
Numerical Methods and Tolerance
Analysis for Orbit Propagation

a project presented to

The Faculty of the Department of Aerospace Engineering
San José State University

in partial fulfillment of the requirements for the degree
Master of Science in Aerospace Engineering

by

Angel Rocha

May 2018

approved by

Dr. Jeanine Hunter
Faculty Advisor

1

Numerical Methods and Tolerance Analysis for Orbit

Propagation

Angel Rocha1

San Jose State University, San Jose, CA, 95110, US

Abstract

This report intends to recommend preliminary numerical integrator settings for low to
medium fidelity orbit determination models based on orbital elements. Solutions from
numerical simulations of propagated satellite orbit trajectory states are first used to quantify
the relationship between computational cost of each algorithm and accuracy of each solution.
This relationship is generally dependent on integrator characteristics and tolerance settings.
Once the relationship between computation cost and accuracy is quantified, orbital element
dependencies of each numerical integrator are explored. These dependencies are found to be
primarily limited to some combination of eccentricity, semi-major axis, and orbital period or
angular velocity. The combined analysis of integrators as well as orbital elements enables a
refinement of algorithm recommendations for various types of orbit determination problems.

I. Nomenclature

𝑎𝑎 = semi-major axis
𝐶𝐶 = individual state
𝛿𝛿 = error tolerance
e = eccentricity
𝜖𝜖 = error
h = step size
i = inclination
𝑘𝑘 = increment slope
𝑛𝑛 = step number
𝜔𝜔 = argument of periapsis
Ω = right ascension
𝑞𝑞 = order of integrator
𝑝𝑝 = undetermined step
𝜙𝜙 = incrementation function
r = radius
𝑟𝑟𝑟 = velocity
𝑟𝑟𝑟 = acceleration
𝑎𝑎/ = acceleration due to perturbation force
𝑠𝑠 = number of stages
𝜏𝜏 = orbital period
∗ = predicted state
𝜃𝜃 = true anomaly
𝜇𝜇 = gravitational parameter
𝚤𝚤,̂ 𝚥𝚥,̂ 𝑘𝑘9 = Cartesian unit vectors
𝑋𝑋, 𝑌𝑌, 𝑍𝑍 = Cartesian position vectors
𝑉𝑉𝑋𝑋, 𝑉𝑉𝑌𝑌, 𝑉𝑉𝑍𝑍 = Cartesian velocity vectors

2

II. Introduction

Propagation in astrodynamics is concerned with the determination of trajectory states over time. These states may
be propagated by use of numerical integrators which approximate a solution to a nonlinear ODE initial value problem
of the general form

𝑦𝑦@(𝑥𝑥) = 𝑓𝑓F𝑥𝑥, 𝑦𝑦(𝑥𝑥)G, 𝑦𝑦(𝑥𝑥H) = 𝑦𝑦H (1)

In this case of orbit propagation, the specific ODE to consider is Cowell’s formulation of the Kepler problem
which captures two body dynamics in Eq. (2).

𝒓𝒓𝑟 = −𝜇𝜇
𝒓𝒓

𝑟𝑟K

(2)

Due to the vectorized formulation of Keplerian dynamics, perturbing accelerations may easily be included to
capture the influence of additional bodies, solar radiation, drag, etc. By introducing additional perturbation forces to
the simplified two body formulation, the nonlinear ODE of interest may be defined with initial time, position, and
velocity state conditions by Vallado [1] as

ODE: 𝒓𝒓𝑟 = −𝜇𝜇

𝒓𝒓
+ 𝒂𝒂 (𝒓𝒓, 𝒓𝒓𝑟 , 𝑡𝑡)

(3)

𝑟𝑟K 𝒑𝒑

IC: 𝑡𝑡H, 𝒓𝒓𝟎𝟎, 𝒓𝒓𝑟 H

This formulation suggests that the trajectory path then depends on the combined planetary and perturbation forces
which act on the system over time. By solving the associated differential equations with numerical solvers, it is
possible to propagate or predict trajectories over time. The accuracy of the solution then depends on a combination of
factors including model fidelity, quality of numerical integrator, and orbital elements.

III. Background

A. Orbit Types
The orbits to be propagated for this analysis may be considered to belong to one of five broad categories. Four of

these are Earth orbiting (EO) while the fifth is a general case for interplanetary missions which can be called Transfer
orbits (TO). Each Earth orbit has a unique set of use cases and can be identified in terms of the orbital elements which
define them. Three dimensional representations of each orbit are presented as results in Fig. 3 through Fig. 8 for
reference. These five orbit categories include:

• GEO: Geostationary Orbit
GEO is defined by a constant altitude of approximately 35,786km. This ensures that the orbit matches Earth’s
rotation frequency and appears stationary from a perspective on the surface of Earth.

• HEO: Highly Eccentric Orbit
HEO does not specifically depend on orbit altitude and is instead defined by the Keplerian element
eccentricity which describes the elliptical shape of an orbit. Orbits with eccentricities in the range 1 > 𝑒𝑒 ≥
0.5 are typically categorized as HEO.

• LEO: Low Earth Orbit
LEO is defined by a range of orbital altitudes that place a satellite relatively close to the Earth’s surface. LEO
satellites typically orbit at altitudes between 200km and 2,000km. The minimal altitude gives these satellites
very short orbital periods (𝜏𝜏) between 84 and 127 minutes.

• MEO: Medium Earth Orbit
MEO, otherwise referred to as Intermediate Circular Orbit (ICO) encompasses the region of near circular
orbital space between LEO and GEO. That is above 2000km and below 35,786km. Many HEO satellites
including GOES-14 are placed into semi-synchronous orbits with altitudes of approximately 20,200km. This
causes the satellite to orbit with a period of about 12 hours.

• TO: Transfer Orbit (Mars Transfer Orbit, MTO & Venus Transfer Orbit, VTO)

3

In order to simplify mathematical modeling and analyze the relationship between orbital elements and
computational cost, TO is considered as a fifth category of orbits. This is accomplished by shifting the inertial
frame of a propagated orbit from Earth-centered inertial (ECI) to Sun-centered inertial (SCI). Consequently,
TOs are not strictly defined by Keplerian elements but are instead defined by the implementation of SCI as
the reference frame of choice for propagation. Although EO and TO are defined relative to inertial reference
frame, they tend to have dramatically different semi major axes and orbital periods. While EO have relatively
small semi major axes and short orbital periods, TO have very large semi major axes and long orbital periods
by comparison.

B. Orbital Elements

The set of orbital elements considered for analysis include the classical Keplerian elements as well as orbital period
(𝜏𝜏). Orbital period is included as it provides a method to relate angular velocity (𝜃𝜃𝑟) of a satellite orbit to the
performance results of various integrators. The Keplerian system is defined by six orbital elements. These elements
may be categorized in one of three ways. They describe either the shape and size of the orbit, the orientation of the
reference frame, or the position of the particle on the defined orbit. The combined Keplerian elements define an orbit
as presented in Fig. 1.

• Shape and Size of Orbit (𝒆𝒆, 𝒂𝒂)
The two elements which define the shape and size of an
orbit are the eccentricity (𝑒𝑒) and semi-major axis (𝑎𝑎). The
eccentricity specifies the elliptical shape of the orbit in the
range 0 < 𝑒𝑒 < 1. A value of 0 specifies a perfectly circular
orbit while values of 𝑒𝑒 ≥ 1 relate to hyperbolic projectiles.
Semi-major axis specifies the size of the orbit. It is a
measure of one-half of the total major axis length from the
center of the ellipse through the focus and to one end.

• Orientation of Orbit (𝛀𝛀, 𝒊𝒊, 𝝎𝝎)
The three elements which define the orientation of an orbit
are the right ascension (Ω), inclination (𝑖𝑖), and argument of
periapsis (𝜔𝜔). Right ascension is an angular measure of the
orientation of the orbit from the Line of Nodes which is the
linear intersection between the orbit plane and reference
(equatorial) plane. Inclination is an angular measure of the
tilt of an orbit relative to the reference plane used to define

Fig. 1 Planetary Orbit in the heliocentric
ecliptic frame [2]

the Line of Nodes. Argument of periapsis, the final orbit orienting element, spins the obit it the plane defined
by its right ascension and inclination. It is an angular measure of periapsis from the ascending node.

• Position Along Orbit (𝜽𝜽)
The element which defines the position of a particle along its orbit is true anomaly (𝜃𝜃). It is an angular
measure between the direction of periapsis and the position of the body with respect to the primary focus of
the ellipse.

C. Physical Model & Perturbations

The vector representation of Cowell’s formulation of Kepler’s problem with perturbing accelerations in Eq. (3) is
ideal for modeling in Cartesian reference frames. The advantage of the vector representation is the ability to easily
add any number of relevant perturbation forces and n-body interactions. Depending on the level of accuracy required
for a simulation, the model fidelity may be scaled accordingly with the addition or omission of perturbing forces. In
EO for example it is crucial to include 𝐽𝐽` since the magnitude of the perturbing force due to the oblateness of Earth is
large. For TO systems in the SCI frame, however, perturbation due to oblateness is relatively negligible. For TO
systems it would be more important to include perturbations due to solar gravity and solar radiation depending on the
specific mission. For reference, estimated magnitudes of various perturbing accelerations are provided by Curtis [2]

𝑎𝑎/ abcdefg hijbdakagg ≈ 10m`𝑎𝑎H
𝑎𝑎/ jnkbc ocbpqdr ≈ 𝑎𝑎/

ghjbc ocbpqdr ≈ 10ms𝑎𝑎H (4)
𝑎𝑎/

ghjbc cbtqbdqhk
≈ 10mu𝑎𝑎H

4

From Eq. (4) Earth’s oblateness (𝐽𝐽`) perturbation is identified as having the greatest magnitude. It is strong
enough to produce phenomena including precession of the right ascension of the ascending node and apsidal nodal
regression [1]. For this reason, it is critical to model 𝐽𝐽` dynamics for any satellite orbit propagation in EO. A
vectorized mathematical model of 𝐽𝐽` is given by [2] as

3 𝐽𝐽`𝜇𝜇𝑅𝑅` 𝑥𝑥

𝑧𝑧`

𝑦𝑦 𝑧𝑧`

𝑧𝑧 𝑧𝑧`
É

𝒂𝒂𝒑𝒑𝑱𝑱𝟐𝟐
= 2 𝑟𝑟{ [𝑟𝑟 }5 𝑟𝑟` − 1∏ Ä + 𝑟𝑟 }3 𝑟𝑟` − 1∏ Å + 𝑟𝑟 }5 𝑟𝑟` − 3∏ 𝒌𝒌

𝐽𝐽` = 0.00108263
(5)

Based on the summary of magnitudes of perturbing forces for EO satellites in Eq. (4), a second perturbing
acceleration to consider is lunar gravity. The associated dynamics of both 𝐽𝐽` and lunar gravity perturbations are
introduced to Eq. (4) which produces an updated formulation of the ODE in Eq. (3) as

𝒓𝒓𝑟 = −𝜇𝜇

𝒓𝒓
+ 𝜇𝜇

𝒓𝒓
+𝒂𝒂

(𝒓𝒓, 𝒓𝒓𝑟 , 𝑡𝑡)

abcde 𝑟𝑟K Ühhk 𝑟𝑟K 𝒑𝒑𝑱𝑱𝟐𝟐 (6)

The results presented in this report for EO cases primarily depend on the dynamics of Eq. (6). Some cases of EO
and all cases of TO are instead modeled with simplified two body dynamics of Eq. (2).

D. Numeric Integrator Characteristics

• Explicit vs. Implicit
Traditional propagation algorithms estimate states by use of explicit numerical methods. The simple

mathematics of explicit numerical methods is presented in Eq. (7). When using an explicit method, the IVP is
solved independently at each step by calculating the subsequent state from an existing state. Examples of
explicit integrators include the Runge-Kutta (RK) and Dormand-Prince (DP) variations used in this report.

