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Abstract 
 
 

This report intends to recommend preliminary numerical integrator settings for low to 
medium fidelity orbit determination models based on orbital elements. Solutions from 
numerical simulations of propagated satellite orbit trajectory states are first used to quantify 
the relationship between computational cost of each algorithm and accuracy of each solution. 
This relationship is generally dependent on integrator characteristics and tolerance settings. 
Once the relationship between computation cost and accuracy is quantified, orbital element 
dependencies of each numerical integrator are explored. These dependencies are found to be 
primarily limited to some combination of eccentricity, semi-major axis, and orbital period or 
angular velocity. The combined analysis of integrators as well as orbital elements enables a 
refinement of algorithm recommendations for various types of orbit determination problems. 

 
 

I. Nomenclature 
 

𝑎𝑎 = semi-major axis 
𝐶𝐶 =   individual state 
𝛿𝛿 =   error tolerance 
e = eccentricity 
𝜖𝜖 = error 
h = step size 
i = inclination 
𝑘𝑘 = increment slope 
𝑛𝑛 = step number 
𝜔𝜔 = argument of periapsis 
Ω = right ascension 
𝑞𝑞 = order of integrator 
𝑝𝑝 = undetermined step 
𝜙𝜙 = incrementation function 
r = radius 
𝑟𝑟𝑟 = velocity 
𝑟𝑟𝑟 = acceleration 
𝑎𝑎/ = acceleration due to perturbation force 
𝑠𝑠 = number of stages 
𝜏𝜏 = orbital period 
∗ = predicted state 
𝜃𝜃 = true anomaly 
𝜇𝜇 = gravitational parameter 
𝚤𝚤,̂  𝚥𝚥,̂  𝑘𝑘9 =   Cartesian unit vectors 
𝑋𝑋, 𝑌𝑌, 𝑍𝑍 =   Cartesian position vectors 
𝑉𝑉𝑋𝑋, 𝑉𝑉𝑌𝑌, 𝑉𝑉𝑍𝑍 =   Cartesian velocity vectors 
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II. Introduction 
 

Propagation in astrodynamics is concerned with the determination of trajectory states over time. These states may 
be propagated by use of numerical integrators which approximate a solution to a nonlinear ODE initial value problem 
of the general form 

 

𝑦𝑦@(𝑥𝑥) = 𝑓𝑓F𝑥𝑥, 𝑦𝑦(𝑥𝑥)G, 𝑦𝑦(𝑥𝑥H) = 𝑦𝑦H (1) 

In this case of orbit propagation, the specific ODE to consider is Cowell’s formulation of the Kepler problem 
which captures two body dynamics in Eq. (2). 

𝒓𝒓𝑟   = −𝜇𝜇 
𝒓𝒓

 
𝑟𝑟K 

 
(2) 

 

Due to the vectorized formulation of Keplerian dynamics, perturbing accelerations may easily be included to 
capture the influence of additional bodies, solar radiation, drag, etc. By introducing additional perturbation forces to 
the simplified two body formulation, the nonlinear ODE of interest may be defined with initial time, position, and 
velocity state conditions by Vallado [1] as 

 
ODE: 𝒓𝒓𝑟 = −𝜇𝜇 

𝒓𝒓 
+ 𝒂𝒂 (𝒓𝒓, 𝒓𝒓𝑟 , 𝑡𝑡) 

 

 
(3) 

𝑟𝑟K 𝒑𝒑 

IC: 𝑡𝑡H, 𝒓𝒓𝟎𝟎, 𝒓𝒓𝑟 H 
 

This formulation suggests that the trajectory path then depends on the combined planetary and perturbation forces 
which act on the system over time. By solving the associated differential equations with numerical solvers, it is 
possible to propagate or predict trajectories over time. The accuracy of the solution then depends on a combination of 
factors including model fidelity, quality of numerical integrator, and orbital elements. 

 
 

III. Background 
 

A. Orbit Types 
The orbits to be propagated for this analysis may be considered to belong to one of five broad categories. Four of 

these are Earth orbiting (EO) while the fifth is a general case for interplanetary missions which can be called Transfer 
orbits (TO). Each Earth orbit has a unique set of use cases and can be identified in terms of the orbital elements which 
define them. Three dimensional representations of each orbit are presented as results in Fig. 3 through Fig. 8 for 
reference. These five orbit categories include: 

• GEO: Geostationary Orbit 
GEO is defined by a constant altitude of approximately 35,786km. This ensures that the orbit matches Earth’s 
rotation frequency and appears stationary from a perspective on the surface of Earth. 

• HEO: Highly Eccentric Orbit 
HEO does not specifically depend on orbit altitude and is instead defined by the Keplerian element 
eccentricity which describes the elliptical shape of an orbit. Orbits with eccentricities in the range 1 > 𝑒𝑒 ≥ 
0.5 are typically categorized as HEO. 

• LEO: Low Earth Orbit 
LEO is defined by a range of orbital altitudes that place a satellite relatively close to the Earth’s surface. LEO 
satellites typically orbit at altitudes between 200km and 2,000km. The minimal altitude gives these satellites 
very short orbital periods (𝜏𝜏) between 84 and 127 minutes. 

• MEO: Medium Earth Orbit 
MEO, otherwise referred to as Intermediate Circular Orbit (ICO) encompasses the region of near circular 
orbital space between LEO and GEO. That is above 2000km and below 35,786km. Many HEO satellites 
including GOES-14 are placed into semi-synchronous orbits with altitudes of approximately 20,200km. This 
causes the satellite to orbit with a period of about 12 hours. 

• TO: Transfer Orbit (Mars Transfer Orbit, MTO & Venus Transfer Orbit, VTO) 
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In order to simplify mathematical modeling and analyze the relationship between orbital elements and 
computational cost, TO is considered as a fifth category of orbits. This is accomplished by shifting the inertial 
frame of a propagated orbit from Earth-centered inertial (ECI) to Sun-centered inertial (SCI). Consequently, 
TOs are not strictly defined by Keplerian elements but are instead defined by the implementation of SCI as 
the reference frame of choice for propagation. Although EO and TO are defined relative to inertial reference 
frame, they tend to have dramatically different semi major axes and orbital periods. While EO have relatively 
small semi major axes and short orbital periods, TO have very large semi major axes and long orbital periods 
by comparison. 

 
B. Orbital Elements 

The set of orbital elements considered for analysis include the classical Keplerian elements as well as orbital period 
(𝜏𝜏). Orbital period is included as it provides a method to relate angular velocity (𝜃𝜃𝑟) of a satellite orbit to the 
performance results of various integrators. The Keplerian system is defined by six orbital elements. These elements 
may be categorized in one of three ways. They describe either the shape and size of the orbit, the orientation of the 
reference frame, or the position of the particle on the defined orbit. The combined Keplerian elements define an orbit 
as presented in Fig. 1. 

• Shape and Size of Orbit (𝒆𝒆, 𝒂𝒂) 
The two elements which define the shape and size of an 
orbit are the eccentricity (𝑒𝑒) and semi-major axis (𝑎𝑎). The 
eccentricity specifies the elliptical shape of the orbit in the 
range 0 < 𝑒𝑒 < 1. A value of 0 specifies a perfectly circular 
orbit while values of 𝑒𝑒 ≥ 1 relate to hyperbolic projectiles. 
Semi-major axis specifies the size of the orbit. It is a 
measure of one-half of the total major axis length from the 
center of the ellipse through the focus and to one end. 

• Orientation of Orbit (𝛀𝛀, 𝒊𝒊, 𝝎𝝎) 
The three elements which define the orientation of an orbit 
are the right ascension (Ω), inclination (𝑖𝑖), and argument of 
periapsis (𝜔𝜔). Right ascension is an angular measure of the 
orientation of the orbit from the Line of Nodes which is the 
linear intersection between the orbit plane and reference 
(equatorial) plane. Inclination is an angular measure of the 
tilt of an orbit relative to the reference plane used to define 

Fig. 1 Planetary Orbit in the heliocentric 
ecliptic frame [2] 

the Line of Nodes. Argument of periapsis, the final orbit orienting element, spins the obit it the plane defined 
by its right ascension and inclination. It is an angular measure of periapsis from the ascending node. 

