEfficiency(ii)=newEleEff;

elePropEleEffSens.isp(ii)=initialIsp;

elePropEleEffSens.thrust(ii)=initialThrust; %Newtons

elePropEleEffSens.totalEfficiency(ii)=initTotEff;

elePropEleEffSens.velocityExhaust(ii)=elePropEleEffSens.isp(ii)*g;

elePropEleEffSens.massFlowPropellant(ii)=elePropEleEffSens.thrust(

'→ ii)/elePropEleEffSens.velocityExhaust(ii);

elePropEleEffSens.powerJet(ii)=0.5*elePropEleEffSens.

'→ massFlowPropellant(ii)*elePropEleEffSens.velocityExhaust(ii)

'→ ^2;

elePropEleEffSens.propellantMass(ii)=electricPropulsionParameters.

'→ massDelivered*(exp(deltaV/elePropEleEffSens.velocityExhaust(

'→ ii))-1);

elePropEleEffSens.inputPower(ii)=elePropEleEffSens.powerJet(ii)/

'→ elePropEleEffSens.totalEfficiency(ii);

elePropEleEffSens.powerDissipated(ii)=elePropEleEffSens.inputPower

'→ (ii)*(1-elePropEleEffSens.electricalEfficiency(ii));

newEleEff=newEleEff+THRUST_VAR*initEleEff;

ii=ii+1;

53

end

figure(8)

plot(elePropEleEffSens.electricalEfficiency, elePropEleEffSens.

'→ propellantMass)

ispOverall=horzcat(elePropIspSens.isp,elePropThrusSens.isp,

'→ elePropEleEffSens.isp);

thrustOverall=horzcat(elePropIspSens.thrust,elePropThrusSens.thrust,

'→ elePropEleEffSens.thrust);

inputPowerOverall=horzcat(elePropIspSens.inputPower,elePropThrusSens.

'→ inputPower,elePropEleEffSens.inputPower);

propMassOverall=horzcat(elePropIspSens.propellantMass,elePropThrusSens

'→ .propellantMass,elePropEleEffSens.propellantMass);

eleEffOverall=horzcat(elePropIspSens.electricalEfficiency,

'→ elePropThrusSens.electricalEfficiency,elePropEleEffSens.

'→ electricalEfficiency);

tri = delaunay(ispOverall, thrustOverall);

figure(9)

trisurf(tri, ispOverall, thrustOverall, propMassOverall);

xlabel(’ispu(s)’);ylabel(’thrustu(N)’); zlabel(’propellantumassu(kg)’)

'→ ;

shading interp;

figure(10)

trisurf(tri, ispOverall,thrustOverall,inputPowerOverall)

xlabel(’ispu(s)’);ylabel(’thrustu(N)’); zlabel(’inputupoweru(W)’);

54

shading interp;

quad=delaunay(ispOverall,eleEffOverall);

figure(11)

trisurf(quad,ispOverall,eleEffOverall,propMassOverall);

xlabel(’ispu(s)’);ylabel(’electricaluefficiency’); zlabel(’propellantu

'→ massu(kg)’);

shading interp;

figure(12)

trisurf(quad,ispOverall,eleEffOverall,inputPowerOverall);

xlabel(’ispu(s)’);ylabel(’electricaluefficiency’); zlabel(’inputupower

'→ u(W)’);

shading interp;

squad=delaunay(thrustOverall,eleEffOverall);

figure(13)

trisurf(squad,thrustOverall,eleEffOverall,propMassOverall);

xlabel(’thrustu(N)’);ylabel(’electricaluefficiency’); zlabel(’

'→ propellantumassu(kg)’);

shading interp;

figure(14)

trisurf(squad,thrustOverall,eleEffOverall,inputPowerOverall);

xlabel(’thrustu(N)’);ylabel(’electricaluefficiency’); zlabel(’inputu

'→ poweru(W)’);

shading interp;

55

The Lambert Solver Used in this script:

function [v1,v2,capFOfZ,yOfZ,z] = lambertSolver2(r1_vec, r2_vec,

'→ deltaT, trajectory, MassOfCentralBody)