𝑦𝑦káà = 𝑦𝑦k + ℎ𝑓𝑓(𝑡𝑡k, 𝑦𝑦k) (7)

Alternatively, implicit methods solve an IVP though a prediction and correction of future states based on
both existing and future states. Consequently, implicit methods rely on determination of the state 𝑥𝑥káà as a
function of itself as presented in Eq. 8. Due to the nonlinearity of system dynamics, implicit methods cannot
be solved analytically. Instead, they must use Newtonian iterations to determine a solution for 𝑥𝑥káà. The
advantage of implicit numeric integration is improved system stability. Stability ensures that truncation errors
decay as a propagation moves from one step to the next. This tends to produce superior convergence
characteristics but does not necessarily improve solution accuracy. An example of implicit integrators is the
Adams-Bashforth-Moulton (ABM) method used in this report.

𝑦𝑦káà = 𝑦𝑦k + ℎ𝑓𝑓(𝑡𝑡káà, 𝑦𝑦káà) (8)

• Single-step vs. Multi-step
Single-step methods determine subsequent steps solely from calculated information of the most recent

previous state. The RK and DP methods considered in this analysis are single step integrators.
Multi-step methods determine subsequent steps from information of several previously calculated steps.

The use of additional existing steps allows for multi-step methods to achieve higher orders of accuracy
compared to single-step methods. This is done by determining and correcting the local truncation error at each
step. Because multi-step methods continually update future states, it is possible to determine if a step size is
small enough to satisfy tolerance conditions for 𝑦𝑦káà and simultaneously determine if a step size is large
enough to avoid erroneous calculations. This feature optimizes calculations in a way that minimizes
computational cost associated with solution determination.

The ABM integrator considered in this analysis is an example of a multi-step method. Specifically, it uses
𝑦𝑦kmK, 𝑦𝑦km`, 𝑦𝑦kmà, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦k to generate a solution for 𝑦𝑦káà. A caveat to this style of multi-step integration is that
the four states 𝑦𝑦kmK, 𝑦𝑦km`, 𝑦𝑦kmà, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦k must be determined in advance. Therefore, ABM must be initialized
with an alternative single-step integrator such as RK or DP.

5

• Fixed-step vs. Variable-step
Classical numerical integrators including the RK4 method rely on fixed-step integration. With fixed-step

integrators, the total propagation distance is divided into equal time or distance spaced steps. This simplifies
mathematics while sacrificing computational cost and efficiency performance characteristics.

Unlike the constant step size formulation of the RK4 method, modern numerical integrators use prediction-
correction mathematics to dynamically adjust step size. Variable-step size algorithms incorporate tolerance
criteria to determine the accuracy at each step by considering two methods at each step. This allows for step-
size adjustments to be made at each step. RKF45 for example compares a fourth order solution and a fifth
order solution in order to calculate local error.

• RK, DP, ABM

Fixed-step
Variable-step

ℎ: 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡
ℎ: 𝑛𝑛𝑐𝑐𝑡𝑡 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡

(9)

The Runge-Kutta (RK) family of numeric integrators originate from RK𝑝𝑝 methods where 𝑝𝑝 represents
order of the method. These are explicit single step methods meaning the states 𝑦𝑦qáà at time 𝑡𝑡q + ℎ, are
obtained from the equation

𝑦𝑦káà = 𝑦𝑦k + ℎ 𝜙𝜙(𝑡𝑡k, 𝑦𝑦k, ℎ) (10)

where 𝜙𝜙 represents an incrementation function that averages multiple derivative evaluations over the time
interval [𝑡𝑡q: 𝑡𝑡q + ℎ]. The average is obtained through evaluation of the derivative of the ODE of interest at
some number of stages 𝑠𝑠 within the specified time interval. For the fourth order RK4 method with 𝑠𝑠 = 4
stages, Eq. (10) becomes

𝑦𝑦káà

= 𝑦𝑦k + ℎ

(𝑘𝑘à + 2𝑘𝑘` + 2𝑘𝑘K + 𝑘𝑘{)
6

(11)

with 𝜙𝜙 being substituted for an expression of the weighted average of the four stages evaluated. In this
formulation 𝑘𝑘g represents the 𝑠𝑠de increment based on the slope (derivative) at a particular subinterval of the
time interval being considered. Fig. 2 provides a visual representation of the four slopes evaluated for an RK4
method. The process of evaluating the value of each 𝑘𝑘g is to first evaluate 𝑘𝑘à, the slope at the originating point
in time. This slope is then traced to the midpoint of the time interval where a new slope 𝑘𝑘` is evaluated. From
the originating point in time 𝑘𝑘` is traced to the
midpoint of the time interval where a third slope
𝑘𝑘K is evaluated. This third slope is traced from
the originating point in time to the final point in
time where a final slope 𝑘𝑘{ is evaluated. The final
slope is then traced from the originating point in
time to the final point in time where a new
solution is obtained by evaluating Eq. (11) with

𝑘𝑘g. A more detailed derivation of the RK4
method is provided by [2], however the family of
RK methods may be represented in similar ways.
Unlike the constant step size nature of the RK4

method, modern adaptions of RK produce
variable step-size capabilities by considering two

methods at each step. Adaptive step sizes are
estimated based on the local truncation error at
each step by comparing a 𝑞𝑞de order solution with
a (𝑞𝑞 − 1)de order solution. In the explicit Runge-
Kutta-Fehlberg (RKF) family of algorithms for

example, the RKF4(5) method tests a fourth
order solution against a fifth order error estimate

Fig. 2 RK4 Interpolation [1]

6

/áà
káà

[3]. If local error 𝜖𝜖 meets the tolerance 𝛿𝛿 setting then the higher fifth order solution is propagated forward,
otherwise known as local interpolation.

The explicit DP family of integrators, on the other hand, interpolate with the lower order of two solutions
once the tolerance criteria is satisfied. In the case of the DP5(4) [4], fourth order interpolation is applied
although a fifth order solution is calculated. Since DP is a subclass of RK, they are also traditionally explicit
single step methods. Newer mathematical formulations of DP methods, however are considered to have
different stability characteristics compared to RKF due to lower order interpolation. Analysis of the stability
characteristics of both styles of interpolation in RK and DP is presented in [4][5][6].

The only additional style of integrator used for this analysis is the ABM variation of MATLAB’s ODE113
integrator [7]. This method differs from both the RKF and DP families in that it is a variable order method as
opposed to a fixed order method. ABM relies on a combination of Adams-Bashforth (AB) for explicit
prediction of future states and Adams-Moulton (AM) for implicit correction of predicted states. In practice, AB predicts 𝑦𝑦∗ which is then evaluated as 𝑓𝑓(𝑡𝑡 , 𝑦𝑦∗) where the * notation specifies a predicted state.

káà káà káà
This function evaluation is then inserted into the AM method which corrects 𝑦𝑦káà and then evaluates
𝑓𝑓(𝑡𝑡káà, 𝑦𝑦káà). The ABM method must satisfy the local truncation error formulation expressed in Eq. (12)
which differs slightly from the local truncation error formulation of Eq. (15). The main difference being that
Eq. (12) depends on predicted which may change at various steps which is not the case for explicit RK and
explicit DP methods. Additionally, the variable order nature of ABM means that the order of the two methods
considered for error estimation and interpolation are not necessarily consistent at each step as is the case in
RKF and DP. The ABM method is a variable step, variable order integrator of orders 1 to 13.

𝜖𝜖káà ≈

𝐶𝐶/áà

𝐶𝐶∗ − 𝐶𝐶/áà

(𝑦𝑦káà − 𝑦𝑦∗) (12)

In general, higher order integrators produce more accurate solutions for orbit determination. Other
considerations for numerical methods include local and global error estimates, stiffness, etc. Analysis of local
truncation error can be found by Verner [3] for select RK integrators. Butcher tableaus for each of the
integrators used in the analysis are provided in appendix [A].

E. Tolerance Control

Numeric integrators use tolerance settings to control the accuracy of a solution. Integrators from the RKF family
run on a single defined tolerance while others, including those from the DOPRI and ABM families distinguish between
Absolute tolerance (AbsTol) and Relative tolerances (RelTol). Tolerance is Relative by default and therefore the RKF
family of integrators used in this report only utilize RelTol settings.

RelTol specifies the allowable percent error at any step during simulation. Percent error is relative to the states
being calculated at each step. Setting RelTol to 1.0e-2 (0.01) thus specifies a 1% error limit relative to each state value
at each step. RelTol may be thought of as a control for the number of significant figures which must be accurate for a
solution.

AbsTol controls allowable error specifically when the value of a solution approaches 0. It sets a threshold below
which the accuracy of a solution may be ignored under the assumption that very small state values have insignificant
errors. AbsTol settings therefor specify the decimal place in a solution beyond which variation may be ignored.

When used in conjunction, RelTol specifies the accuracy of a solution as a number of significant digits for each
state at each step except for when the absolute error falls below the threshold set by the AbsTol. At each step i the
numeric integrator estimates local error 𝜖𝜖 for each j state to satisfy. If the error tolerance is not initially met, then the
integrator must reduce the time step i until the calculated error of each state satisfies Eq. (15).

RelTol: 𝑎𝑎𝑎𝑎𝑠𝑠(𝑋𝑋 − 𝑌𝑌)

min (𝑎𝑎𝑎𝑎𝑠𝑠(𝑋𝑋), 𝑎𝑎𝑎𝑎𝑠𝑠(𝑌𝑌))
(13)

AbsTol: 𝑎𝑎𝑎𝑎𝑠𝑠(𝑋𝑋 − 𝑌𝑌) (14)

|𝜖𝜖(𝑖𝑖, 𝑗𝑗)| ≤ max (𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅 ∗ |𝑦𝑦(𝑖𝑖, 𝑗𝑗)| , 𝐴𝐴𝑎𝑎𝑠𝑠𝑅𝑅𝑐𝑐𝑅𝑅(𝑖𝑖, 𝑗𝑗)) (15)

The above formulation requires that state values with large magnitudes have their accuracy determined by the
specified RelTol while the state values with small magnitudes have their accuracy determined by the specified AbsTol.
Depending on the application, tolerances may either be increased (or loosened) to speed up simulation time at the cost

7

of accuracy or decreased (or tightened) to increase accuracy at the cost of simulation time. For orbit propagation
applications we will see that very small tolerances are necessary in order to produce useful solutions [8].

F. Literature Review

A number of studies which compare various integration methods for the purpose of orbit propagation have been
conducted in recent years. These studies commonly focus on optimizing a single integration method for a particular
type of orbit and compare the results with a few other methods. Some popular integrators include variations of RK
and Gauss-Jackson for orbit analysis. As there are many studies with data on computational cost and accuracy of
integrators they will be used to compare results for a wider range of solvers.

A paper by Jones discusses Gauss-Legendre collocation for orbit propagation. Jones describes a variable-step
implementation for propagation which is designed to be more effective for eccentric orbits. Variable-time steps are
favorable over fixed-time orbits due to the nature of constant acceleration and deceleration along eccentric orbits. By
using a fixed distance propagator, accuracy would be lost along the perigee where satellite speed is the fastest. Because
orbits are inherently eccentric to some degree, variable step propagators are essential for high fidelity models. Jones
continues by comparing the Gauss-Legendre collocation model to ordinary differential equation solvers. Furthermore,
this method implements Gauss-Legendre in the form of an implicit RK scheme. The advantage gained by the RK
scheme is the development of variable-step techniques which may autonomously determine step sizes based on
tolerances. One of the models that Jones compares the Gauss-Legendre collocation results against is the DOPRI 8(7)
and DORPI 5(4) methods which also implements step size control. An additional advantage by the implicit RK scheme
used by Jones is parallelization. The majority of explicit methods cannot utilize multi core processing and suffer from
long computation times on the force mode. The conclusions drawn from this report indicate that integration with
Gauss-Legendre nodes with variable-step implementation outperformed DP 8(7) and 5(4) embedded RK, but not the
Gauss-Jackson 8 integrator r= r3rin terms of computational cost for circular orbits. For Molniya orbits however, this
method outperformed DP 5(4) and Gauss-Jackson 8 while matching DP 8(7).