• Position Along Orbit (𝜽𝜽) 
The element which defines the position of a particle along its orbit is true anomaly (𝜃𝜃). It is an angular 
measure between the direction of periapsis and the position of the body with respect to the primary focus of 
the ellipse. 

 
C. Physical Model & Perturbations 

The vector representation of Cowell’s formulation of Kepler’s problem with perturbing accelerations in Eq. (3) is 
ideal for modeling in Cartesian reference frames. The advantage of the vector representation is the ability to easily 
add any number of relevant perturbation forces and n-body interactions. Depending on the level of accuracy required 
for a simulation, the model fidelity may be scaled accordingly with the addition or omission of perturbing forces. In 
EO for example it is crucial to include 𝐽𝐽` since the magnitude of the perturbing force due to the oblateness of Earth is 
large. For TO systems in the SCI frame, however, perturbation due to oblateness is relatively negligible. For TO 
systems it would be more important to include perturbations due to solar gravity and solar radiation depending on the 
specific mission. For reference, estimated magnitudes of various perturbing accelerations are provided by Curtis [2] 

 

𝑎𝑎/  abcdefg hijbdakagg ≈ 10m`𝑎𝑎H 
𝑎𝑎/  jnkbc ocbpqdr ≈ 𝑎𝑎/  

ghjbc ocbpqdr ≈ 10ms𝑎𝑎H (4) 
𝑎𝑎/  

ghjbc cbtqbdqhk 
≈ 10mu𝑎𝑎H 
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From Eq. (4) Earth’s oblateness (𝐽𝐽`) perturbation is identified as having the greatest magnitude. It is strong 
enough to produce phenomena including precession of the right ascension of the ascending node and apsidal nodal 
regression [1]. For this reason, it is critical to model 𝐽𝐽` dynamics for any satellite orbit propagation in EO. A 
vectorized mathematical model of 𝐽𝐽` is given by [2] as 

 

3 𝐽𝐽`𝜇𝜇𝑅𝑅`    𝑥𝑥 
 

  

𝑧𝑧` 
 

 

𝑦𝑦 𝑧𝑧` 
 

  

𝑧𝑧 𝑧𝑧` 
É 

 
  

𝒂𝒂𝒑𝒑𝑱𝑱𝟐𝟐 
= 2 𝑟𝑟{    [ 𝑟𝑟 }5 𝑟𝑟` − 1∏ Ä + 𝑟𝑟 }3 𝑟𝑟` − 1∏ Å + 𝑟𝑟 }5 𝑟𝑟` − 3∏ 𝒌𝒌 

𝐽𝐽` = 0.00108263 
(5) 

 

Based on the summary of magnitudes of perturbing forces for EO satellites in Eq. (4), a second perturbing 
acceleration to consider is lunar gravity. The associated dynamics of both 𝐽𝐽` and lunar gravity perturbations are 
introduced to Eq. (4) which produces an updated formulation of the ODE in Eq. (3) as 

 
𝒓𝒓𝑟 = −𝜇𝜇 

𝒓𝒓 
+ 𝜇𝜇 

 

𝒓𝒓 
+𝒂𝒂 

 

 
(𝒓𝒓, 𝒓𝒓𝑟 , 𝑡𝑡) 

abcde 𝑟𝑟K Ühhk 𝑟𝑟K 𝒑𝒑𝑱𝑱𝟐𝟐 (6) 
 

The results presented in this report for EO cases primarily depend on the dynamics of Eq. (6). Some cases of EO 
and all cases of TO are instead modeled with simplified two body dynamics of Eq. (2). 

 
D. Numeric Integrator Characteristics 

• Explicit vs. Implicit 
Traditional propagation algorithms estimate states by use of explicit numerical methods. The simple 

mathematics of explicit numerical methods is presented in Eq. (7). When using an explicit method, the IVP is 
solved independently at each step by calculating the subsequent state from an existing state. Examples of 
explicit integrators include the Runge-Kutta (RK) and Dormand-Prince (DP) variations used in this report. 

 
𝑦𝑦káà = 𝑦𝑦k + ℎ𝑓𝑓(𝑡𝑡k, 𝑦𝑦k) (7) 

Alternatively, implicit methods solve an IVP though a prediction and correction of future states based on 
both existing and future states. Consequently, implicit methods rely on determination of the state 𝑥𝑥káà as a 
function of itself as presented in Eq. 8. Due to the nonlinearity of system dynamics, implicit methods cannot 
be solved analytically. Instead, they must use Newtonian iterations to determine a solution for 𝑥𝑥káà. The 
advantage of implicit numeric integration is improved system stability. Stability ensures that truncation errors 
decay as a propagation moves from one step to the next. This tends to produce superior convergence 
characteristics but does not necessarily improve solution accuracy. An example of implicit integrators is the 
Adams-Bashforth-Moulton (ABM) method used in this report. 

 
𝑦𝑦káà = 𝑦𝑦k + ℎ𝑓𝑓(𝑡𝑡káà, 𝑦𝑦káà) (8) 

 

• Single-step vs. Multi-step 
Single-step methods determine subsequent steps solely from calculated information of the most recent 

previous state. The RK and DP methods considered in this analysis are single step integrators. 
Multi-step methods determine subsequent steps from information of several previously calculated steps. 

The use of additional existing steps allows for multi-step methods to achieve higher orders of accuracy 
compared to single-step methods. This is done by determining and correcting the local truncation error at each 
step. Because multi-step methods continually update future states, it is possible to determine if a step size is 
small enough to satisfy tolerance conditions for 𝑦𝑦káà and simultaneously determine if a step size is large 
enough to avoid erroneous calculations. This feature optimizes calculations in a way that minimizes 
computational cost associated with solution determination. 

The ABM integrator considered in this analysis is an example of a multi-step method. Specifically, it uses 
𝑦𝑦kmK, 𝑦𝑦km`, 𝑦𝑦kmà, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦k to generate a solution for 𝑦𝑦káà. A caveat to this style of multi-step integration is that 
the four states 𝑦𝑦kmK, 𝑦𝑦km`, 𝑦𝑦kmà, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦k must be determined in advance. Therefore, ABM must be initialized 
with an alternative single-step integrator such as RK or DP. 
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• Fixed-step vs. Variable-step 
Classical numerical integrators including the RK4 method rely on fixed-step integration. With fixed-step 

integrators, the total propagation distance is divided into equal time or distance spaced steps. This simplifies 
mathematics while sacrificing computational cost and efficiency performance characteristics. 

Unlike the constant step size formulation of the RK4 method, modern numerical integrators use prediction- 
correction mathematics to dynamically adjust step size. Variable-step size algorithms incorporate tolerance 
criteria to determine the accuracy at each step by considering two methods at each step. This allows for step- 
size adjustments to be made at each step. RKF45 for example compares a fourth order solution and a fifth 
order solution in order to calculate local error. 