%% Finding the magnitude of the position vectors

r1 = norm(r1_vec);

r2 = norm(r2_vec);

%% Determining the trajectory of the spacecraft and solving

'→ delta_theta

crossOfRadVectors = cross(r1_vec, r2_vec);

if strcmp(trajectory,’prograde’)

if crossOfRadVectors(3) >= 0

deltaTheta = acosd(dot(r1_vec, r2_vec)/(r1*r2));

else

deltaTheta =360 - acosd(dot(r1_vec, r2_vec)/(r1*r2));

end

elseif strcmp(trajectory, ’retrograde’)

if crossOfRadVectors(3) >= 0

deltaTheta =360 - acosd(dot(r1_vec, r2_vec)/(r1*r2));

else

deltaTheta =acosd(dot(r1_vec, r2_vec)/(r1*r2));

end

end

56

%% Finding the value of A

A = sind(deltaTheta)*sqrt(r1*r2/(1-cosd(deltaTheta)));

%% Finding a function of z to iterate to find the z-value

mu = 6.67E-20*MassOfCentralBody;

z = linspace(-100,100,100000);

numberOfIterations = 4;

for kk = 1:numberOfIterations

sOfZ = zeros(1,length(z));

cOfZ = zeros(1,length(z));

for ii=1:length(z)

if(z(ii)>0)

sOfZ(ii)=(sqrt(z(ii))-sin(sqrt(z(ii))))/(sqrt(z(ii)))

'→ ^3;

cOfZ(ii)=(1-cos(sqrt(z(ii))))/z(ii);

elseif(z(ii)<0)

sOfZ(ii) = (sinh(sqrt(-z(ii)))-sqrt(-z(ii)))/(sqrt(-z(

'→ ii)))^3;

cOfZ(ii) = (cosh(sqrt(-z(ii)))-1)/(-z(ii));

else

sOfZ(ii) = 1/6;

cOfZ(ii) = 1/2;

end

end

yOfZ = r1 + r2 + A*(z.*sOfZ-1)./(sqrt(cOfZ));

57

Julian Day Function:

capFOfZ = real(((yOfZ./cOfZ).^1.5).*sOfZ + A*sqrt(yOfZ) - sqrt(

'→ mu)*deltaT);

jj = 1;

while(capFOfZ(jj)*capFOfZ(jj+1) > 0)

jj = jj+1;

end

z = linspace(z(jj),z(jj+1),length(z));

end

%% Solving for Y and Lagrangian Coefficients

y = yOfZ(jj);

f = 1-y/r1;

g = A*sqrt(y/mu);

gDot = 1-y/r2;

%% Finding velocity vectors

v1 = 1/g*(r2_vec - f*r1_vec);

v2 = 1/g*(gDot*r2_vec-r1_vec);

function J = JulianDay(year, month, day, UT)

J_0 = 367*year-floor(7*(year + floor((month+9)/12))/4) + floor

'→ (275*month/9)...

+day + 1721013.5;

J = J_0 + UT/24.0;

58

Propagator:

function [pos,vel] = propagator(rx, ry, rz, vx, vy, vz, delT, totT, M)

mu = 6.67E-20*M;

r = [rx;ry;rz];

v = [vx;vy;vz];

h = delT;

N = totT/delT + 1;

temppos = zeros(3, N+1);

tempvel = zeros(3, N+1);

temppos(:,1) = r;

tempvel(:, 1) = v;

% time = linspace(0, totT, N);

w = [rx; ry; rz; vx; vy; vz];

for ii = 1:N

k1 = h*rkf45op(w, mu);

k2 = h*rkf45op(w+k1/2, mu);

k3 = h*rkf45op(w+k2/2, mu);

k4 = h*rkf45op(w+k3,mu);

w = w+(1/6)*(k1+2*k2+2*k3+k4);

temppos(:, ii+1) = w(1:3,1);

tempvel(:, ii+1) = w(4:6,1);

end

pos = temppos;

59

RK4 Scheme:

Stumpff Function C:

Stumpff Function S:

vel = tempvel;

end

function [f] = rkf45op(x, mu)

f = zeros(6,1);

f(1) = x(4);

f(2) = x(5);

f(3) = x(6);

f(4) = -mu*x(1)/(norm(x(1:3)))^3;

f(5) = -mu*x(2)/(norm(x(1:3)))^3;

f(6) = -mu*x(3)/(norm(x(1:3)))^3;

end

function c = stumpC(z)

if z > 0

c = (1 - cos(sqrt(z)))/z;

elseif z < 0

c = (cosh(sqrt(-z)) - 1)/(-z);

else

c = 1/2;

end

6

Current C++ code:

function s = stumpS(z)

if z > 0

s = (sqrt(z) - sin(sqrt(z)))/(sqrt(z))^3;

elseif z < 0

s = (sinh(sqrt(-z)) - sqrt(-z))/(sqrt(-z))^3;

else

s = 1/6;

end

#include <iostream>

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <string>

#include <sstream>

#include <time.h>

using namespace std;

struct electricPropulsion {

double electricEff;

double isp;

double thrust;

double totalEff;

double velEx;

61

double massFlowProp;

double powerJet;

double propellantMass;

double inputPower;

double powerDiss;

};

double randNorm(){

double randVal;

randVal=rand();

randVal=randVal/RAND_MAX;

return randVal;

}

double julianDay(int year, int month, int day, double univTime){

double julNot = 367*year-floor(7*(year + floor((month+9)/12))/4) +

'→ floor(275*month/9)+day + 1721013.5;

double jul = julNot + univTime/24.0;

return jul;

}

double magnitude(double vector[3]){

double c=sqrt(pow(vector[0],2) + pow(vector[1],2) + pow(vector[2],2)

'→);

return c;

62

}

double dot(double vectorOne[3],double vectorTwo[3]){

double c = vectorOne[0]*vectorTwo[0] + vectorOne[1]*vectorTwo[1] +

'→ vectorOne[2]*vectorTwo[2];

return c;

}

double * cross(double vectorOne[3], double vectorTwo[3]){

static double newVec[3];

newVec[0]=vectorOne[1]*vectorTwo[2]-vectorOne[2]*vectorTwo[1];

newVec[1]=vectorOne[2]*vectorTwo[0]-vectorOne[0]*vectorTwo[2];

newVec[2]=vectorOne[0]*vectorTwo[1]-vectorOne[1]*vectorTwo[0];

return newVec;

}

// struct lambPar {

// double velocityOne [3];

// double velocityTwo [3];

// double zValue;

// }

//

// lambPar lambertSolver(double firstRVector [3], double

'→ secondRVector [3], double deltaT, string trajectory, double

'→ massOfCenBody){

63

//

// }

int main()

{

/*This portion of the project will begin to initialize the beginning

'→ of the

initial position from the start of the Earth trajectory, then the

'→ Mars entry

position, Mars departure position, and Earth arrival position*/

// Earth Initial Positon to Mars Entry Position

double earthInitPos[3]={149598000*-2.244542935534042e

'→ -1,149598000*-9.898623255903916e-1,149598000*4.560701155303384

'→ e-5};

double earthInitVel[3]={149598000/86400*1.649999873155679e

'→ -2,149598000/86400*-3.875737397365565e

'→ -3,149598000/86400*4.005872971272586e-7};

double marsInsPos[3]={149598000*4.000337515036055e

'→ -1,149598000*-1.366767680356064,149598000*-3.845438967555528e

'→ -2};

double marsInsVel[3]={149598000/86400*1.395777605470139e

'→ -2,149598000/86400*5.132183704069709e

'→ -3,149598000/86400*-2.349802301687601e-4};