Another paper by Berry and Healy specifically compares speed and accuracy of the variable-step Stormer-Cowell
Integrator. Like the Gauss Legendre collocation method, this integrator utilizes autonomous step size control from
local error approximations. Berry and Healy then compare results of the Stormer-Cowell method with two Gauss-
Jackson methods and the Shampine Gordon method. There is a focus in this paper around multi-step integrators which
are designed to be faster that single-step integrators. Additionally, double-integration methods have the advantage of
computing second-order differential equations such as the Cowell second order formulation of two body equations of
motion. This is in contrast to single integration methods which solve first-order differential equations and must be
applied twice in order to compute the same variables.

More recently, Jones and Anderson have explored both symplectic and collocation methods for orbit propagation.
The symplectic method is examined as it preserves the Hamiltonian and tends to reduce integration error as a result
of truncation. This allows for large time steps during integration which reduces overall computational cost while
maintaining accuracy. Node spacing for various collocation methods is also explored in this report as it relates to the
varying distance between time steps. Gauss, Lobatto, and Chebyshev nodes are explored which all have variations in
node density for propagation.

IV. Propagation Parameters
A. Satellites

Six satellites are propagated for this analysis for each of the EO cases while two satellites are propagated for TO
cases. Initial conditions for each satellite are cartesian states retrieved from JPL Horizons [9] as ephemeris data. The
four Earth orbiting satellites are propagated from ephemeris data for 2018-Jan-01 while MTO and VTO are propagated
from 2011-Dec-01 and 2005-Dec-01, respectively. Table 1 presents a summary of initial orbital elements.

Initial Orbital Data

Orbit Satellite 𝝉𝝉 (𝒎𝒎𝒊𝒊𝒎𝒎) 𝒆𝒆 (𝐝𝐝𝐝𝐝𝐝𝐝) 𝒂𝒂 (𝒌𝒌𝒎𝒎) 𝛀𝛀 (𝒅𝒅𝒆𝒆𝒅𝒅) 𝒊𝒊 (𝒅𝒅𝒆𝒆𝒅𝒅) 𝝎𝝎 (𝒅𝒅𝒆𝒆𝒅𝒅)
GEO GOES-14 1436.1 0.00100297 42166 351.341 0.0337605 251.33
HEO MMS-4 4053.0 0.910034 6778 308.958 19.0751 161.86
LEO ISS 92.7 0.00123243 26562 131.92 51.6956 64.97
MEO NAVSTAR-68 718.0 0.00529487 84187 32.1793 55.9997 20.22
MTO MSL 750601 (~521 days) 0.223352 1.90e08 6.21437 0.396572 1.00094
VTO VEX 410678 (~285 days) 0.171225 1.27e08 6.2748 0.406136 3.79567

Table 1 Initial Orbital Data

8

B. Variables
• Initial States

Six sets of initial states which represent the satellites listed in Table 1 are considered for propagation.
Further discussion on accuracy and computational cost of a solution for different orbit types, thus various
initial orbital elements, are provided by Aristoff [10]. By association, initial states are explored to quantify
this relationship.

• Numerical Integrator

Six explicit numerical integrators are used to propagate the set of states presented for each satellite listed
in Table 1. While implicit integrators are known to have favorable performance characteristics for many orbit
propagation applications [10], explicit integrators are employed to reduce the complexity of the presented
problem by reducing the number of variables under consideration.

The RKF45 integrator is taken from [2] while the RKF 89 is an adaptation of the RKF45 formulation to fit
the higher order terms. Integrators ODE45 and ODE113 are a part of MATLAB’s ODE suite [7] while
DOPRI54 and DOPRI87 are taken from [11] and [12]. Note that DOPRI54 and ODE45 are based on the
same DP integrator mathematics. The programming for the two methods differs and provide different results.

Numerical Methods

RKF45
RK54 (ODE45)

RK54 (DOPRI54)
RK87 (DOPRI87)

RKF89
ABM (ODE113)

• Tolerance

Table 2 Numerical Methods

The combined range of tolerances used for propagation in this report is 1𝑒𝑒 − 4 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 16.

• Model Fidelity
Two model fidelities are used to analyze the effect of additional perturbations on computational cost and

tendency of a solution to converge. This only applies to the EO satellites as the applied perturbations have
greater relative effects in the vicinity of Earth as opposed to solar system scale. The TO satellites are
propagated with simple two body dynamics.

Physical Models

Two-Body Three-Body + J2
All satellites EO satellites only

Table 4 Physical Models

• Propagation Time & Propagation Distance
A single propagation time of Δ𝑡𝑡 = 25 days (600 hours) is modeled across all orbits. Results for shorter

propagation times are not presented as they do not accurately capture long term trends for variation of
previously stated variables.

Additionally, a single angular propagation distance of Δθ = 100 orbits (100*2𝜋𝜋) is modeled across all
orbits. The wide range of orbital periods across the six satellites forces numerical integrators to propagate
through vastly different final times. The purpose of considering constant angular distance is to isolate results
for variation of Keplerian elements without a dependence on physical time.

Propagation Time & Distance

Δ𝑡𝑡 = 25𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠 (2,160,000𝑠𝑠)
Δ𝜃𝜃 = 100𝑐𝑐𝑟𝑟𝑎𝑎𝑖𝑖𝑡𝑡𝑠𝑠 (100 ∗ 2𝜋𝜋)

Table 5 Propagation Time & Distance

9

V. Results

Two graphical sets of data are presented for each propagation. The first is a set of computational cost as a function
of tolerance. This includes total run time, number of steps for a solution, and number of erroneous steps for each
solution. The second is a set of converge results for estimated states. For convergence results, two variables are
measured as a function of computational cost. One is the actual state value of each solution while the other is the log
scaled difference between the states of the current tolerance solution and the states of a reference solution. The
resulting value give the decimal place accuracy with respect to the reference solution. This is further discussed in the
analysis of “Accuracy of Integrator Solutions.”

A. 3D Models

Three dimensional models of each satellite orbit are presented to illustrate the scale of each orbit. Important
aspects to note are the size and shape of each ellipse which relate to semi-major axis and eccentricity measures.

Fig. 3 GEO 3-D Orbit

Fig. 4 HEO 3-D Orbit

10

Fig. 5 LEO 3-D Orbit Fig. 6 MEO 3-D Orbit

Fig. 7 MTO 3-D Orbit Fig. 8 VTO 3-D Orbit

B. Absolute & Relative Tolerance

To analyze the importance of AbsTol and RelTol in orbit determination, a single set of initial states are propagated
with one tolerance held constant at 𝛿𝛿 = 1𝑒𝑒 − 8 and the other varied from 1𝑒𝑒 − 4 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 12. This data set is
propagated from the LEO ephemeris for 600 hours using ODE45 with a physical model which includes both lunar and
J2 perturbations. The AbsTol and RelTol relations observed for ODE45 are representative of all other integrators
considered in this report and may be applicable to orbit determination problems in general.

In both the computational and convergence results presented in Fig. 9 and Fig. 10 there is a crossover between
data sets at 1e-8 where both the RelTol and AbsTol are 𝛿𝛿 = 1𝑒𝑒 − 8, thus producing equivalent results. In the case
varying AbsTol there is an early plateau in run times due to the plateau in computational steps as seen in Fig. 9. The
convergence results reveal an inability for ODE45 to converge when reducing AbsTol below 𝛿𝛿 = 1𝑒𝑒 − 6. Recall that
AbsTol specifies decimal place accuracy and this plateau can be attributed to the large magnitude of orbital states. For
the X position state which is measured in the thousands of kilometers, AbsTol response at 𝛿𝛿 = 1𝑒𝑒 − 6 reflects ten
significant figures of control. The exact number of significant figures that each integrator is responsive to does vary
primarily depending on the order of the integrator.

In the case varying RelTol there is a consistent increase in run times due to increased computational steps at each
tolerance step. The convergence results reveal continued convergence through the minimum tested RelTol of 1e-12.
Recall that RelTol specifies percent error accuracy and this trend reveals that solution accuracy may be manipulated
at stringent RelTol settings. Based on VX results, a minimum RelTol setting of 𝛿𝛿 = 1𝑒𝑒 − 10 may be recommended
due to the ability of the solution to continue converging at tighter tolerances. RelTol settings which are less stringent
would not necessarily ensure accurate results.

11

Fig. 42 Vary Tolerance: LEO, ODE45, 600hour,

J2+Lunar (Computational Results)
Fig. 43 Vary Tolerance: LEO, ODE45, 600hour,

J2+Lunar (Convergence Results)

C. Accuracy of Integrator Solutions
This accuracy analysis begins with a discussion of the mathematical process used to quantify convergence and

accuracy of integrator solutions throughout the report. This accuracy analysis is independent of computational cost
associated with obtaining each solution. Table 6 presents final state data of a single set of LEO ephemeris
propagations. These solutions are for a 24-hour propagation using the perturbation model of Eq. (6) which includes
J2 and Lunar gravity with a RelTol setting of 𝛿𝛿 = 1𝑒𝑒 − 10 for all numerical integrators. The first row of data in Table
6 presents final ephemeris data from JPL Horizons while the following rows present final propagation states for each
integrator. Table 7 then presents absolute final state error between the ephemeris states and the calculated states for
each integrator by taking the difference between the states.

The X,VX, ΔX, and ΔVX data is then taken from Table 6 and Table 7 and graphed in Fig. 11 to show a graphical
representation of convergence trends. The data in Table 6 and Table 7 only generates the data points at the tolerance
of 𝛿𝛿 = 1𝑒𝑒 − 10. The rest of the data points are taken from solutions from each integrator at each of the tolerances in
the range 1𝑒𝑒 − 4 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 12. While the first row of graphs in Fig. 11 simply presents final states, the second row
of graphs are calculated by taking the mathematical log of the absolute final state errors as show in Eq. (16). Plotting
the log scaled difference presents a visual representation of the decimal place accuracy of each solution. For example,
the “VX Convergence Results (log)” plot reveals one decimal place of accuracy for the solution of RKF45 integrator
using a RelTol of 𝛿𝛿 = 1𝑒𝑒 − 6. The graph then reveals two decimal places of accuracy for the solution of RKF45
integrator using RelTol in the range 1𝑒𝑒 − 8 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 12 since the resulting value settles at -2.

log(𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓)™ = logàH(Δ𝑋𝑋), log(𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓)´™ = logàH(ΔV𝑋𝑋) (16)

State X Y Z VX VY VZ
EPH -3199.720073060143 -2728.382385352880 5314.021052617424 4.748436158196570 -6.018782640021895 -0.2282717591541034

RKF45 -3207.436708283496 -2722.050539630536 5316.027065456157 4.740696716530949 -6.019181707087806 -0.2201508800557680
ODE45 -3207.804466052152 -2722.334836360222 5316.617135270371 4.741209424356703 -6.019856467125762 -0.2201565787853040

DOPRI54 -3207.804553745828 -2722.334726954116 5316.617140827567 4.741209348864262 -6.019856529796083 -0.2201564541305700
RKF89 -3195.490858013873 -2712.721129199226 5296.787748279240 4.723928954444030 -5.997203697572299 -0.2198964632547130
ODE87 -3207.804058366658 -2722.335344953416 5316.617109406212 4.741209775409592 -6.019856175909346 -0.2201571582897830
ODE113 -3207.804281190570 -2722.335066669972 5316.617123310268 4.741209584125698 -6.019856335383273 -0.2201568419190540