 

 
 
 

• RK, DP, ABM 

Fixed-step 
Variable-step 

ℎ: 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡 
ℎ: 𝑛𝑛𝑐𝑐𝑡𝑡 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡 

(9) 

The Runge-Kutta (RK) family of numeric integrators originate from RK𝑝𝑝 methods where 𝑝𝑝 represents 
order of the method. These are explicit single step methods meaning the states 𝑦𝑦qáà at time 𝑡𝑡q + ℎ, are 
obtained from the equation 

 

𝑦𝑦káà = 𝑦𝑦k + ℎ 𝜙𝜙(𝑡𝑡k, 𝑦𝑦k, ℎ) (10) 
 

where 𝜙𝜙 represents an incrementation function that averages multiple derivative evaluations over the time 
interval [𝑡𝑡q: 𝑡𝑡q + ℎ]. The average is obtained through evaluation of the derivative of the ODE of interest at 
some number of stages 𝑠𝑠 within the specified time interval. For the fourth order RK4 method with 𝑠𝑠 = 4 
stages, Eq. (10) becomes 

 

 
𝑦𝑦káà 

 
= 𝑦𝑦k + ℎ 

(𝑘𝑘à + 2𝑘𝑘` + 2𝑘𝑘K + 𝑘𝑘{) 
6 

(11) 

with 𝜙𝜙 being substituted for an expression of the weighted average of the four stages evaluated. In this 
formulation 𝑘𝑘g represents the 𝑠𝑠de increment based on the slope (derivative) at a particular subinterval of the 
time interval being considered. Fig. 2 provides a visual representation of the four slopes evaluated for an RK4 
method. The process of evaluating the value of each 𝑘𝑘g is to first evaluate 𝑘𝑘à, the slope at the originating point 
in time. This slope is then traced to the midpoint of the time interval where a new slope 𝑘𝑘` is evaluated. From 
the originating point in time 𝑘𝑘` is traced to the 
midpoint of the time interval where a third slope 
𝑘𝑘K is evaluated. This third slope is traced from 
the originating point in time to the final point in 
time where a final slope 𝑘𝑘{ is evaluated. The final 
slope is then traced from the originating point in 
time to the final point in time where a new 
solution is obtained by evaluating Eq. (11) with 

𝑘𝑘g. A more detailed derivation of the RK4 
method is provided by [2], however the family of 
RK methods may be represented in similar ways. 
Unlike the constant step size nature of the RK4 

method, modern adaptions of RK produce 
variable step-size capabilities by considering two 

methods at each step. Adaptive step sizes are 
estimated based on the local truncation error at 
each step by comparing a 𝑞𝑞de order solution with 
a (𝑞𝑞 − 1)de order solution. In the explicit Runge- 
Kutta-Fehlberg (RKF) family of algorithms for 

example, the RKF4(5) method tests a fourth 
order solution against a fifth order error estimate 

Fig. 2 RK4 Interpolation [1] 
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/áà 
káà 

[3]. If local error 𝜖𝜖 meets the tolerance 𝛿𝛿 setting then the higher fifth order solution is propagated forward, 
otherwise known as local interpolation. 

The explicit DP family of integrators, on the other hand, interpolate with the lower order of two solutions 
once the tolerance criteria is satisfied. In the case of the DP5(4) [4], fourth order interpolation is applied 
although a fifth order solution is calculated. Since DP is a subclass of RK, they are also traditionally explicit 
single step methods. Newer mathematical formulations of DP methods, however are considered to have 
different stability characteristics compared to RKF due to lower order interpolation. Analysis of the stability 
characteristics of both styles of interpolation in RK and DP is presented in [4][5][6]. 

The only additional style of integrator used for this analysis is the ABM variation of MATLAB’s ODE113 
integrator [7]. This method differs from both the RKF and DP families in that it is a variable order method as 
opposed to a fixed order method. ABM relies on a combination of Adams-Bashforth (AB) for explicit 
prediction of future states and Adams-Moulton (AM) for implicit correction of predicted states. In practice, AB predicts 𝑦𝑦∗     which is then evaluated  as 𝑓𝑓(𝑡𝑡 , 𝑦𝑦∗ ) where the * notation specifies a predicted state. 

káà káà káà 
This function evaluation is then inserted into the AM method which corrects 𝑦𝑦káà and then evaluates 
𝑓𝑓(𝑡𝑡káà, 𝑦𝑦káà). The ABM method must satisfy the local truncation error formulation expressed in Eq. (12) 
which differs slightly from the local truncation error formulation of Eq. (15). The main difference being that 
Eq. (12) depends on predicted which may change at various steps which is not the case for explicit RK and 
explicit DP methods. Additionally, the variable order nature of ABM means that the order of the two methods 
considered for error estimation and interpolation are not necessarily consistent at each step as is the case in 
RKF and DP. The ABM method is a variable step, variable order integrator of orders 1 to 13. 

 

 
𝜖𝜖káà ≈ 

𝐶𝐶/áà 

𝐶𝐶∗ − 𝐶𝐶/áà 

 
(𝑦𝑦káà − 𝑦𝑦∗   ) (12) 

 

In general, higher order integrators produce more accurate solutions for orbit determination. Other 
considerations for numerical methods include local and global error estimates, stiffness, etc. Analysis of local 
truncation error can be found by Verner [3] for select RK integrators. Butcher tableaus for each of the 
integrators used in the analysis are provided in appendix [A]. 

 
E. Tolerance Control 

Numeric integrators use tolerance settings to control the accuracy of a solution. Integrators from the RKF family 
run on a single defined tolerance while others, including those from the DOPRI and ABM families distinguish between 
Absolute tolerance (AbsTol) and Relative tolerances (RelTol). Tolerance is Relative by default and therefore the RKF 
family of integrators used in this report only utilize RelTol settings. 

RelTol specifies the allowable percent error at any step during simulation. Percent error is relative to the states 
being calculated at each step. Setting RelTol to 1.0e-2 (0.01) thus specifies a 1% error limit relative to each state value 
at each step. RelTol may be thought of as a control for the number of significant figures which must be accurate for a 
solution. 

AbsTol controls allowable error specifically when the value of a solution approaches 0. It sets a threshold below 
which the accuracy of a solution may be ignored under the assumption that very small state values have insignificant 
errors. AbsTol settings therefor specify the decimal place in a solution beyond which variation may be ignored. 

When used in conjunction, RelTol specifies the accuracy of a solution as a number of significant digits for each 
state at each step except for when the absolute error falls below the threshold set by the AbsTol. At each step i the 
numeric integrator estimates local error 𝜖𝜖 for each j state to satisfy. If the error tolerance is not initially met, then the 
integrator must reduce the time step i until the calculated error of each state satisfies Eq. (15). 

 

RelTol: 𝑎𝑎𝑎𝑎𝑠𝑠(𝑋𝑋 − 𝑌𝑌) 
 

min (𝑎𝑎𝑎𝑎𝑠𝑠(𝑋𝑋), 𝑎𝑎𝑎𝑎𝑠𝑠(𝑌𝑌)) 
(13) 

AbsTol: 𝑎𝑎𝑎𝑎𝑠𝑠(𝑋𝑋 − 𝑌𝑌) (14) 
 

|𝜖𝜖(𝑖𝑖, 𝑗𝑗)| ≤  max (𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅 ∗ |𝑦𝑦(𝑖𝑖, 𝑗𝑗)| , 𝐴𝐴𝑎𝑎𝑠𝑠𝑅𝑅𝑐𝑐𝑅𝑅(𝑖𝑖, 𝑗𝑗)) (15) 
 

The above formulation requires that state values with large magnitudes have their accuracy determined by the 
specified RelTol while the state values with small magnitudes have their accuracy determined by the specified AbsTol. 
Depending on the application, tolerances may either be increased (or loosened) to speed up simulation time at the cost 
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of accuracy or decreased (or tightened) to increase accuracy at the cost of simulation time. For orbit propagation 
applications we will see that very small tolerances are necessary in order to produce useful solutions [8]. 

 
F. Literature Review 

A number of studies which compare various integration methods for the purpose of orbit propagation have been 
conducted in recent years. These studies commonly focus on optimizing a single integration method for a particular 
type of orbit and compare the results with a few other methods. Some popular integrators include variations of RK 
and Gauss-Jackson for orbit analysis. As there are many studies with data on computational cost and accuracy of 
integrators they will be used to compare results for a wider range of solvers. 

A paper by Jones discusses Gauss-Legendre collocation for orbit propagation. Jones describes a variable-step 
implementation for propagation which is designed to be more effective for eccentric orbits. Variable-time steps are 
favorable over fixed-time orbits due to the nature of constant acceleration and deceleration along eccentric orbits. By 
using a fixed distance propagator, accuracy would be lost along the perigee where satellite speed is the fastest. Because 
orbits are inherently eccentric to some degree, variable step propagators are essential for high fidelity models. Jones 
continues by comparing the Gauss-Legendre collocation model to ordinary differential equation solvers. Furthermore, 
this method implements Gauss-Legendre in the form of an implicit RK scheme. The advantage gained by the RK 
scheme is the development of variable-step techniques which may autonomously determine step sizes based on 
tolerances. One of the models that Jones compares the Gauss-Legendre collocation results against is the DOPRI 8(7) 
and DORPI 5(4) methods which also implements step size control. An additional advantage by the implicit RK scheme 
used by Jones is parallelization. The majority of explicit methods cannot utilize multi core processing and suffer from 
long computation times on the force mode. The conclusions drawn from this report indicate that integration with 
Gauss-Legendre nodes with variable-step implementation outperformed DP 8(7) and 5(4) embedded RK, but not the 
Gauss-Jackson 8 integrator r= r3rin terms of computational cost for circular orbits. For Molniya orbits however, this 
method outperformed DP 5(4) and Gauss-Jackson 8 while matching DP 8(7). 