// Mars Departure Position to Earth Orbit Reentry

double marsDepPos

64

'→ [3]={149598000*1.192813351251525,149598000*-6.969502737632471E

'→ -1,149598000*-4.387304975491351E-2};

double marsDepVel[3]={149598000/86400*7.591205446206280E

'→ -3,149598000/86400*1.327897806399470E

'→ -2,149598000/86400*9.197681741173623E-5};

double earthRetPos[3]={149598000*9.751904220415768E

'→ -1,149598000*2.205338163864697E-1,149598000*-1.485898354345033

'→ E-5};

double earthRetVel[3]={149598000/86400*-4.072134829623000E

'→ -3,149598000/86400*1.672285385762414E

'→ -2,149598000/86400*-1.282508017134359E-6};

//Constants

double mu=1.32712440042e+11;

double mSun=1.989e+30;

double radiusSun=695508.0;

double deltaT1 = 24*(3600*(julianDay(2018,7,18,7.5)-julianDay

'→ (2018,6,8,7.5)));

double deltaT2 = 24*(3600*(julianDay(2018,9,28,7.5)-julianDay

'→ (2018,7,18,7.5)));

clock_t t;

t = clock();

double deltaV = 3.464e+4;

double massDelivered = 20;

65

srand((unsigned)time(NULL));

double g = 9.8;

int numIter=10000;

electricPropulsion initialRandom[numIter];

double foo [numIter];

int counter = 0;

int indexTrack [numIter];

for(int i=0; i<numIter;i++)

{

initialRandom[i].electricEff = randNorm();

initialRandom[i].isp = 100000*randNorm()+11000;

initialRandom[i].thrust = 2*randNorm();

initialRandom[i].totalEff = randNorm();

initialRandom[i].velEx = initialRandom[i].isp*g;

initialRandom[i].massFlowProp = initialRandom[i].thrust/

'→ initialRandom[i].velEx;

initialRandom[i].powerJet = 0.5*initialRandom[i].massFlowProp*pow(

'→ initialRandom[i].velEx,2);

initialRandom[i].propellantMass = massDelivered*(exp(deltaV/

'→ initialRandom[i].velEx)-1);

initialRandom[i].inputPower = initialRandom[i].powerJet/

'→ initialRandom[i].totalEff;

initialRandom[i].powerDiss = initialRandom[i].inputPower*(1-

'→ initialRandom[i].electricEff);

if((initialRandom[i].propellantMass<=massDelivered)&&(

66

'→ initialRandom[i].electricEff>=0.75)&&(initialRandom[i].

'→ totalEff>=0.50)&&(initialRandom[i].totalEff<=initialRandom[i

'→].electricEff)&&(initialRandom[i].propellantMass>0)){

indexTrack[counter] = i;

counter++;

}

}

int indexTrackSec [counter];

electricPropulsion newEleSys[counter];

for(int i = 0; i < counter; i++){

newEleSys[i]=initialRandom[indexTrack[i]];

}

electricPropulsion finalSystem[10];

while(counter>10){

electricPropulsion tempSys[counter];

int indexTrackTemp[counter];

int tempCount = 0;

double sumElEf = 0.0;

double sumIsp = 0.0;

double sumThrust = 0.0;

double sumTotEf = 0.0;

double sumVelEx = 0.0;

double sumMassFlRt = 0.0;

double sumPowJet = 0.0;

double sumPropMass = 0.0;

67

double sumInPow = 0.0;

double sumPowDiss = 0.0;

for(int i = 0; i < counter; i++){

newEleSys[i]=initialRandom[indexTrack[i]];

sumElEf += newEleSys[i].electricEff;

sumIsp += newEleSys[i].isp;

sumThrust += newEleSys[i].thrust;

sumTotEf += newEleSys[i].totalEff;

sumVelEx += newEleSys[i].velEx;

sumMassFlRt += newEleSys[i].massFlowProp;

sumPowJet += newEleSys[i].powerJet;

sumPropMass += newEleSys[i].propellantMass;

sumInPow += newEleSys[i].inputPower;

sumPowDiss += newEleSys[i].powerDiss;

}

double avgElEf = sumElEf/counter;

double avgIsp = sumIsp/counter;

double avgThrust = sumThrust/counter;

double avgTotEf = sumTotEf/counter;

double avgVelEx = sumVelEx/counter;

double avgMassFlRt = sumMassFlRt/counter;

double avgPowJet = sumPowJet/counter;

double avgPropMass = sumPropMass/counter;

double avgInPow = sumInPow/counter;

double avgPowDiss = sumPowDiss/counter;

6

for(int i=0; i<counter; i++){

if(newEleSys[i].propellantMass < (avgPropMass)&& newEleSys[i].