Table 6 Final States: LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟎𝟎

State 𝚫𝚫X 𝚫𝚫Y 𝚫𝚫Z 𝚫𝚫VX 𝚫𝚫VY 𝚫𝚫VZ
RKF45 7.716635223352569 -6.331845722344042 -2.006012838733113 0.007739441665621 0.000399067065911 -0.008120879098335
ODE45 8.084392992009271 -6.047548992657994 -2.596082652946279 0.007226733839867 0.001073827103867 -0.008115180368799

DOPRI54 8.084480685685321 -6.047658398763815 -2.596088210143535 0.007226809332308 0.001073889774188 -0.008115305023534
RKF89 -4.229215046269928 -15.661256153653994 17.233304338185008 0.024507203752540 -0.021578942449596 -0.008375295899390
ODE87 8.083985306514478 -6.047040399464095 -2.596056788787791 0.007226382786978 0.001073535887451 -0.008114600864320
ODE113 8.084208130427214 -6.047318682907644 -2.596070692843568 0.007226574070873 0.001073695361378 -0.008114917235049

Table 7 Final State Error: LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟎𝟎

12

Fig. 11 Convergence Results: LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟎𝟎

Using the data of Table 7, the magnitudes of the vectorized displacement error (Δ𝑉𝑉, ΔY, ΔZ states) and vectorized
velocity error (ΔVX, ΔVY, ΔVZ) are calculated and presented in Table 8. This data set exposes RKF89 as an outlier in
terms of solution accuracy for the LEO propagation as it has over twice the position error and three times the velocity
error. To address this issue, an additional set of propagation error data for a RelTol setting of 𝛿𝛿 = 1𝑒𝑒 − 14 is presented
in Table 9. This data set shows that RKF89 requires tighter RelTol settings in order to achieve the same level of
accuracy as the rest of the integrators. Beyond 𝛿𝛿 = 1𝑒𝑒 − 14 there is no further minimization of absolute error for any
of the integrators. For this reason, the remaining propagations for accuracy analysis are calculated using RelTol in the
range 1𝑒𝑒 − 8 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 14.

Table 8 State Error Magnitude:

LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟎𝟎
Table 9 State Error Magnitude:

LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟏𝟏

State 𝚫𝚫𝒓𝒓 𝚫𝚫𝒓𝒓𝑟

RKF45 10.414561874631506 0.010931086423464
ODE45 10.424278419121871 0.010919242984191

DOPRI54 10.424278441465431 0.010919243009171
RKF89 9.841156350946937 0.012256465525769
ODE87 10.424278343879379 0.010919242899941
ODE113 10.424278377056831 0.010919242936969

State 𝚫𝚫𝒓𝒓 𝚫𝚫𝒓𝒓𝑟

RKF45 10.181493845748481 0.011225279023188
ODE45 10.424485791096648 0.010919475219049

DOPRI54 10.424618652986965 0.010919623986092
RKF89 23.667445629608348 0.033710523199942
ODE87 10.423868134205462 0.010918783571113
ODE113 10.424205839820633 0.010919160968800

13

Of the four EO cases considered, GEO is the most accurate across all integrators when comparing a two-body
propagation to ephemeris data. The associated magnitudes of displacement error and velocity error for 25-day, two-
body propagations is presented in Fig. 12 and Fig. 13. Even with GEO being the most accurate, the absolute errors for
two-body dynamics make the data unusable for practical purposes. The associated converged errors are approximately
430km for position and 0.031km/s for velocity. For comparison, the second most accurate orbit type is MEO with an
absolute position error that settles above 740km. It should be noted that each of the integrators eventually converge to
solutions with nearly identical absolute errors for both position and velocity states as shown in Fig. 12 and Fig. 13.
This trend occurs for all four EO types when using two-body dynamics. The primary factor to consider for simple
two-boy dynamics is tolerance. For such propagations it would be best to use easily implemented integrators such as
RKF45 and ODE54 with tolerances of between 1𝑒𝑒 − 10 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 14.

Fig. 12: Position Error: GEO, 25day, 2-body Fig. 13: Velocity Error: GEO, 25day, 2-body

The remaining propagations for EO accuracy analysis consider 1-day, 5-day, 10-day, and 15-day propagations
using a force model which includes two-body dynamics (earth and satellite) with the addition of 𝐽𝐽`. For these
propagations we will consider only the absolute position error as a measure of accuracy for each solution. For the 1-
day propagations we once again see RKF integrators providing less accurate solutions across all cases except the for
a short range of tolerances in the HEO case of Fig. 15. Once all of the errors converge at a RelTol of \delta = 1𝑒𝑒 − 14
we see nearly equivalent accuracies across all integrators. In Fig. 16 we also see slightly improved accuracy for RKF45
compared to other integrators at low RelTol when propagation LEO. This behavior is amplified for long propagation
times in subsequent results. Across all data sets we see that ODE45, DOPRI54, DOPRI87, and ODE113 produce
nearly identical position errors at all tolerances. These position errors are also converged at low tolerances unlike RKF
integrator solutions which require tighter tolerances.

Fig. 14 Position Error: GEO, 1day, 2-body Fig. 15 Position Error: HEO, 1day, 2-body

14

Fig. 16 Position Error: LEO, 1day, 2-body Fig. 17 Position Error: MEO, 1day, 2-body

The 5-day propagation results reiterate the deviation of RKF solutions compared to DP and ABM. In all EO cases

we see that RKF89 performs poorly at equivalent tolerances. The exception to this is the LEO 5-day propagation
where the difference in absolute position error for RKF89 is much smaller. Also in the LEO results we see that RKF45
has better performance than ABM, DP, and RKF89 at low RelTol of 𝛿𝛿 ≤ 1𝑒𝑒 − 10. This is an amplification of what is
seen in the 1-day propagation solutions. Once the recommended minimum RelTol of 𝛿𝛿 = 1𝑒𝑒 − 10 is implemented we
see that all solutions except RKF89 have nearly identical absolute errors.

Fig. 18 Position Error: GEO, 5day, 2-body Fig. 19 Position Error: HEO, 5day, 2-body

Fig. 20 Position Error: LEO, 5day, 2-body Fig. 21 Position Error: MEO, 5day, 2-body

15

The 10-day propagation results introduce an anomaly in the trends discussed for the 1-day and 5-day propagations.
This is specifically for the HEO case where Fig. 23 shows both RKF45 and RKF89 producing significantly better
results than DP and ABM. It is important to note that RKF89 with a RelTol of 𝛿𝛿 = 1𝑒𝑒 − 8 does not fit this
generalization as its absolute position error is approximately 50% greater than the average. If we consider the
minimum recommended tolerance of 𝛿𝛿 = 1𝑒𝑒 − 10 then both RKF integrators produce equivalent or superior accuracy
for HEO results. From these results we may want to conclude that RKF handles highly eccentric orbits better than DP
and ABM and moderate tolerance setting as propagation time increases, however the trend of error growth contradicts
this conclusion. When analyzing Fig. 23 HEO 10-day propagation results we must compare the absolute error to those
in Fig. 15 and Fig. 19 for 1-day and 5-day propagations. 1-day propagations present a converged absolute error of
approximately 140km which is already significant. This grows to nearly 700km for the 5-day propagation. Because
the 10-day propagation presents a smaller absolute position error we must conclude that reasonable results cannot be
obtained using any integrator for HEO with a 10-day propagation using the current force model.

The large magnitudes of error presented in theis10-day propagation make it impossible to generate reasonable
results with the 2-body force model with 𝐽𝐽` perturbations, however it provides insight into the various performance
capabilities of each integrator across various EO types. We see that the RKF45 integrator provides better accuracy
than others at loose tolerances for LEO propagations. We also see that in all other cases DP and ABM have superior
convergence results and generally produce more accurate results.

Fig. 22 Position Error: GEO, 10day, 2-body Fig. 23 Position Error: HEO, 10day, 2-body

Fig. 24 Position Error: LEO, 10day, 2-body Fig. 25 Position Error: MEO, 10day, 2-body

D. Model Fidelity
Two physical models are considered for the propagation of the four EO satellites in order to analyze the relationship

between model fidelity and computational cost at various tolerances. General trends for each of the four cases may be
summarized by LEO results presented in Fig. 26 through Fig. 33. The missing data point at 𝛿𝛿 = 1𝑒𝑒 − 4 for two body

16

propagation in Fig. 26,28,30,32 is caused by to one or more numerical integrators failing at such large tolerance
settings for a large model. RKF45 is usually the integrator which fails at extremely loose tolerances.

A comparison of the computational results of both models in Fig. 26 and Fig. 27 show intuitive results that higher
fidelity models require smaller steps to be taken in order to meet tolerance requirements. The smaller step sizes result
in at least 50% more steps needed to propagate with the added 𝐽𝐽` and Lunar perturbations. Consequently, run times
see anywhere from a 50%-100% increase across all integrators for the higher fidelity model. The only integrator which
seems to experience a proportional increase in number of failed steps is the RKF45 integrator. All others appear to
experience similar numbers of failed steps for each model fidelity.

A comparison of the convergence results for final position states in Figs. 28-33 reveal that convergence for all
states does not occur until at least a tolerance of 𝛿𝛿 = 1𝑒𝑒 − 10. This applies to both physical models. When considering
the log scale results relative to a solution with tolerance 𝛿𝛿 = 1𝑒𝑒 − 13, reasonable convergence does not occur until a
tolerance of 𝛿𝛿 = 1𝑒𝑒 − 12. For position states this is when the log scale difference falls below 0 meaning accuracy at
the decimal place is achieved. Because position states are measured in the thousands of kilometers, this represents
four significant figures of accuracy compared to the lowest tolerance solution. For velocity states this is when the log
scale difference falls below -2 meaning accuracy at the hundredth’s place is achieved. Because velocity states do not
exceed the ones place in km/s measurements this represents three significant figures of accuracy compared to the
lowest tolerance solution. Log scale difference convergence results appear identical between both physical models.

As with the bulk of previously discusses solutions, the log scale results in Figs. 28-33 show that DP and ABM
converge more quickly than RKF. At lower tolerances we see that DP models show the best convergence while at
higher tolerances, ABM shows the best convergence. In all cases RKF have the worst convergence with agrees with
the fact that RKF requires tighter tolerances to converge.

Fig. 26 Computation Results: LEO, 600hr, 2body Fig. 27 Computation Results: LEO, 600hr, J2+Lunar

Fig. 28 X & VX Convergence Results:

LEO, 600hr, 2body
Fig. 29 X & VX Convergence Results:

LEO, 600hr, J2+Lunar

17

Fig. 30 Y & VY Convergence Results:
LEO, 600hr, 2body

Fig. 31 Y & VY Convergence Results:
LEO, 600hr, J2+Lunar

Fig. 32 Z & VZ Convergence Results:
LEO, 600hr, 2body

Fig. 33 Z & VZ Convergence Results:
LEO, 600hr, J2+Lunar

E. Earth Orbit
The four EO propagations show a wide range of computational costs in terms of number of steps to solution and

run times. For the 25-day propagation, run times vary from about a half of a second for the fastest integrator to around
350 seconds for the slowest integrator. In order of increasing run times, the EO cases are as follows: HEO, GEO,
MEO, LEO with LEO being the outlier of the set. This is attributed to a strong dependency on orbital period 𝜏𝜏. Table
10 lists run times and 𝜏𝜏 for the EO cases in increasing order of maximum run times. Maximum run times from
DOPRI54 are considered to be representative of the trends across all other solution sets. The trend of lower order
solutions taking longer to generate a solution in Figs. 34,36,38 and 40 is common across all propagation results when
time is help constant. Consequently, computational time becomes more important as the number of orbits increases.

General conclusion to be drawn from the EO propagation data is that computational time is primarily a function
of angular distance traveled (Δ𝜃𝜃). LEO, with the largest computation cost has the smallest orbital period by nearly a
factor of 10. This means that for any given period of time it will complete 10 times the number of orbits compared to
MEO and over 43 times the number of orbits compared to HEO. This trend is less important for Transfer Orbits.