Another paper by Berry and Healy specifically compares speed and accuracy of the variable-step Stormer-Cowell 
Integrator. Like the Gauss Legendre collocation method, this integrator utilizes autonomous step size control from 
local error approximations. Berry and Healy then compare results of the Stormer-Cowell method with two Gauss- 
Jackson methods and the Shampine Gordon method. There is a focus in this paper around multi-step integrators which 
are designed to be faster that single-step integrators. Additionally, double-integration methods have the advantage of 
computing second-order differential equations such as the Cowell second order formulation of two body equations of 
motion. This is in contrast to single integration methods which solve first-order differential equations and must be 
applied twice in order to compute the same variables. 

More recently, Jones and Anderson have explored both symplectic and collocation methods for orbit propagation. 
The symplectic method is examined as it preserves the Hamiltonian and tends to reduce integration error as a result 
of truncation. This allows for large time steps during integration which reduces overall computational cost while 
maintaining accuracy. Node spacing for various collocation methods is also explored in this report as it relates to the 
varying distance between time steps. Gauss, Lobatto, and Chebyshev nodes are explored which all have variations in 
node density for propagation. 

 

IV. Propagation Parameters 
A. Satellites 

Six satellites are propagated for this analysis for each of the EO cases while two satellites are propagated for TO 
cases. Initial conditions for each satellite are cartesian states retrieved from JPL Horizons [9] as ephemeris data. The 
four Earth orbiting satellites are propagated from ephemeris data for 2018-Jan-01 while MTO and VTO are propagated 
from 2011-Dec-01 and 2005-Dec-01, respectively. Table 1 presents a summary of initial orbital elements. 

 
Initial Orbital Data 

Orbit Satellite 𝝉𝝉 (𝒎𝒎𝒊𝒊𝒎𝒎) 𝒆𝒆 (𝐝𝐝𝐝𝐝𝐝𝐝) 𝒂𝒂 (𝒌𝒌𝒎𝒎) 𝛀𝛀 (𝒅𝒅𝒆𝒆𝒅𝒅) 𝒊𝒊 (𝒅𝒅𝒆𝒆𝒅𝒅) 𝝎𝝎 (𝒅𝒅𝒆𝒆𝒅𝒅) 
GEO GOES-14 1436.1 0.00100297 42166 351.341 0.0337605 251.33 
HEO MMS-4 4053.0 0.910034 6778 308.958 19.0751 161.86 
LEO ISS 92.7 0.00123243 26562 131.92 51.6956 64.97 
MEO NAVSTAR-68 718.0 0.00529487 84187 32.1793 55.9997 20.22 
MTO MSL 750601 (~521 days) 0.223352 1.90e08 6.21437 0.396572 1.00094 
VTO VEX 410678 (~285 days) 0.171225 1.27e08 6.2748 0.406136 3.79567 

Table 1 Initial Orbital Data 
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B. Variables 
• Initial States 

Six sets of initial states which represent the satellites listed in Table 1 are considered for propagation. 
Further discussion on accuracy and computational cost of a solution for different orbit types, thus various 
initial orbital elements, are provided by Aristoff [10]. By association, initial states are explored to quantify 
this relationship. 

 
• Numerical Integrator 

Six explicit numerical integrators are used to propagate the set of states presented for each satellite listed 
in Table 1. While implicit integrators are known to have favorable performance characteristics for many orbit 
propagation applications [10], explicit integrators are employed to reduce the complexity of the presented 
problem by reducing the number of variables under consideration. 

The RKF45 integrator is taken from [2] while the RKF 89 is an adaptation of the RKF45 formulation to fit 
the higher order terms. Integrators ODE45 and ODE113 are a part of MATLAB’s ODE suite [7] while 
DOPRI54 and DOPRI87 are taken from [11] and [12]. Note that DOPRI54 and ODE45 are based on the 
same DP integrator mathematics. The programming for the two methods differs and provide different results. 

 
Numerical Methods 

RKF45 
RK54 (ODE45) 

RK54 (DOPRI54) 
RK87 (DOPRI87) 

RKF89 
ABM (ODE113) 

 

• Tolerance 

Table 2 Numerical Methods 

The combined range of tolerances used for propagation in this report is 1𝑒𝑒 − 4 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 16. 
 

• Model Fidelity 
Two model fidelities are used to analyze the effect of additional perturbations on computational cost and 

tendency of a solution to converge. This only applies to the EO satellites as the applied perturbations have 
greater relative effects in the vicinity of Earth as opposed to solar system scale. The TO satellites are 
propagated with simple two body dynamics. 

 
Physical Models 

Two-Body Three-Body + J2 
All satellites EO satellites only 

Table 4 Physical Models 
 

• Propagation Time & Propagation Distance 
A single propagation time of Δ𝑡𝑡 = 25 days (600 hours) is modeled across all orbits. Results for shorter 

propagation times are not presented as they do not accurately capture long term trends for variation of 
previously stated variables. 

Additionally, a single angular propagation distance of Δθ = 100 orbits (100*2𝜋𝜋) is modeled across all 
orbits. The wide range of orbital periods across the six satellites forces numerical integrators to propagate 
through vastly different final times. The purpose of considering constant angular distance is to isolate results 
for variation of Keplerian elements without a dependence on physical time. 

 
Propagation Time & Distance 

Δ𝑡𝑡 = 25𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠 (2,160,000𝑠𝑠) 
Δ𝜃𝜃 = 100𝑐𝑐𝑟𝑟𝑎𝑎𝑖𝑖𝑡𝑡𝑠𝑠 (100 ∗ 2𝜋𝜋) 

Table 5 Propagation Time & Distance 
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V. Results 
 

Two graphical sets of data are presented for each propagation. The first is a set of computational cost as a function 
of tolerance. This includes total run time, number of steps for a solution, and number of erroneous steps for each 
solution. The second is a set of converge results for estimated states. For convergence results, two variables are 
measured as a function of computational cost. One is the actual state value of each solution while the other is the log 
scaled difference between the states of the current tolerance solution and the states of a reference solution. The 
resulting value give the decimal place accuracy with respect to the reference solution. This is further discussed in the 
analysis of “Accuracy of Integrator Solutions.” 

 
A. 3D Models 

Three dimensional models of each satellite orbit are presented to illustrate the scale of each orbit. Important 
aspects to note are the size and shape of each ellipse which relate to semi-major axis and eccentricity measures. 

 
 

 
Fig. 3 GEO 3-D Orbit 

 
 

Fig. 4 HEO 3-D Orbit 
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Fig. 5 LEO 3-D Orbit Fig. 6 MEO 3-D Orbit 

 
 

 
Fig. 7 MTO 3-D Orbit Fig. 8 VTO 3-D Orbit 

 
B. Absolute & Relative Tolerance 

To analyze the importance of AbsTol and RelTol in orbit determination, a single set of initial states are propagated 
with one tolerance held constant at 𝛿𝛿 = 1𝑒𝑒 − 8 and the other varied from 1𝑒𝑒 − 4 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 12. This data set is 
propagated from the LEO ephemeris for 600 hours using ODE45 with a physical model which includes both lunar and 
J2 perturbations. The AbsTol and RelTol relations observed for ODE45 are representative of all other integrators 
considered in this report and may be applicable to orbit determination problems in general. 