'→ electricEff > (avgElEf) &&newEleSys[i].totalEff > (

'→ avgTotEf)){

newEleSys[tempCount] = newEleSys[i];

tempCount++;

}

else{

newEleSys[i]={};

}

}

counter = tempCount;

}

for(int i = 0; i<counter; i++){

finalSystem[i] = newEleSys[i];

cout<<"Theuparametersuforuconfigurationu" << i+1 << "uare:" <<

'→ endl;

cout<<"ElectricaluEfficiencyuisu" << finalSystem[i].electricEff <<

'→ "." << endl;

cout<<"SpecificuImpulseuisu" << finalSystem[i].isp << "s." << endl

'→ ;

cout<<"Thrustuisu" << finalSystem[i].thrust << "N." << endl;

cout<<"TotaluEfficiencyuisu" << finalSystem[i].totalEff << "." <<

'→ endl;

cout<<"ExhaustuVelocityuisu" << finalSystem[i].velEx << "." <<

69

'→ endl;

cout<<"PropellantuMassuFlowuRateuisu" << finalSystem[i].

'→ massFlowProp << "kg/s." << endl;

cout<<"JetuPoweruisu" << finalSystem[i].powerJet << "W." << endl;

cout<<"TotaluMassuisu" << finalSystem[i].propellantMass + 20 << "

'→ kg." << endl;

cout<<"InputuPoweruisu" << finalSystem[i].inputPower << "W." <<

'→ endl;

cout<<"DissipateduPoweruisu" << finalSystem[i].powerDiss << "W."

'→ << endl;

}

cout<<counter<<endl;

t=clock() - t;

t=double(t);

printf ("Thisuprocessutooku%duclicksu(%fuseconds).\n",t,((float)t)/

'→ CLOCKS_PER_SEC);

// for(int i=0; i<numIter;i++){

// sumIsp += initialRandom[i].isp;

// }

// double ispAvg = sumIsp/numIter;

// cout<<ispAvg<<endl;

return 0;

}

// To run the code in cmd prompt follow these steps

// 1) Type in the following command g++ helloworld.cpp -o helloworld

70

'→ .exe

// 2) Then type in the .exe file you have Created

71

References

[1] Choueiri, E.Y., “A Critical History of Electric Propulsion: The First 50 Years

(1906-1956),”Journal of Propulsion and Power, Vol. 20, No.2, 2004, pp. 193-203.

[2] Goebel, D.M., & Katz, I (2008). Fundamentals of Electric Propulsion: Ion and

Hall Thrusters.California: Jet Propulsion Laboratory, California Institute of

Technology.

[3] Mikellides, G.P, & Turchi, P.J., & Mikellides, “I.G. Design of a Fusion Propul-

sion System-Part 1: Gigawatt-Level Magnetoplasmadynamic Source.” Journal

of Propulsion and Power Vol 18, Issue No. 1, January-February 2002.

[4] Jordan, I. J. (2000). Spacecraft? Electric Propulsion: Which One for my Space-

craft? Baltimore: JHU, Whiting School of Engineering.

[5] Quarta, A.A., and Mengali, G., “Minimum-time space missions with solar electric

propulsion,” Aerospace Science and Technology, Vol. 15, No. 5, 2011, pp. 381-392.

[6] Kluever, C.A., “Efficient Computation of Optimal Interplanetary Trajectories

Using Solar Electric Propulsion,” Journal of Guidance, Control, and Dynamics,

Vol. 38, No. 5, 2015, pp. 821-30.

[7] Genta, G., and Maffione, P.F., “Optimal low-thrust trajectories for nuclear and

solar electric propulsion,” Acta Astronautica, Vol. 118, 2016, pp. 251-261.