EO Period & Computation Time

Orbit 𝝉𝝉 (𝒎𝒎𝒊𝒊𝒎𝒎) 𝒕𝒕𝒄𝒄𝒄𝒄𝒎𝒎𝒑𝒑 (𝐬𝐬𝐝𝐝𝐬𝐬)
HEO 4053.0 ~3.1
HEO 1436.1 ~5.0
MEO 718.0 ~12.5
LEO 92.7 ~350

Table 10 Earth Orbit Period & Computation Time

18

Fig. 34 Computation Results:
GEO, 600hour, J2+Lunar

Fig. 36 Computation Results:

HEO, 600hour, J2+Lunar

Fig. 35 X & VX Convergence Results:
GEO, 600hour, J2+Lunar

Fig. 37 X & VX Convergence Results:
HEO, 600hour, J2+Lunar

Fig. 38 Computation Results:
LEO, 600hour, J2+Lunar

Fig. 39 X & VX Convergence Results:
LEO, 600hour, J2+Lunar

19

Fig. 40 Computation Results:

MEO, 600hour, J2+Lunar
Fig. 41 X & VX Convergence Results:

MEO, 600hour, J2+Lunar

F. Transfer Orbit
Unlike EO cases, the TO cases are plotted with log scale differences which have been calculated with respect to

ephemeris data as opposed to a lower tolerance solution. Because results are compared to ephemeris data, log scale
difference data shows flat lines as the integrators have reached the limit of achievable accuracy with the given force
model. The following results magnify the inability of both RKF methods to converge as well as the DP and ABM
methods. Fig. 29,30 show the lack of convergence for RKF through tolerances of 𝛿𝛿 = 1𝑒𝑒 − 12. The flat line on the
other hand is a combination of the other four integrators overlapping. A final point to note is the short run times for
both TO cases. To explain this occurrence, a set of results for each satellite completing 500 orbits is propagated.

An observation of Run Time trends for MTO and VTO in Fig. 42 and Fig. 43 reveal a trend that contradicts the
results of the EO cases above. As tolerance is tightened in EO cases, run times steadily increase. This expected trend
is the result of tightened tolerances requiring smaller error margins for each step. When smaller error margins are
allowed, smaller steps in time are taken to satisfy the tightened tolerance limits and thus more steps are taken. As more
steps are taken there is a need for the numerical integrator to iterate through many more mathematical calculations in
order to produce a solution. This ultimately slows down the run time as seen in EO results.

To properly compare EO and TO, consider the computational results presented for a 600-hour LEO propagation
with two body dynamics in Fig. 11 to those presented for 600-hour MTO and VTO propagations with two body
dynamics in Fig. 42 and Fig. 43. With equivalent model fidelities (simplified 2-body dynamics) and equivalent
propagation times it may be expected to see comparable computational cost between EO and TO. Instead, we observe
opposite trends for EO and TO. While LEO run times in Fig. 26 surpass 180 seconds for the slowest integrator
(DOPRI54) and reach approximately 5 seconds for the fastest integrator (ODE113) with steadily increasing run times
across all integrators, TO experience steadily decreasing run times. Additionally, the run time for all integrators
(including DOPRI54) settle around one hundredth of a second (0.01s) for both MTO and VTO as seen in Fig. 42 and
Fig. 43.

Fig. 42 Computation Results: MTO, 600hr, 2body Fig. 43 Computation Results: VTO, 600hr, 2body

20

To identify the source of the discrepancy, dependencies and non-dependencies of integrators on orbital elements
must be established. Orbital elements include 𝑒𝑒, 𝑎𝑎, Ω, 𝑖𝑖, 𝜔𝜔, 𝜃𝜃, and 𝜏𝜏 as previously discussed. From EO results it has
been established that the Keplerian elements which define orientation of an orbit (Ω, 𝑖𝑖, 𝜔𝜔) and position along an orbit
(𝜃𝜃) are not significant in the performance of orbit determination. This narrows potential dependencies to 𝑒𝑒, 𝑎𝑎 and 𝜏𝜏.
These three orbital elements are responsible for defining the shape, size and speed of an orbit. When considering the
eccentricities of all propagated EO and TO cases, eccentricity can also be eliminated as a source of the computational
cost dependencies. This is because EO cases include eccentricities which range from 0.01 ≤ 𝑒𝑒 ≤ 0.910 while TO
cases fall within the range 0.117 ≤ 𝑒𝑒 ≤ 0.233. As all EO propagation times are drastically greater than TO, yet the
range of TO eccentricities falls within the range of EO eccentricities, we can ignore eccentricity for these results.

Potential orbital element dependencies now include semi-major axis (𝑎𝑎) and orbital period (𝜏𝜏). These orbital
elements are responsible for defining the shape and speed of an orbit. From the definition of orbital period in Eq. (17),
we know that orbital period and semi major axis share a dependence on one another. We also know that both

𝜏𝜏 = 2𝜋𝜋¨ 𝑎𝑎
K

𝐺𝐺𝐺𝐺

(17)

orbital period and semi major axis are dramatically different for EO and TO. For EO, semi-major axes of the satellites
considered fall below10,000km which results in orbital periods that are measured in hours. For TO cases, however,
semi-major axes of the satellites considered exceed 100,000,000km and have orbital periods in the hundreds of days.
The difference in orbital periods results in a difference in average angular velocities (𝜃𝜃𝑟) from the definition of angular
velocity given by Eq. (18). This definition produces a maximum EO average angular velocity of 𝜃𝜃𝑟bpo =
0.00155 cbt for HEO and a minimum TO average angular velocity of 𝜃𝜃

Üqk
numerical integrator computational performance on semi-major axis and

bpo = 0.0000153 cbt. The dependence of

Üqk

𝜃𝜃bpo =

2𝜋𝜋
𝜏𝜏

(18)

Fig. 44 X & VX Convergence Results:
MTO, 600hr, 2body

Fig. 45 X & VX Convergence Results:
VTO, 600hr, 2body

G. 500 Orbit Propagation
With orbital period identified as the greatest contributing factor to computation cost, propagations with total

number of orbits held constant are run to analyze the effect of varying additional orbital elements. By propagating
each orbit for the same number of revolutions, the computational times are normalized within a smaller range of values
as seen in Table 11. Satellite groups are listed in order of increasing eccentricity to identify the trend of increasing
computational cost with increasing eccentricity.

ODE45 reveals a dependency only on eccentricity with the greatest run time being for the HEO case. ODE87 and
ODE 113 have similar results when considering only the EO cases. Again, that is a dependence on eccentricity. When

21

including the data for TO cases, run times for these moderate eccentricity orbits are much greater. This suggests an
additional dependency on semi-major axis unlike ODE45. When considering the EO cases for both RKF45 and RKF89
there is again, a dependence on eccentricity with the largest propagation times being for the HEO case. When
propagating for TO cases, the run times drop to nearly zero. This suggests an inverse dependence on the size of the
orbit being propagated. Based on the TO computational cost and convergence data provided in Fig. 29, 30 the low run
times are attributed to an inability of RKF integrators accurately to handle large orbits at the tolerances used.

500 Orbit Propagation Computation Times (s)

Orbit ODE45 ODE87 ODE113 RKF45 RKF89
GEO 52.29 8.37 3.77 59.5 12.98
LEO 56.15 8.44 3.5 72.7 21.81
MEO 56.24 8.15 3.68 67.6 18.27
HEO 97.73 46.11 18.71 203.5 34.91
VTO 61.91 63.37 62.45 0.01 0.01
MTO 63.68 53.12 62.59 0.01 0.01

Dependency 𝒆𝒆 only 𝒆𝒆, 𝒂𝒂 𝒆𝒆, 𝒂𝒂 𝒆𝒆 𝒆𝒆
Table 11 500 Orbit Propagation: Computation Times & Keplerian Dependencies

VI. Conclusions

The computational experiments conducted in this study justify general recommendations for numerical integration

settings specifically applicable to low to medium fidelity orbit propagation models. These recommendations stem
from three primary conclusions which deal with tolerance settings, numerical integrators, and orbital elements.

The first conclusion to be made is the importance of tolerance selection. Across all solution sets we saw that
convergence of orbit propagation states typically insufficient at RelTol settings above 𝛿𝛿caj = 1𝑒𝑒 − 10. We also saw
that various orbital elements, particularly orbital period (𝜏𝜏) and semi-major axis (𝑎𝑎), require significantly tighter
RelTol settings. This crucial consideration applies to all integrators and requires deliberate attention. Many integrators
have built in default tolerances which will produce incorrect solutions if used. MATLAB’s ODE45 has a default
relative tolerance of 𝛿𝛿caj = 1𝑒𝑒 − 3 for example. The one exception to this rule is the case of RKF45 which may be
able to produce more accurate results at higher tolerances when determining LEO propagations with low to medium
fidelity models. Best results are observed in this case at 𝛿𝛿caj = 1𝑒𝑒 − 8.

The second conclusion drawn is that the fundamental mathematics of various integrators can produce widely
different results for orbit propagations at similar tolerance settings. The factors considered for the experiments in this
report include order of the integrator method and the method itself. Each set of results verify the trend that higher
order solvers (ODE113, DOPRI87, RKF89) reduce computational time with their ability to take larger time steps
compared to lower order solvers (RKF45, DOPRI54, ODE45). This becomes significant when determining high
computational costs solutions such as long LEO propagations, especially as model fidelity increases. When dealing
with very short, computationally inexpensive propagations the other hand, lower order solvers paired with tight
tolerances are viable alternatives. This conclusion is in agreement with results by Uruxtan [13] which compares RKF67
with RKF78 and Ritschel [11] which compares RK, RKF, DP, and ESDIRK variants. Additionally, the TO results
conclude that the RKF methods do not converge well for large scale orbits without very tight tolerances of at least
𝛿𝛿caj = 1𝑒𝑒 − 16. The opposite extreme is that ODE113 (ABM) is the most stable integrator with the best convergence
results for all cases. A third factor worth mentioning, although not considered in this analysis, is the relationship
between step size and integrator order as they influence long term convergence stability [14].

The final conclusion to be drawn is that an exclusive set of orbital elements impact computational cost and thus
the ability for computational solutions to converge with tightened tolerance. The three elements (𝜏𝜏, 𝑒𝑒, 𝑎𝑎) and their
values for each of the six satellites considered for the above experiments are presented in Table 12.

Results show that the combined influence of the shape, size, and period of an orbit are responsible for the majority
of the computational cost of a solution. The most extreme example the 600-hour LEO propagation with a force model
that includes Lunar gravity and 𝐽𝐽` perturbations. Due to its short period and rapidly changing states, it is the most
difficult to determine a solution for. For these orbits a higher order solver that is stable enough to produce accurate
solutions such as DP87 or ODE113 should be used. To a lesser degree, eccentricity also plays a hand in increasing
computational cost due to the rapidly changing states near perigee. For more stable, and less computationally
expensive low eccentricity orbits, lower order solvers may be considered. This only applies for Earth Orbiting satellites

22

since Transfer Orbit solutions are highly susceptible to the effects of local error compounding to produce large global
errors. Furthermore, the fact that there is little change in angular position of Transfer Orbit trajectories, integrators
tend to take very large steps which may lead to additional inaccuracies in solution determination.

Initial Orbit Elements

Orbit Satellite 𝝉𝝉 (min) 𝒆𝒆 (deg) 𝒂𝒂 (km)
GEO GOES-14 1436.1 0.00100297 42166
LEO ISS 92.7 0.00123243 6778
MEO NAVSTAR-68 718.0 0.00529487 26562
HEO MMS-4 4053.0 0.910034 84187
VTO VEX 410678 (~285 days) 0.171225 1.27e08
MTO MSL 750601 (~521 days) 0.223352 1.90e08

Table 12 Summary of Relevant Initial Orbital Elements

The final recommendations for solver setups is to consider minimum relative tolerances of 𝛿𝛿 = 1𝑒𝑒 − 10 for EO
cases while at least 𝛿𝛿 = 1𝑒𝑒 − 12 is preferable. As orbital period and semi major axis increase this may be scaled down
as necessary. As tolerance is tightened these solvers may fail due to stiffness characteristics [15], at which point
different solvers would need to be considered [16]. Additionally, for solutions with long propagation times one should
consider higher order solvers which are capable of taking larger steps in time and thus fewer total steps. This tends to
reduce global error as discussed by Aristoff [10]. A summary of preliminary recommendations for numerical integrator
settings on low to medium fidelity models is listed in Table 13. These recommendations are minimum suggestions for
simple models and may not apply to complex missions or high-fidelity models.