In both the computational and convergence results presented in Fig. 9 and Fig. 10 there is a crossover between 
data sets at 1e-8 where both the RelTol and AbsTol are 𝛿𝛿 = 1𝑒𝑒 − 8, thus producing equivalent results. In the case 
varying AbsTol there is an early plateau in run times due to the plateau in computational steps as seen in Fig. 9. The 
convergence results reveal an inability for ODE45 to converge when reducing AbsTol below 𝛿𝛿 = 1𝑒𝑒 − 6. Recall that 
AbsTol specifies decimal place accuracy and this plateau can be attributed to the large magnitude of orbital states. For 
the X position state which is measured in the thousands of kilometers, AbsTol response at 𝛿𝛿 = 1𝑒𝑒 − 6 reflects ten 
significant figures of control. The exact number of significant figures that each integrator is responsive to does vary 
primarily depending on the order of the integrator. 

In the case varying RelTol there is a consistent increase in run times due to increased computational steps at each 
tolerance step. The convergence results reveal continued convergence through the minimum tested RelTol of 1e-12. 
Recall that RelTol specifies percent error accuracy and this trend reveals that solution accuracy may be manipulated 
at stringent RelTol settings. Based on VX results, a minimum RelTol setting of 𝛿𝛿 = 1𝑒𝑒 − 10 may be recommended 
due to the ability of the solution to continue converging at tighter tolerances. RelTol settings which are less stringent 
would not necessarily ensure accurate results. 



11 

 

 

 

  
Fig. 42 Vary Tolerance: LEO, ODE45, 600hour, 

J2+Lunar (Computational Results) 
Fig. 43 Vary Tolerance: LEO, ODE45, 600hour, 

J2+Lunar (Convergence Results) 
 

C. Accuracy of Integrator Solutions 
This accuracy analysis begins with a discussion of the mathematical process used to quantify convergence and 

accuracy of integrator solutions throughout the report. This accuracy analysis is independent of computational cost 
associated with obtaining each solution. Table 6 presents final state data of a single set of LEO ephemeris 
propagations. These solutions are for a 24-hour propagation using the perturbation model of Eq. (6) which includes 
J2 and Lunar gravity with a RelTol setting of 𝛿𝛿 = 1𝑒𝑒 − 10 for all numerical integrators. The first row of data in Table 
6 presents final ephemeris data from JPL Horizons while the following rows present final propagation states for each 
integrator. Table 7 then presents absolute final state error between the ephemeris states and the calculated states for 
each integrator by taking the difference between the states. 

The X,VX, ΔX, and ΔVX data is then taken from Table 6 and Table 7 and graphed in Fig. 11 to show a graphical 
representation of convergence trends. The data in Table 6 and Table 7 only generates the data points at the tolerance 
of 𝛿𝛿 = 1𝑒𝑒 − 10. The rest of the data points are taken from solutions from each integrator at each of the tolerances in 
the range 1𝑒𝑒 − 4 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 12. While the first row of graphs in Fig. 11 simply presents final states, the second row 
of graphs are calculated by taking the mathematical log of the absolute final state errors as show in Eq. (16). Plotting 
the log scaled difference presents a visual representation of the decimal place accuracy of each solution. For example, 
the “VX Convergence Results (log)” plot reveals one decimal place of accuracy for the solution of RKF45 integrator 
using a RelTol of 𝛿𝛿 = 1𝑒𝑒 − 6. The graph then reveals two decimal places of accuracy for the solution of RKF45 
integrator using RelTol in the range 1𝑒𝑒 − 8 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 12 since the resulting value settles at -2. 

 
log(𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓)™ =  logàH( Δ𝑋𝑋),   log(𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓)´™ = logàH( ΔV𝑋𝑋) (16) 

 
State X Y Z VX VY VZ 
EPH -3199.720073060143 -2728.382385352880 5314.021052617424 4.748436158196570 -6.018782640021895 -0.2282717591541034 

RKF45 -3207.436708283496 -2722.050539630536 5316.027065456157 4.740696716530949 -6.019181707087806 -0.2201508800557680 
ODE45 -3207.804466052152 -2722.334836360222 5316.617135270371 4.741209424356703 -6.019856467125762 -0.2201565787853040 

DOPRI54 -3207.804553745828 -2722.334726954116 5316.617140827567 4.741209348864262 -6.019856529796083 -0.2201564541305700 
RKF89 -3195.490858013873 -2712.721129199226 5296.787748279240 4.723928954444030 -5.997203697572299 -0.2198964632547130 
ODE87 -3207.804058366658 -2722.335344953416 5316.617109406212 4.741209775409592 -6.019856175909346 -0.2201571582897830 
ODE113 -3207.804281190570 -2722.335066669972 5316.617123310268 4.741209584125698 -6.019856335383273 -0.2201568419190540 

Table 6 Final States: LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟎𝟎 
 

State 𝚫𝚫X 𝚫𝚫Y 𝚫𝚫Z 𝚫𝚫VX 𝚫𝚫VY 𝚫𝚫VZ 
RKF45 7.716635223352569 -6.331845722344042 -2.006012838733113 0.007739441665621 0.000399067065911 -0.008120879098335 
ODE45 8.084392992009271 -6.047548992657994 -2.596082652946279 0.007226733839867 0.001073827103867 -0.008115180368799 

DOPRI54 8.084480685685321 -6.047658398763815 -2.596088210143535 0.007226809332308 0.001073889774188 -0.008115305023534 
RKF89 -4.229215046269928 -15.661256153653994 17.233304338185008 0.024507203752540 -0.021578942449596 -0.008375295899390 
ODE87 8.083985306514478 -6.047040399464095 -2.596056788787791 0.007226382786978 0.001073535887451 -0.008114600864320 
ODE113 8.084208130427214 -6.047318682907644 -2.596070692843568 0.007226574070873 0.001073695361378 -0.008114917235049 

Table 7 Final State Error: LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟎𝟎 
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Fig. 11 Convergence Results: LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟎𝟎 

Using the data of Table 7, the magnitudes of the vectorized displacement error (Δ𝑉𝑉, ΔY, ΔZ states) and vectorized 
velocity error (ΔVX, ΔVY, ΔVZ) are calculated and presented in Table 8. This data set exposes RKF89 as an outlier in 
terms of solution accuracy for the LEO propagation as it has over twice the position error and three times the velocity 
error. To address this issue, an additional set of propagation error data for a RelTol setting of 𝛿𝛿 = 1𝑒𝑒 − 14 is presented 
in Table 9. This data set shows that RKF89 requires tighter RelTol settings in order to achieve the same level of 
accuracy as the rest of the integrators. Beyond 𝛿𝛿 = 1𝑒𝑒 − 14 there is no further minimization of absolute error for any 
of the integrators. For this reason, the remaining propagations for accuracy analysis are calculated using RelTol in the 
range 1𝑒𝑒 − 8 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 14. 

 

  
Table 8 State Error Magnitude: 

LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟎𝟎 
Table 9 State Error Magnitude: 

LEO, 24hour, J2+Lunar, 𝜹𝜹 = 𝟏𝟏𝒆𝒆 − 𝟏𝟏𝟏𝟏 

State 𝚫𝚫𝒓𝒓 𝚫𝚫𝒓𝒓𝑟 

RKF45 10.414561874631506 0.010931086423464 
ODE45 10.424278419121871 0.010919242984191 

DOPRI54 10.424278441465431 0.010919243009171 
RKF89 9.841156350946937 0.012256465525769 
ODE87 10.424278343879379 0.010919242899941 
ODE113 10.424278377056831 0.010919242936969 

 

State 𝚫𝚫𝒓𝒓 𝚫𝚫𝒓𝒓𝑟 

RKF45 10.181493845748481 0.011225279023188 
ODE45 10.424485791096648 0.010919475219049 

DOPRI54 10.424618652986965 0.010919623986092 
RKF89 23.667445629608348 0.033710523199942 
ODE87 10.423868134205462 0.010918783571113 
ODE113 10.424205839820633 0.010919160968800 
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Of the four EO cases considered, GEO is the most accurate across all integrators when comparing a two-body 
propagation to ephemeris data. The associated magnitudes of displacement error and velocity error for 25-day, two- 
body propagations is presented in Fig. 12 and Fig. 13. Even with GEO being the most accurate, the absolute errors for 
two-body dynamics make the data unusable for practical purposes. The associated converged errors are approximately 
430km for position and 0.031km/s for velocity. For comparison, the second most accurate orbit type is MEO with an 
absolute position error that settles above 740km. It should be noted that each of the integrators eventually converge to 
solutions with nearly identical absolute errors for both position and velocity states as shown in Fig. 12 and Fig. 13. 
This trend occurs for all four EO types when using two-body dynamics. The primary factor to consider for simple 
two-boy dynamics is tolerance. For such propagations it would be best to use easily implemented integrators such as 
RKF45 and ODE54 with tolerances of between 1𝑒𝑒 − 10 ≤ 𝛿𝛿 ≤ 1𝑒𝑒 − 14. 