[8] Yam, C.H., McConaghy, T.T., Chen, K.J., “Preliminary design of nuclear elec-

tric propulsion missions to the outer planets,” Collection of Technical Papers -

AIAA/AAS Astrodynamics Specialist Conference, August 16, 2004 - August 19,

Vol. 3, American Institute of Aeronautics and Astronautics Inc, Providence, RI,

United states, 2004, pp. 1542-1561.

72

[9] Sutton, G. P., & Biblarz, O. (2001). Rocket Propulsion Elements. In Rocket

Propulsion Elements (pp. 660-709). New York: John Wiley & Sons, Inc.

[10] Patel, P., Scheeres, D., and Gallimore, A., “Maximizing payload mass fractions of

spacecraft for interplanetary electric propulsion missions,” Journal of Spacecraft

and Rockets, Vol. 43, No. 4, 2006, pp. 822-827.

[11] Li, M., Liu, H., Ning, Z., “Design optimization of a magnetoplasmadynamic

thruster by numerical methods,” High Temperature Material Processes, Vol. 18,

No. 1-2, 2014, pp. 83-90.

[12] Petukhov, V.G., and Wook, W.S., “Joint Optimization of the Trajectory and

the Main Parameters of an Electric Propulsion System,” 6th Russian-German

Conference on Electric Propulsion and Their Application, RGCEP 2016, August

28, 2016 - September 2, Vol. 185, Elsevier Ltd, Samara, Russia, 2017, pp. 312-

318.

[13] Walter, J.C., Barkema, G.T., “An introduction to Monte Carlo methods”, Phys-

ica A: Statistical Mechanics and its Applications, Volume 418, 2015, Pages 78-87.

[14] “Examining the Stack, Internet Article TIME International Available: http:

//kirste.userpage.fu-berlin.de/chemnet/use/info/gdb/gdb_7.html.

[15] Sims, J.A., Finlayson, P.A., Rinderle, E.A., “Implementation of a low-thrust

trajectory optimization algorithm for preliminary design,” AIAA/AAS Astrody-

namics Specialist Conference, 2006, August 21, 2006 - August 24, Vol. 3, Ameri-

can Institute of Aeronautics and Astronautics Inc, Keystone, CO, United states,

2006, pp. 1872-1881.

http://kirste.userpage.fu-berlin.de/chemnet/use/info/gdb/gdb_7.html
http://kirste.userpage.fu-berlin.de/chemnet/use/info/gdb/gdb_7.html

73

[16] Okutsu, M., Landau, D.F., Rogers, B.A., “Low-thrust roundtrip trajectories to

Mars with one-synodic-period repeat time,” Acta Astronautica, Vol. 110, 2015,

pp. 191-205.

[17] Curtis, H., Orbital Mechanics: For Engineering Students, Butterworth-

Heinemann, 2015.

[18] Burden, R. L., and Faires, J. D., Numerical analysis, Boston: Prindle, Weber &

Schmidt, 1986.

	1 Introduction
	1.1 Motivation
	1.2 Literature Review
	1.2.1 Monte Carlo Method
	1.2.2 Computational Limits and the Call Stack

	1.3 Project Proposal
	1.4 Methodology

	2 Approach
	2.1 Electric Propulsion System
	2.2 Requirements
	2.3 Monte Carlo Method
	2.4 Orbit Determination and ∆v Requirement
	2.4.1 Numerical Solution Method for F(z)
	2.4.2 Propagator for Orbit Visualization

	2.5 Design of Experiments
	2.6 C++ Implementation of the Code

	3 Results
	3.1 Parametric Optimization
	3.2 Orbital Mechanics
	3.2.1 Challenges with Lambert’s Problem and Propagator

	3.3 Electric Propulsion Parameters
	3.4 Design of Experiments Results
	3.5 Implementation of C++ Code/MATLab Script

	4 Conclusion
	4.1 Discussion of Results
	4.2 Future Remarks

	5 Appendix
	References