Summary of Conclusions

Minimum 𝛿𝛿caj (EO) 1e-10
Minimum 𝛿𝛿caj (TO) 1e-14

Small Δ𝜃𝜃 Lower Order Integrators (ODE45 or RKF45)
Large Δ𝜃𝜃 Higher Order Integrators (DP87 or ODE113)
ECI frame Lower or Higher Order Integrators
SCI frame Higher Order Integrators only

LEO (large 𝜃𝜃𝑟) Higher Order Integrators
Large 𝑒𝑒 ODE45

23

Appendix A: Butcher Coefficients

RKF 45

DP 54

DP 87

24

RKF 89

25

Appendix B: Ephemeris Data

LEO Ephemeris

GEO Ephemeris

MEO Ephemeris

26

HEO Ephemeris

MTO Ephemeris

VTO Ephemeris

27

Appendix C: MATLAB Main Code

%This program solves n-body dynamics with optional J2 perturbation
%dynamics depend on rates equation applied in integrator declaration

clear all; close all; clc;
%...Constants
global muE muL muS R
muE = 3.986004415e5; %Earth
muL = 4902.799; %Moon
muS = 1.32712428e11; %Sun
R = 6378; %Earth Radius
%R = 695700; %Sun Radius
G = 6.67259e-20; %Gravitational Constant
hours = 3600; %conversion variable between seconds & hours
days = hours*24; %conversion variable between seconds & days

%...Retrieve Ephemeris Data
eph_LEO = importdata('/Users/angelrocha/Desktop/ephemeris_LEO.txt');
eph_GEO = importdata('/Users/angelrocha/Desktop/ephemeris_GEO.txt');
eph_MEO = importdata('/Users/angelrocha/Desktop/ephemeris_MEO.txt');
eph_HEO = importdata('/Users/angelrocha/Desktop/ephemeris_HEO.txt');
eph_MTO = importdata('/Users/angelrocha/Desktop/ephemeris_MTO.txt');
eph_VTO = importdata('/Users/angelrocha/Desktop/ephemeris_VTO.txt');

%---
%...Input Data: propagation time & initial states beginning 01/01/2018
%***User input changes occur here
n = 7; %number of tolerances to test
span = 5; %days to propagate
t0 = 0; tf = span*days; %initial and final times
f0 = eph_HEO(1,:)'; %retrieve initial ephemeris as initial states
ff = eph_HEO(span+1,:); %retrieve final ephemeris as final states
%---

%...Initialize variables to capture propagation data
atol = zeros(n,1); %list of absolute tolerances
rtol = zeros(n,1); %list of relative tolerances
y = zeros(n,6,6); %array of final states for each propagation
x = zeros(n,1); %extra variable used to define relative tolerance
time = zeros(n,6); %list of computational times for each propagation
ns = zeros(n,6); %list of numbers of steps (correct calculations)
nf = zeros(n,6); %list of numbers of failed steps

%...Loop through Orbit Propagations
for i = 1:n

x(i) = (7+i)
z = x(i)+1;
rtol(i) = 1*10^-(x(i));
rtol9(i) = 1*10^-(x(i)+2);
atol(i) = 1*10^-(z);
dum = 1e-10;
opts = odeset('Reltol', rtol(i), 'AbsTol', atol(i));

tic
[t1,f1, stats1] = rkf45(@nrates, [t0 tf], f0, rtol(i));

28

time(i,1) = toc; tic
q=1;
[t2,f2, stats2] = ode45(@nrates, [t0 tf], f0, opts);
time(i,2) = toc; tic
q=2;
[t3,f3, stats3] = DOPRI54(@nrates, [t0 tf], f0, atol(i), rtol(i));
time(i,3) = toc; tic
q=3;
[t4,f4, stats4] = rkf89(@nrates, [t0 tf], f0, rtol9(i));
time(i,4) = toc; tic
q=4;
[t5,f5, stats5] = ode87(@nrates, [t0 tf], f0, opts);
time(i,5) = toc; tic
q=5;
[t6,f6, stats6] = ode113(@nrates, [t0 tf], f0, opts);
time(i,6) = toc;
q=6;

y(i,:,1) = f1(end,:); ns(i,1) = stats1(1); nf(i,1) = stats1(2);
y(i,:,2) = f2(end,:); ns(i,2) = stats2(1); nf(i,2) = stats2(2);
y(i,:,3) = f3(end,:); ns(i,3) = stats3(1); nf(i,3) = stats3(2);
y(i,:,4) = f4(end,:); ns(i,4) = stats4(1); nf(i,4) = stats4(2);
y(i,:,5) = f5(end,:); ns(i,5) = stats5(1); nf(i,5) = stats5(2);
y(i,:,6) = f6(end,:); ns(i,6) = stats6(1); nf(i,6) = stats6(2);

end

%...Calculate log scale difference between propagated states and
%...ephemeris states
diff = zeros(n,6,6);
StateError = ff-y;
diff = log10(abs(StateError)); %use when comparing to ephemeris solution
%diff = log10(abs(y-y(end,:,:)));%use when comparing to highest order solution

%...Calculate magnitude of vectorized error between propagated solution and
%...ephemeris states
Rerror = zeros(6,n);
VError = zeros(6,n);
for c = 1:n

for r = 1:6 %dont forget to update
Rerror(r,c) = norm(StateError(c,1:3,r));
VError(r,c) = norm(StateError(c,4:6,r));

end
end
%rnewnew
figure
plot(x,Rerror(1,:),'-r'); hold on;
plot(x,Rerror(2,:),'-g');
plot(x,Rerror(3,:),'-b');
plot(x,Rerror(4,:),'-c');
plot(x,Rerror(5,:),'-m');
plot(x,Rerror(6,:),'-k'); hold off;
title('Absolute Position Error')
xlabel('tolerance e-n')
ylabel('dr')
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...

'Location','northwest')

29

xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution
figure
plot(x,VError(1,:),'-r'); hold on;
plot(x,VError(2,:),'-g');
plot(x,VError(3,:),'-b');
plot(x,VError(4,:),'-c');
plot(x,VError(5,:),'-m');
plot(x,VError(6,:),'-k'); hold off;
title('Absolute Velocity Error')
xlabel('tolerance e-n')
ylabel('dv')
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...

'Location','northwest')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%...Calculate initial & final orbital elements from state vectors
%...simplification: only earth gravitational parameter considered
coe0 = zeros(1,7);
[coe0] = coe_from_sv(f0(1:3),f0(4:6),muS);
period = 2*pi*coe0(7).^1.5/sqrt(muS)/60;

%---
%% Print Results
%...Orbital Element Results
fprintf('Initial Orbital Elements\n')
fprintf('Angular momentum (km^2/s) = %g\n', coe0(1))
fprintf('Eccentricity = %g\n', coe0(2))
fprintf('Right ascension (deg) = %g\n', coe0(3))
fprintf('Inclination (deg) = %g\n', coe0(4))
fprintf('Argument of perigee (deg) = %g\n', coe0(5))
fprintf('True anomaly (deg) = %g\n', coe0(6))
fprintf('Semimajor axis (km): = %g\n', coe0(7))
fprintf('Orbital Period (min): = %g\n', period)

%---
%% Plot Results
%...2D X & VX Resuts
figure
subplot(2,2,1)
plot(x,y(:,1,1),'-r'); hold on;
plot(x,y(:,1,2),'-g');
plot(x,y(:,1,3),'-b');
plot(x,y(:,1,4),'-c');
plot(x,y(:,1,5),'-m');
plot(x,y(:,1,6),'-k'); hold off;
title('X Convergence Results')
xlabel('tolerance e-n')
ylabel('X (km)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

30

subplot(2,2,2)
plot(x,y(:,4,1),'-r'); hold on;
plot(x,y(:,4,2),'-g');
plot(x,y(:,4,3),'-b');
plot(x,y(:,4,4),'-c');
plot(x,y(:,4,5),'-m');
plot(x,y(:,4,6),'-k'); hold off;
title('VX Convergence Results')
xlabel('tolerance e-n')
ylabel('VX (km/s)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,3)
plot(x,diff(:,1,1),'-r'); hold on;
plot(x,diff(:,1,2),'-g');
plot(x,diff(:,1,3),'-b');
plot(x,diff(:,1,4),'-c');
plot(x,diff(:,1,5),'-m');
plot(x,diff(:,1,6),'-k'); hold off;
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...

'Location','southwest')
title('X Convergence Results (log)')
xlabel('tolerance e-n')
ylabel('log(diff)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,4)
plot(x,diff(:,4,1),'-r'); hold on;
plot(x,diff(:,4,2),'-g');
plot(x,diff(:,4,3),'-b');
plot(x,diff(:,4,4),'-c');
plot(x,diff(:,4,5),'-m');
plot(x,diff(:,4,6),'-k'); hold off;
title('VX Convergence Results (log)')
xlabel('tolerance e-n')
ylabel('log(diff)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

%...2D Y & VY Results
figure
subplot(2,2,1)
plot(x,y(:,2,1),'-r'); hold on;
plot(x,y(:,2,2),'-g');
plot(x,y(:,2,3),'-b');
plot(x,y(:,2,4),'-c');
plot(x,y(:,2,5),'-m');
plot(x,y(:,2,6),'-k'); hold off;
title('Y Convergence Results')
xlabel('tolerance e-n')
ylabel('Y (km)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

31

subplot(2,2,2)
plot(x,y(:,5,1),'-r'); hold on;
plot(x,y(:,5,2),'-g');
plot(x,y(:,5,3),'-b');
plot(x,y(:,5,4),'-c');
plot(x,y(:,5,5),'-m');
plot(x,y(:,5,6),'-k'); hold off;
title('VY Convergence Results')
xlabel('tolerance e-n')
ylabel('VY (km/s)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,3)
plot(x,diff(:,2,1),'-r'); hold on;
plot(x,diff(:,2,2),'-g');
plot(x,diff(:,2,3),'-b');
plot(x,diff(:,2,4),'-c');
plot(x,diff(:,2,5),'-m');
plot(x,diff(:,2,6),'-k'); hold off;
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...

'Location','southwest')
title('Y Convergence Results (log)')
xlabel('tolerance e-n')
ylabel('log(diff)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,4)
plot(x,diff(:,5,1),'-r'); hold on;
plot(x,diff(:,5,2),'-g');
plot(x,diff(:,5,3),'-b');
plot(x,diff(:,5,4),'-c');
plot(x,diff(:,5,5),'-m');
plot(x,diff(:,5,6),'-k'); hold off;
title('VY Convergence Results (log)')
xlabel('tolerance e-n')
ylabel('log(diff)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

%...2D Z & VZ Results
figure
subplot(2,2,1)
plot(x,y(:,3,1),'-r'); hold on;
plot(x,y(:,3,2),'-g');
plot(x,y(:,3,3),'-b');
plot(x,y(:,3,4),'-c');
plot(x,y(:,3,5),'-m');
plot(x,y(:,3,6),'-k'); hold off;
title('Z Convergence Results')
xlabel('tolerance e-n')
ylabel('Z (km)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

32

subplot(2,2,2)
plot(x,y(:,6,1),'-r'); hold on;
plot(x,y(:,6,2),'-g');
plot(x,y(:,6,3),'-b');
plot(x,y(:,6,4),'-c');
plot(x,y(:,6,5),'-m');
plot(x,y(:,6,6),'-k'); hold off;
title('VZ Convergence Results')
xlabel('tolerance e-n')
ylabel('VZ (km/s)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,3)
plot(x,diff(:,3,1),'-r'); hold on;
plot(x,diff(:,3,2),'-g');
plot(x,diff(:,3,3),'-b');
plot(x,diff(:,3,4),'-c');
plot(x,diff(:,3,5),'-m');
plot(x,diff(:,3,6),'-k'); hold off;
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...