 

Fig. 12: Position Error: GEO, 25day, 2-body Fig. 13: Velocity Error: GEO, 25day, 2-body 
 

The remaining propagations for EO accuracy analysis consider 1-day, 5-day, 10-day, and 15-day propagations 
using a force model which includes two-body dynamics (earth and satellite) with the addition of 𝐽𝐽`. For these 
propagations we will consider only the absolute position error as a measure of accuracy for each solution. For the 1- 
day propagations we once again see RKF integrators providing less accurate solutions across all cases except the for 
a short range of tolerances in the HEO case of Fig. 15. Once all of the errors converge at a RelTol of \delta = 1𝑒𝑒 − 14 
we see nearly equivalent accuracies across all integrators. In Fig. 16 we also see slightly improved accuracy for RKF45 
compared to other integrators at low RelTol when propagation LEO. This behavior is amplified for long propagation 
times in subsequent results. Across all data sets we see that ODE45, DOPRI54, DOPRI87, and ODE113 produce 
nearly identical position errors at all tolerances. These position errors are also converged at low tolerances unlike RKF 
integrator solutions which require tighter tolerances. 

 

Fig. 14 Position Error: GEO, 1day, 2-body Fig. 15 Position Error: HEO, 1day, 2-body 
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Fig. 16 Position Error: LEO, 1day, 2-body Fig. 17 Position Error: MEO, 1day, 2-body 

 
The 5-day propagation results reiterate the deviation of RKF solutions compared to DP and ABM. In all EO cases 

we see that RKF89 performs poorly at equivalent tolerances. The exception to this is the LEO 5-day propagation 
where the difference in absolute position error for RKF89 is much smaller. Also in the LEO results we see that RKF45 
has better performance than ABM, DP, and RKF89 at low RelTol of 𝛿𝛿 ≤ 1𝑒𝑒 − 10. This is an amplification of what is 
seen in the 1-day propagation solutions. Once the recommended minimum RelTol of 𝛿𝛿 = 1𝑒𝑒 − 10 is implemented we 
see that all solutions except RKF89 have nearly identical absolute errors. 

 

Fig. 18 Position Error: GEO, 5day, 2-body Fig. 19 Position Error: HEO, 5day, 2-body 
 

Fig. 20 Position Error: LEO, 5day, 2-body Fig. 21 Position Error: MEO, 5day, 2-body 
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The 10-day propagation results introduce an anomaly in the trends discussed for the 1-day and 5-day propagations. 
This is specifically for the HEO case where Fig. 23 shows both RKF45 and RKF89 producing significantly better 
results than DP and ABM. It is important to note that RKF89 with a RelTol of 𝛿𝛿 = 1𝑒𝑒 − 8 does not fit this 
generalization as its absolute position error is approximately 50% greater than the average. If we consider the 
minimum recommended tolerance of 𝛿𝛿 = 1𝑒𝑒 − 10 then both RKF integrators produce equivalent or superior accuracy 
for HEO results. From these results we may want to conclude that RKF handles highly eccentric orbits better than DP 
and ABM and moderate tolerance setting as propagation time increases, however the trend of error growth contradicts 
this conclusion. When analyzing Fig. 23 HEO 10-day propagation results we must compare the absolute error to those 
in Fig. 15 and Fig. 19 for 1-day and 5-day propagations. 1-day propagations present a converged absolute error of 
approximately 140km which is already significant. This grows to nearly 700km for the 5-day propagation. Because 
the 10-day propagation presents a smaller absolute position error we must conclude that reasonable results cannot be 
obtained using any integrator for HEO with a 10-day propagation using the current force model. 

The large magnitudes of error presented in theis10-day propagation make it impossible to generate reasonable 
results with the 2-body force model with 𝐽𝐽` perturbations, however it provides insight into the various performance 
capabilities of each integrator across various EO types. We see that the RKF45 integrator provides better accuracy 
than others at loose tolerances for LEO propagations. We also see that in all other cases DP and ABM have superior 
convergence results and generally produce more accurate results. 

 

Fig. 22 Position Error: GEO, 10day, 2-body Fig. 23 Position Error: HEO, 10day, 2-body 
 

Fig. 24 Position Error: LEO, 10day, 2-body Fig. 25 Position Error: MEO, 10day, 2-body 
 

D. Model Fidelity 
Two physical models are considered for the propagation of the four EO satellites in order to analyze the relationship 

between model fidelity and computational cost at various tolerances. General trends for each of the four cases may be 
summarized by LEO results presented in Fig. 26 through Fig. 33. The missing data point at 𝛿𝛿 = 1𝑒𝑒 − 4 for two body 
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propagation in Fig. 26,28,30,32 is caused by to one or more numerical integrators failing at such large tolerance 
settings for a large model. RKF45 is usually the integrator which fails at extremely loose tolerances. 

A comparison of the computational results of both models in Fig. 26 and Fig. 27 show intuitive results that higher 
fidelity models require smaller steps to be taken in order to meet tolerance requirements. The smaller step sizes result 
in at least 50% more steps needed to propagate with the added 𝐽𝐽` and Lunar perturbations. Consequently, run times 
see anywhere from a 50%-100% increase across all integrators for the higher fidelity model. The only integrator which 
seems to experience a proportional increase in number of failed steps is the RKF45 integrator. All others appear to 
experience similar numbers of failed steps for each model fidelity. 

A comparison of the convergence results for final position states in Figs. 28-33 reveal that convergence for all 
states does not occur until at least a tolerance of 𝛿𝛿 = 1𝑒𝑒 − 10. This applies to both physical models. When considering 
the log scale results relative to a solution with tolerance 𝛿𝛿 = 1𝑒𝑒 − 13, reasonable convergence does not occur until a 
tolerance of 𝛿𝛿 = 1𝑒𝑒 − 12. For position states this is when the log scale difference falls below 0 meaning accuracy at 
the decimal place is achieved. Because position states are measured in the thousands of kilometers, this represents 
four significant figures of accuracy compared to the lowest tolerance solution. For velocity states this is when the log 
scale difference falls below -2 meaning accuracy at the hundredth’s place is achieved. Because velocity states do not 
exceed the ones place in km/s measurements this represents three significant figures of accuracy compared to the 
lowest tolerance solution. Log scale difference convergence results appear identical between both physical models. 

As with the bulk of previously discusses solutions, the log scale results in Figs. 28-33 show that DP and ABM 
converge more quickly than RKF. At lower tolerances we see that DP models show the best convergence while at 
higher tolerances, ABM shows the best convergence. In all cases RKF have the worst convergence with agrees with 
the fact that RKF requires tighter tolerances to converge. 

 

Fig. 26 Computation Results: LEO, 600hr, 2body Fig. 27 Computation Results: LEO, 600hr, J2+Lunar 
 
 

 
Fig. 28 X & VX Convergence Results: 

LEO, 600hr, 2body 
Fig. 29 X & VX Convergence Results: 

LEO, 600hr, J2+Lunar 
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Fig. 30 Y & VY Convergence Results: 
LEO, 600hr, 2body 

Fig. 31 Y & VY Convergence Results: 
LEO, 600hr, J2+Lunar 

 

 
 

Fig. 32 Z & VZ Convergence Results: 
LEO, 600hr, 2body 

Fig. 33 Z & VZ Convergence Results: 
LEO, 600hr, J2+Lunar 

 

E. Earth Orbit 
The four EO propagations show a wide range of computational costs in terms of number of steps to solution and 

run times. For the 25-day propagation, run times vary from about a half of a second for the fastest integrator to around 
350 seconds for the slowest integrator. In order of increasing run times, the EO cases are as follows: HEO, GEO, 
MEO, LEO with LEO being the outlier of the set. This is attributed to a strong dependency on orbital period 𝜏𝜏. Table 
10 lists run times and 𝜏𝜏 for the EO cases in increasing order of maximum run times. Maximum run times from 
DOPRI54 are considered to be representative of the trends across all other solution sets. The trend of lower order 
solutions taking longer to generate a solution in Figs. 34,36,38 and 40 is common across all propagation results when 
time is help constant. Consequently, computational time becomes more important as the number of orbits increases. 

General conclusion to be drawn from the EO propagation data is that computational time is primarily a function 
of angular distance traveled (Δ𝜃𝜃). LEO, with the largest computation cost has the smallest orbital period by nearly a 
factor of 10. This means that for any given period of time it will complete 10 times the number of orbits compared to 
MEO and over 43 times the number of orbits compared to HEO. This trend is less important for Transfer Orbits. 

 
EO Period & Computation Time 

Orbit 𝝉𝝉 (𝒎𝒎𝒊𝒊𝒎𝒎) 𝒕𝒕𝒄𝒄𝒄𝒄𝒎𝒎𝒑𝒑 (𝐬𝐬𝐝𝐝𝐬𝐬) 
HEO 4053.0 ~3.1 
HEO 1436.1 ~5.0 
MEO 718.0 ~12.5 
LEO 92.7 ~350 

Table 10 Earth Orbit Period & Computation Time 
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Fig. 34 Computation Results: 
GEO, 600hour, J2+Lunar 

 
 

 
Fig. 36 Computation Results: 

HEO, 600hour, J2+Lunar 

Fig. 35 X & VX Convergence Results: 
GEO, 600hour, J2+Lunar 

 

Fig. 37 X & VX Convergence Results: 
HEO, 600hour, J2+Lunar 

 
 

 
 

Fig. 38 Computation Results: 
LEO, 600hour, J2+Lunar 

Fig. 39 X & VX Convergence Results: 
LEO, 600hour, J2+Lunar 
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Fig. 40 Computation Results: 

MEO, 600hour, J2+Lunar 
Fig. 41 X & VX Convergence Results: 

MEO, 600hour, J2+Lunar 
 

F. Transfer Orbit 
Unlike EO cases, the TO cases are plotted with log scale differences which have been calculated with respect to 

ephemeris data as opposed to a lower tolerance solution. Because results are compared to ephemeris data, log scale 
difference data shows flat lines as the integrators have reached the limit of achievable accuracy with the given force 
model. The following results magnify the inability of both RKF methods to converge as well as the DP and ABM 
methods. Fig. 29,30 show the lack of convergence for RKF through tolerances of 𝛿𝛿 = 1𝑒𝑒 − 12. The flat line on the 
other hand is a combination of the other four integrators overlapping. A final point to note is the short run times for 
both TO cases. To explain this occurrence, a set of results for each satellite completing 500 orbits is propagated. 

An observation of Run Time trends for MTO and VTO in Fig. 42 and Fig. 43 reveal a trend that contradicts the 
results of the EO cases above. As tolerance is tightened in EO cases, run times steadily increase. This expected trend 
is the result of tightened tolerances requiring smaller error margins for each step. When smaller error margins are 
allowed, smaller steps in time are taken to satisfy the tightened tolerance limits and thus more steps are taken. As more 
steps are taken there is a need for the numerical integrator to iterate through many more mathematical calculations in 
order to produce a solution. This ultimately slows down the run time as seen in EO results. 

To properly compare EO and TO, consider the computational results presented for a 600-hour LEO propagation 
with two body dynamics in Fig. 11 to those presented for 600-hour MTO and VTO propagations with two body 
dynamics in Fig. 42 and Fig. 43. With equivalent model fidelities (simplified 2-body dynamics) and equivalent 
propagation times it may be expected to see comparable computational cost between EO and TO. Instead, we observe 
opposite trends for EO and TO. While LEO run times in Fig. 26 surpass 180 seconds for the slowest integrator 
(DOPRI54) and reach approximately 5 seconds for the fastest integrator (ODE113) with steadily increasing run times 
across all integrators, TO experience steadily decreasing run times. Additionally, the run time for all integrators 
(including DOPRI54) settle around one hundredth of a second (0.01s) for both MTO and VTO as seen in Fig. 42 and 
Fig. 43. 

 

Fig. 42 Computation Results: MTO, 600hr, 2body Fig. 43 Computation Results: VTO, 600hr, 2body 
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To identify the source of the discrepancy, dependencies and non-dependencies of integrators on orbital elements 
must be established. Orbital elements include 𝑒𝑒, 𝑎𝑎, Ω, 𝑖𝑖, 𝜔𝜔, 𝜃𝜃, and 𝜏𝜏 as previously discussed. From EO results it has 
been established that the Keplerian elements which define orientation of an orbit (Ω, 𝑖𝑖, 𝜔𝜔) and position along an orbit 
(𝜃𝜃) are not significant in the performance of orbit determination. This narrows potential dependencies to 𝑒𝑒, 𝑎𝑎 and 𝜏𝜏. 
These three orbital elements are responsible for defining the shape, size and speed of an orbit. When considering the 
eccentricities of all propagated EO and TO cases, eccentricity can also be eliminated as a source of the computational 
cost dependencies. This is because EO cases include eccentricities which range from 0.01 ≤ 𝑒𝑒 ≤ 0.910 while TO 
cases fall within the range 0.117 ≤ 𝑒𝑒 ≤ 0.233. As all EO propagation times are drastically greater than TO, yet the 
range of TO eccentricities falls within the range of EO eccentricities, we can ignore eccentricity for these results. 

Potential orbital element dependencies now include semi-major axis (𝑎𝑎) and orbital period (𝜏𝜏). These orbital 
elements are responsible for defining the shape and speed of an orbit. From the definition of orbital period in Eq. (17), 
we know that orbital period and semi major axis share a dependence on one another. We also know that both 

 
 

𝜏𝜏 = 2𝜋𝜋¨ 𝑎𝑎
K

 
𝐺𝐺𝐺𝐺 

(17) 

 

orbital period and semi major axis are dramatically different for EO and TO. For EO, semi-major axes of the satellites 
considered fall below10,000km which results in orbital periods that are measured in hours. For TO cases, however, 
semi-major axes of the satellites considered exceed 100,000,000km and have orbital periods in the hundreds of days. 
The difference in orbital periods results in a difference in average angular velocities (𝜃𝜃𝑟) from the definition of angular 
velocity given by Eq. (18). This definition produces a maximum EO average angular velocity of 𝜃𝜃𝑟bpo = 
0.00155 cbt for HEO and a minimum TO average angular velocity of 𝜃𝜃 

Üqk 
numerical integrator computational performance on semi-major axis and 

 
bpo = 0.0000153 cbt. The dependence of 

Üqk 

 

 
𝜃𝜃bpo = 

2𝜋𝜋 
𝜏𝜏 

(18) 

 

 
 

Fig. 44 X & VX Convergence Results: 
MTO, 600hr, 2body 

Fig. 45 X & VX Convergence Results: 
VTO, 600hr, 2body 

 

G. 500 Orbit Propagation 
With orbital period identified as the greatest contributing factor to computation cost, propagations with total 

number of orbits held constant are run to analyze the effect of varying additional orbital elements. By propagating 
each orbit for the same number of revolutions, the computational times are normalized within a smaller range of values 
as seen in Table 11. Satellite groups are listed in order of increasing eccentricity to identify the trend of increasing 
computational cost with increasing eccentricity. 

ODE45 reveals a dependency only on eccentricity with the greatest run time being for the HEO case. ODE87 and 
ODE 113 have similar results when considering only the EO cases. Again, that is a dependence on eccentricity. When 
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including the data for TO cases, run times for these moderate eccentricity orbits are much greater. This suggests an 
additional dependency on semi-major axis unlike ODE45. When considering the EO cases for both RKF45 and RKF89 
there is again, a dependence on eccentricity with the largest propagation times being for the HEO case. When 
propagating for TO cases, the run times drop to nearly zero. This suggests an inverse dependence on the size of the 
orbit being propagated. Based on the TO computational cost and convergence data provided in Fig. 29, 30 the low run 
times are attributed to an inability of RKF integrators accurately to handle large orbits at the tolerances used. 