'Location','southwest')
title('Z Convergence Results (log)')
xlabel('tolerance e-n')
ylabel('log(diff)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

subplot(2,2,4)
plot(x,diff(:,6,1),'-r'); hold on;
plot(x,diff(:,6,2),'-g');
plot(x,diff(:,6,3),'-b');
plot(x,diff(:,6,4),'-c');
plot(x,diff(:,6,5),'-m');
plot(x,diff(:,6,6),'-k'); hold off;
title('VZ Convergence Results (log)')
xlabel('tolerance e-n')
ylabel('log(diff)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution

%...Plot Run Times, Total Steps, Number of Errors
figure
subplot(1,3,1)
plot(x,time(:,1),'-r'); hold on;
plot(x,time(:,2),'-g');
plot(x,time(:,3),'-b');
plot(x,time(:,4),'-c');
plot(x,time(:,5),'-m');
plot(x,time(:,6),'-k'); hold off;
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...

'Location','northwest')
title('Run Times')
xlabel('tolerance e-n')
ylabel('time (s)')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution

33

%xlim([x(1),x(end-1)]); %use when comparing to highest order solution

subplot(1,3,2)
plot(x,ns(:,1),'-r'); hold on;
plot(x,ns(:,2),'-g');
plot(x,ns(:,3),'-b');
plot(x,ns(:,4),'-c');
plot(x,ns(:,5),'-m');
plot(x,ns(:,6),'-k'); hold off;
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...

'Location','northwest')
title('# Steps')
xlabel('tolerance e-n')
ylabel('# Steps')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]); %use when comparing to highest order solution

subplot(1,3,3)
plot(x,nf(:,1),'-r'); hold on;
plot(x,nf(:,2),'-g');
plot(x,nf(:,3),'-b');
plot(x,nf(:,4),'-c');
plot(x,nf(:,5),'-m');
plot(x,nf(:,6),'-k'); hold off;
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',...

'Location','northwest')
title('# Failed')
xlabel('tolerance e-n')
ylabel('# Failed Steps')
xlim([x(1), x(end)]); %use when comparing to ephemeris solution
%xlim([x(1),x(end-1)]); %use when comparing to highest order solution

%% Functions
function dfdt = Erates(t,f)
global muE
% f -
% t -
% mu -
% J2 - oblateness coefficient
% R - mean radius of Earth (km)

rx = f(1); % X component of r (ECI frame) (km)
ry = f(2); % Y component of r (ECI frame) (km)
rz = f(3); % Z component of r (ECI frame) (km)
vx = f(4); % X component of v (ECI frame) (km/s)
vy = f(5); % Y component of v (ECI frame) (km/s)
vz = f(6); % Z component of v (ECI frame) (km/s)
r = norm([rx ry rz]); % magnitude of position vector (km)

%...Linearized Acceleration
ax = -muE*rx/r^3; % x component of a (ECI frame) (km/s^2)
ay = -muE*ry/r^3; % y component of a (ECI frame) (km/s^2)
az = -muE*rz/r^3; % z component of a (ECI frame) (km/s^2)

%...Output Vector

34

dfdt = [vx vy vz ax ay az]';
end %rates
function dfdt = Srates(t,f)
global muS
% f -
% t -
% mu -
% J2 - oblateness coefficient
% R - mean radius of Earth (km)

rx = f(1); % X component of r (ECI frame) (km)
ry = f(2); % Y component of r (ECI frame) (km)
rz = f(3); % Z component of r (ECI frame) (km)
vx = f(4); % X component of v (ECI frame) (km/s)
vy = f(5); % Y component of v (ECI frame) (km/s)
vz = f(6); % Z component of v (ECI frame) (km/s)
r = norm([rx ry rz]); % magnitude of position vector (km)

%...Linearized Acceleration
ax = -muS*rx/r^3; % x component of a (ECI frame) (km/s^2)
ay = -muS*ry/r^3; % y component of a (ECI frame) (km/s^2)
az = -muS*rz/r^3; % z component of a (ECI frame) (km/s^2)

%...Output Vector
dfdt = [vx vy vz ax ay az]';
end %rates
function dfdt = nrates(t,f)
global muE muL muS R
% This function evaluates acceleration of each member of 3 body system at
% time t from their positions and velocities at that time.
% t - time (s)
% f - column vector of position and velocity componenets
% R12 - cube of distance between m1 and m2 (km^3)
% R13 - cube of distance between m1 and m3 (km^3)
% R23 - cube of distance between m2 and m3 (km^3)
% AX1,AY1,AY3 - acceleration components of mass 1 (km/s^2)
% dydt - column vector of velocity and acceleration componenets at
% time t

%...Initial Conditions (Particle radius & velocity components)
prx = f(1);
pry = f(2);
prz = f(3);
pvx = f(4);
pvy = f(5);
pvz = f(6);

%...Caclulate Vector & Scalar Radii (km)
JD_0 = 2458119.500000000; % (2018-Jan-01 00:00:00.00)
JD = JD_0 + t/86400; % Julian Date
r_moon = lunar_position(JD); % ECI frame lunar position
lrx = r_moon(1);
lry = r_moon(2);
lrz = r_moon(3);
% [lam eps r_sun] = solar_position(JD); % Ecliptic frame solar position
% srx = r_sun(1);

35

% sry = r_sun(2);
% srz = r_sun(3);
RE = norm([prx pry prz]); % Scalar distance Earth/Particle
RL = norm([lrx-prx lry-pry lrz-prz]); % Scalar distance Lunar/Particle
%RS = norm([srx-prx sry-pry srz-prz]); % Scalar distance Solar/Particle

%...J2 Purturbation (from Curtix 12.30)
J2 = 0.00108263;
fac = (3/2) * (J2*muE*R^2) / (RE^5);
J2x = fac*(prx)*(5*prz^2/RE^2-1);
J2y = fac*(pry)*(5*prz^2/RE^2-1);
J2z = fac*(prz)*(5*prz^2/RE^2-3);

%...Lunar Purturbation
lax = muL*(lrx-prx)/RL^3;
lay = muL*(lry-pry)/RL^3;
laz = muL*(lrz-prz)/RL^3;

%...Final Particle Acceleration States
pax = -muE*prx/RE^3 + J2x;% - lax;
pay = -muE*pry/RE^3 + J2y;% - lay;
paz = -muE*prz/RE^3 + J2z;% - laz;

%...Particle Output Vector
dfdt = [pvx pvy pvz pax pay paz]';
end %nrates
function r_moon = lunar_position(jd)
%... Calculate geocentric equatorial position vector of moon given JD
RE = 6376; %Earth radius (km);

%...Time in centuries since J2000
T = (jd-2451545)/36525;

%...Ecliptic longitude (deg):
e_long = 218.32 + 481267.881*T ...

+ 6.29*sind(135.0 + 477198.87*T) - 1.27*sind(259.3 - 413335.36*T)...
+ 0.66*sind(235.7 + 890534.22*T) + 0.21*sind(269.9 + 954397.74*T)...
- 0.19*sind(357.5 + 35999.05*T) - 0.11*sind(186.5 + 966404.03*T);

e_long = mod(e_long,360);

%...Ecliptic latitude (deg):
e_lat = 5.13*sind(93.3 + 483202.02*T) + 0.28*sind(228.2 + 960400.89*T)...

- 0.28*sind(318.3 + 6003.15*T) - 0.17*sind(217.6 - 407332.21*T);
e_lat = mod(e_lat,360);

%...Horizontal parallax (deg):
h_par = 0.9508 ...

+ 0.0518*cosd(135.0 + 477198.87*T) + 0.0095*cosd(259.3 - 413335.36*T)...
+ 0.0078*cosd(235.7 + 890534.22*T) + 0.0028*cosd(269.9 + 954397.74*T);

h_par = mod(h_par,360);

%...Angle between earth's orbit and its equator (deg):
obliquity = 23.439291 - 0.0130042*T;

36

%...Direction cosines of the moon's geocentric equatorial position vector:
l = cosd(e_lat) * cosd(e_long);
m = cosd(obliquity)*cosd(e_lat)*sind(e_long) - sind(obliquity)*sind(e_lat);
n = sind(obliquity)*cosd(e_lat)*sind(e_long) + cosd(obliquity)*sind(e_lat);

%...Earth-moon distance (km):
dist = RE/sind(h_par);
%...Moon's geocentric equatorial position vector (km):
r_moon = dist*[l m n];
end %lunar_position()
function [lamda eps r_S] = solar_position(jd)
% This function calculates the geocentric equatorial position vector
% of the sun, given the Julian date.
%
% User M-functions required: None
% ---
%...Astronomical unit (km):
AU = 149597870.691;
%...Julian days since J2000:
n = jd - 2451545;
%...Julian centuries since J2000:
cy = n/36525;
%...Mean anomaly (deg{:
M = 357.528 + 0.9856003*n;
M = mod(M,360);
%...Mean longitude (deg):
L = 280.460 + 0.98564736*n;
L = mod(L,360);
%...Apparent ecliptic longitude (deg):
lamda = L + 1.915*sind(M) + 0.020*sind(2*M);
lamda = mod(lamda,360);
%...Obliquity of the ecliptic (deg):
eps = 23.439 - 0.0000004*n;
%...Unit vector from earth to sun:
u = [cosd(lamda); sind(lamda)*cosd(eps); sind(lamda)*sind(eps)];
%...Distance from earth to sun (km):
rS = (1.00014 - 0.01671*cosd(M) - 0.000140*cosd(2*M))*AU;
%...Geocentric position vector (km):
r_S = rS*u;
end %solar_position

37

Appendix D: MATLAB Variation of Parameters Code

% This program solves 2body + J2 perturbation dynamics while varying
% orbital elements and tolerances

% Each of the following numbers represents an orbital element state. Select
% vary = 4 to vary inclination. Only elements 3,4,5 should be varied.

% (1) h - angular momentum
% (2) e - eccentricity
% (3) RA - Right Ascension
% (4) incl - inclination
% (5) w -
% (6) TA - True Anomaly
% (7) a - semi-major axis

clear all; close all; clc;
%...Constants
global muE muL muS R
muE = 3.986004415e5; %Earth
muL = 4902.799; %Moon
muS = 1.32712428e11; %Sun
R = 6378; %Earth Radius
G = 6.67259e-20; %Gravitational Constant
hours = 3600; %conversion variable between seconds & hours
days = hours*24; %conversion variable between seconds & days

%...Retrieve Ephemeris Data
eph_LEO = importdata('/Users/angelrocha/Desktop/ephemeris_LEO.txt');
eph_GEO = importdata('/Users/angelrocha/Desktop/ephemeris_GEO.txt');
eph_MEO = importdata('/Users/angelrocha/Desktop/ephemeris_MEO.txt');
eph_HEO = importdata('/Users/angelrocha/Desktop/ephemeris_HEO.txt');

%---
%...Input Data: propagation time & initial states beginning 01/01/2018
%***User input changes occur here
vary = 4; %select orbital element to vary
n = 6; %number of times to vary orbital element
ntol = 9; %number of tolerances to test
span = 25; %days to propagate
t0 = 0; tf = span*days; %initial and final times
f0 = eph_MEO(1,:)'; %retrieve initial ephemeris as initial states
ff = eph_MEO(span+1,:); %retrieve final ephemeris as final states
r0 = f0(1:3); %initial position vector from ephemeris
v0 = f0(4:6); %initial velocity vector from ephemeris
%---

%...Initialize variables to capture propagation data
atol = zeros(n,1); %list of absolute tolerances
rtol = zeros(n,1); %list of relative tolerances
y = zeros(n,6,6); %array of final states for each propagation
x = zeros(n,1); %extra variable used to define relative tolerance
time = zeros(ntol,n); %list of computational times for each propagation
ns = zeros(ntol,n); %list of numbers of steps (correct calculations)
nf = zeros(ntol,n); %list of numbers of failed steps

38

%...Retrieve State Vectors from Varied Orbital Element
state = sv_vary_coe(r0,v0,muE,vary,n);
variations = linspace(0,90,n+1);
variations = variations(1:end-1);
%...Loop through propagation for varied states and tolerances
for i = 1:ntol %loop through tolerances

for j = 1:n %loop through varied states
x(i) = (3+i);
z = x(i)+1;
rtol(i) = 1*10^-(x(i)); %set relative tolerance
atol(i) = 1*10^-(z); %set absolute tolerance (1e-1 tighter)
opts = odeset('Reltol', 1e-4, 'AbsTol', 1e-5, 'stats', 'on');
tic
[t, f, stats] = ode87(@nrates,[t0 tf], state(j,:)');
%...Store data
time(i,j) = toc; y(j,:,i) = f(end,:);
ns(i,j) = stats(1); nf(i,j) = stats(2);

end
end

%% Text Results
switch vary

case 1
fprintf('Cannot vary angular momentum, select vary = 3,4, or 5.\n')

case 2
fprintf('Cannot vary eccentricity, select vary = 3,4, or 5.\n')

case 3
fprintf('%g variations of Right Ascension\n',n)
fprintf('Values of Right Ascension (deg) tested: %g\n', variations)

case 4
fprintf('%g variations of Inclination\n',n)
fprintf('Values of Inclination (deg) tested: %g\n', variations)

case 5
fprintf('%g variations of Argument of Periapsis\n',n)
fprintf('Values of Argument of Periapsis (deg) tested: %g\n', variations)

case 6
fprintf('Cannot vary True Anomaly, select vary = 3,4, or 5.\n')

case 7
fprintf('Cannot vary semi-major axis, select vary = 3,4, or 5.\n')

end

%...Plot Run Times, Total Steps, Number of Errors
figure
subplot(1,3,1)
plot(x,time(:,1),'-r'); hold on;
plot(x,time(:,2),'-g');
plot(x,time(:,3),'-b');
plot(x,time(:,4),'-c');
plot(x,time(:,5),'-m');
plot(x,time(:,6),'-k'); hold off;
title('Run Times')
xlabel('tolerance e-n')
ylabel('time (s)')
%xlim([x(1), x(end)]); %use when comparing to ephemeris solution

39

xlim([x(1),x(end-1)]); %use when comparing to highest order solution

subplot(1,3,2)
plot(x,ns(:,1),'-r'); hold on;
plot(x,ns(:,2),'-g');
plot(x,ns(:,3),'-b');
plot(x,ns(:,4),'-c');
plot(x,ns(:,5),'-m');
plot(x,ns(:,6),'-k'); hold off;
title('# Steps')
xlabel('tolerance e-n')
ylabel('# Steps')
%xlim([x(1), x(end)]); %use when comparing to ephemeris solution
xlim([x(1),x(end-1)]); %use when comparing to highest order solution

subplot(1,3,3)
plot(x,nf(:,1),'-r'); hold on;
plot(x,nf(:,2),'-g');
plot(x,nf(:,3),'-b');
plot(x,nf(:,4),'-c');
plot(x,nf(:,5),'-m');
plot(x,nf(:,6),'-k'); hold off;
title('# Failed')
xlabel('tolerance e-n')
ylabel('# Failed Steps')
%xlim([x(1), x(end)]); %use when comparing to ephemeris solution
xlim([x(1),x(end-1)]); %use when comparing to highest order solution

function dfdt = nrates(t,f)
global muE muL muS R
% This function evaluates acceleration of each member of 3 body system at
% time t from their positions and velocities at that time.
% t - time (s)
% f - column vector of position and velocity componenets
% R12 - cube of distance between m1 and m2 (km^3)
% R13 - cube of distance between m1 and m3 (km^3)
% R23 - cube of distance between m2 and m3 (km^3)
% AX1,AY1,AY3 - acceleration components of mass 1 (km/s^2)
% dydt - column vector of velocity and acceleration componenets at
% time t

%...Initial Conditions (Particle radius & velocity components)
prx = f(1);
pry = f(2);
prz = f(3);
pvx = f(4);
pvy = f(5);
pvz = f(6);

%...Caclulate Vector & Scalar Radii (km)
JD_0 = 2458119.500000000; % (2018-Jan-01 00:00:00.00)
JD = JD_0 + t/86400; % Julian Date
r_moon = lunar_position(JD); % ECI frame lunar position
lrx = r_moon(1);
lry = r_moon(2);
lrz = r_moon(3);

40

% [lam eps r_sun] = solar_position(JD); % Ecliptic frame solar position
% srx = r_sun(1);
% sry = r_sun(2);
% srz = r_sun(3);
RE = norm([prx pry prz]); % Scalar distance Earth/Particle
RL = norm([lrx-prx lry-pry lrz-prz]); % Scalar distance Lunar/Particle
%RS = norm([srx-prx sry-pry srz-prz]); % Scalar distance Solar/Particle

%...J2 Purturbation (from Curtix 12.30)
J2 = 0.00108263;
fac = (3/2) * (J2*muE*R^2) / (RE^5);
J2x = fac*(prx)*(5*prz^2/RE^2-1);
J2y = fac*(pry)*(5*prz^2/RE^2-1);
J2z = fac*(prz)*(5*prz^2/RE^2-3);

%...Lunar Purturbation
lax = muL*(lrx-prx)/RL^3;
lay = muL*(lry-pry)/RL^3;
laz = muL*(lrz-prz)/RL^3;

%...Final Particle Acceleration States
pax = -muE*prx/RE^3 + J2x;% + lax;
pay = -muE*pry/RE^3 + J2y;% + lay;
paz = -muE*prz/RE^3 + J2z;% + laz;

%...Particle Output Vector
dfdt = [pvx pvy pvz pax pay paz]';
end %nrates

41

References

[1] Vallado, D. A., Fundamentals of Astrodyamics and Applications, 2nd ed., Space Technology Library, California, 2007, Chap.
8.

[2] Curtis, H. D., Orbital Mechanics for Engineering Students, 3nd ed., Elsevier Ltd., Oxford, UK, 2014, Chaps. 1,2,4,12.
[3] Verner, H. K., “Explicit Runge-Kutta Methods with Estimates of the Local Truncation Error” SIAM Journal on Numerical

Analysis, Vol. 15, 1978, pp. 772-790.
[4] Dormand, J. R., and Prince, P. J., “A Family of Embedded Runge-Kutta Formulae,” Journal of Computational and Applied

Mathematics, Vol. 6, 1980, pp. 19-26.
[5] Prince, P. J., and Dormand, J. R., “High Order Embedded Runge-Kutta Formulae,” Journal of Computational and Applied

Mathematics, Vol. 7, 1981, pp. 67-75.
[6] Calvo, M., Montijano, J. I., and Randez, L., “A Fifth-Order Interpolant for the Dormand and Prince Runge-Kutta Method,”

Journal of Computational and Applied Mathematics, Vol. 29, 1990.
[7] Shampine, L. F., and Reichelt, M. W., “The MATLAB ODE Suite,” SIAM Journal on Scientific Computing, Vol. 18, 1997.
[8] Higham, D. J., “The Tolerance Proportionality of Adaptive ODE Solvers,” Journal of Computational and Applied

Mathematics, Vol. 45, 1993, pp. 227-236.
[9] “HORIZONS Web-Interface Solar System Dynamics”, Jet Propulsion Laboratory [online database],

https://ssd.jpl.nasa.gov/horizons.cgi [retrieved 20 March 2018].
[10] Aristoff, J. M., and Poore, A. B., “Implicit Runge-Kutta Methods for Orbit Propagation,” AIAA/AAS Astrodynamics

Specialist Conference, 2012. (Analysis on local and global error, also different orbit types have different costs)
[11] Ritschel, T., “Numerical Methods for Solution of Differential Equations,” Technical University of Denmark.
[12]Govorukhin, V., “ode87 Integrator,” MathWorks File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/

3616-ode87-integrator [retrieved 5 January 2018].
[13] Urutxua, H., Bombardelli, C., Pelaez, J., and Huhn, A., “High Fidelity Models for Orbit Propagation: DROMO vs. Stormer-

Cowell”, European Space Surveillance Conference, 2011. (RK F 67 vs RKF 78, physical model conclusions)
[14] Berry, M. M., and Healy, L. M., “Implementation of Gauss-Jackson Integration for Orbit Propagation,” The Journal of the

Astronautical Sciences, Vol. 52, 2004, pp. 356.
[15] Skeel, R. D., “Thirteen Ways to Estimate Global Error,” Numerische Mathematik, Vol. 48, 1986, pp1-20.
[16]“Types of Solvers,” MathwWorks, https://www.mathworks.com/help/simulink/ug/types-of-solvers.html [retrieved 8

November 2017].
[17]Fehlberg, E., “Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control,” National

Aeronautics and Space Administration, [Retrieved 8 November 2017].

http://www.mathworks.com/matlabcentral/fileexchange/
http://www.mathworks.com/help/simulink/ug/types-of-solvers.html

	Abstract
	II. Introduction
	III. Background
	A. Orbit Types
	 GEO: Geostationary Orbit
	 HEO: Highly Eccentric Orbit
	 LEO: Low Earth Orbit
	 MEO: Medium Earth Orbit
	 TO: Transfer Orbit (Mars Transfer Orbit, MTO & Venus Transfer Orbit, VTO)
	B. Orbital Elements
	Fig. 1 Planetary Orbit in the heliocentric
	 Position Along Orbit (𝜽)
	C. Physical Model & Perturbations
	D. Numeric Integrator Characteristics
	 Single-step vs. Multi-step
	 Fixed-step vs. Variable-step
	 RK, DP, ABM
	Fig. 2 RK4 Interpolation [1]
	E. Tolerance Control
	F. Literature Review

	IV. Propagation Parameters
	A. Satellites
	Table 1 Initial Orbital Data
	 Numerical Integrator
	 Tolerance
	 Model Fidelity
	Table 4 Physical Models
	Table 5 Propagation Time & Distance
	A. 3D Models
	Fig. 3 GEO 3-D Orbit
	Fig. 5 LEO 3-D Orbit Fig. 6 MEO 3-D Orbit
	Fig. 42 Vary Tolerance: LEO, ODE45, 600hour, J2+Lunar (Computational Results)
	Fig. 12: Position Error: GEO, 25day, 2-body Fig. 13: Velocity Error: GEO, 25day, 2-body
	Fig. 14 Position Error: GEO, 1day, 2-body Fig. 15 Position Error: HEO, 1day, 2-body
	Fig. 18 Position Error: GEO, 5day, 2-body Fig. 19 Position Error: HEO, 5day, 2-body
	Fig. 22 Position Error: GEO, 10day, 2-body Fig. 23 Position Error: HEO, 10day, 2-body
	Fig. 26 Computation Results: LEO, 600hr, 2body Fig. 27 Computation Results: LEO, 600hr, J2+Lunar
	Table 10 Earth Orbit Period & Computation Time
	Fig. 40 Computation Results: MEO, 600hour, J2+Lunar
	Fig. 42 Computation Results: MTO, 600hr, 2body Fig. 43 Computation Results: VTO, 600hr, 2body
	Fig. 44 X & VX Convergence Results: MTO, 600hr, 2body
	Table 11 500 Orbit Propagation: Computation Times & Keplerian Dependencies
	Table 12 Summary of Relevant Initial Orbital Elements

	Appendix A: Butcher Coefficients
	Appendix D: MATLAB Variation of Parameters Code
	References