 
500 Orbit Propagation Computation Times (s) 

Orbit ODE45 ODE87 ODE113 RKF45 RKF89 
GEO 52.29 8.37 3.77 59.5 12.98 
LEO 56.15 8.44 3.5 72.7 21.81 
MEO 56.24 8.15 3.68 67.6 18.27 
HEO 97.73 46.11 18.71 203.5 34.91 
VTO 61.91 63.37 62.45 0.01 0.01 
MTO 63.68 53.12 62.59 0.01 0.01 

Dependency 𝒆𝒆 only 𝒆𝒆, 𝒂𝒂 𝒆𝒆, 𝒂𝒂 𝒆𝒆 𝒆𝒆 
Table 11 500 Orbit Propagation: Computation Times & Keplerian Dependencies 

 
VI. Conclusions 

 
The computational experiments conducted in this study justify general recommendations for numerical integration 

settings specifically applicable to low to medium fidelity orbit propagation models. These recommendations stem 
from three primary conclusions which deal with tolerance settings, numerical integrators, and orbital elements. 

The first conclusion to be made is the importance of tolerance selection. Across all solution sets we saw that 
convergence of orbit propagation states typically insufficient at RelTol settings above 𝛿𝛿caj = 1𝑒𝑒 − 10. We also saw 
that various orbital elements, particularly orbital period (𝜏𝜏) and semi-major axis (𝑎𝑎), require significantly tighter 
RelTol settings. This crucial consideration applies to all integrators and requires deliberate attention. Many integrators 
have built in default tolerances which will produce incorrect solutions if used. MATLAB’s ODE45 has a default 
relative tolerance of 𝛿𝛿caj = 1𝑒𝑒 − 3 for example. The one exception to this rule is the case of RKF45 which may be 
able to produce more accurate results at higher tolerances when determining LEO propagations with low to medium 
fidelity models. Best results are observed in this case at 𝛿𝛿caj = 1𝑒𝑒 − 8. 

The second conclusion drawn is that the fundamental mathematics of various integrators can produce widely 
different results for orbit propagations at similar tolerance settings. The factors considered for the experiments in this 
report include order of the integrator method and the method itself. Each set of results verify the trend that higher 
order solvers (ODE113, DOPRI87, RKF89) reduce computational time with their ability to take larger time steps 
compared to lower order solvers (RKF45, DOPRI54, ODE45). This becomes significant when determining high 
computational costs solutions such as long LEO propagations, especially as model fidelity increases. When dealing 
with very short, computationally inexpensive propagations the other hand, lower order solvers paired with tight 
tolerances are viable alternatives. This conclusion is in agreement with results by Uruxtan [13] which compares RKF67 
with RKF78 and Ritschel [11] which compares RK, RKF, DP, and ESDIRK variants. Additionally, the TO results 
conclude that the RKF methods do not converge well for large scale orbits without very tight tolerances of at least 
𝛿𝛿caj = 1𝑒𝑒 − 16. The opposite extreme is that ODE113 (ABM) is the most stable integrator with the best convergence 
results for all cases. A third factor worth mentioning, although not considered in this analysis, is the relationship 
between step size and integrator order as they influence long term convergence stability [14]. 

The final conclusion to be drawn is that an exclusive set of orbital elements impact computational cost and thus 
the ability for computational solutions to converge with tightened tolerance. The three elements (𝜏𝜏, 𝑒𝑒, 𝑎𝑎) and their 
values for each of the six satellites considered for the above experiments are presented in Table 12. 

Results show that the combined influence of the shape, size, and period of an orbit are responsible for the majority 
of the computational cost of a solution. The most extreme example the 600-hour LEO propagation with a force model 
that includes Lunar gravity and 𝐽𝐽` perturbations. Due to its short period and rapidly changing states, it is the most 
difficult to determine a solution for. For these orbits a higher order solver that is stable enough to produce accurate 
solutions such as DP87 or ODE113 should be used. To a lesser degree, eccentricity also plays a hand in increasing 
computational cost due to the rapidly changing states near perigee. For more stable, and less computationally 
expensive low eccentricity orbits, lower order solvers may be considered. This only applies for Earth Orbiting satellites 
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since Transfer Orbit solutions are highly susceptible to the effects of local error compounding to produce large global 
errors. Furthermore, the fact that there is little change in angular position of Transfer Orbit trajectories, integrators 
tend to take very large steps which may lead to additional inaccuracies in solution determination. 

 
Initial Orbit Elements 

Orbit Satellite 𝝉𝝉 (min) 𝒆𝒆 (deg) 𝒂𝒂 (km) 
GEO GOES-14 1436.1 0.00100297 42166 
LEO ISS 92.7 0.00123243 6778 
MEO NAVSTAR-68 718.0 0.00529487 26562 
HEO MMS-4 4053.0 0.910034 84187 
VTO VEX 410678 (~285 days) 0.171225 1.27e08 
MTO MSL 750601 (~521 days) 0.223352 1.90e08 

Table 12 Summary of Relevant Initial Orbital Elements 
 

The final recommendations for solver setups is to consider minimum relative tolerances of 𝛿𝛿 = 1𝑒𝑒 − 10 for EO 
cases while at least 𝛿𝛿 = 1𝑒𝑒 − 12 is preferable. As orbital period and semi major axis increase this may be scaled down 
as necessary. As tolerance is tightened these solvers may fail due to stiffness characteristics [15], at which point 
different solvers would need to be considered [16]. Additionally, for solutions with long propagation times one should 
consider higher order solvers which are capable of taking larger steps in time and thus fewer total steps. This tends to 
reduce global error as discussed by Aristoff [10]. A summary of preliminary recommendations for numerical integrator 
settings on low to medium fidelity models is listed in Table 13. These recommendations are minimum suggestions for 
simple models and may not apply to complex missions or high-fidelity models. 

 
Summary of Conclusions 

Minimum 𝛿𝛿caj (EO) 1e-10 
Minimum 𝛿𝛿caj (TO) 1e-14 

Small Δ𝜃𝜃 Lower Order Integrators (ODE45 or RKF45) 
Large Δ𝜃𝜃 Higher Order Integrators (DP87 or ODE113) 
ECI frame Lower or Higher Order Integrators 
SCI frame Higher Order Integrators only 

LEO (large 𝜃𝜃𝑟) Higher Order Integrators 
Large 𝑒𝑒 ODE45 
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Appendix A: Butcher Coefficients 
 

 
RKF 45 

 
 

 
DP 54 

 
 

 
DP 87 
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RKF 89 
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Appendix B: Ephemeris Data 
 

 
LEO Ephemeris 

 

 
GEO Ephemeris 

 

 
MEO Ephemeris 
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HEO Ephemeris 
 

 
MTO Ephemeris 

 

 
VTO Ephemeris 



27 

 

 

Appendix C: MATLAB Main Code 
 

%This program solves n-body dynamics with optional J2 perturbation 
%dynamics depend on rates equation applied in integrator declaration 

 
clear all; close all; clc; 
%...Constants 
global muE muL muS R 
muE = 3.986004415e5; %Earth 
muL = 4902.799; %Moon 
muS = 1.32712428e11; %Sun 
R = 6378; %Earth Radius 
%R = 695700; %Sun Radius 
G = 6.67259e-20; %Gravitational Constant 
hours  = 3600; %conversion variable between seconds & hours 
days    = hours*24;  %conversion variable between seconds & days 

 
%...Retrieve Ephemeris Data 
eph_LEO = importdata('/Users/angelrocha/Desktop/ephemeris_LEO.txt'); 
eph_GEO = importdata('/Users/angelrocha/Desktop/ephemeris_GEO.txt'); 
eph_MEO = importdata('/Users/angelrocha/Desktop/ephemeris_MEO.txt'); 
eph_HEO = importdata('/Users/angelrocha/Desktop/ephemeris_HEO.txt'); 
eph_MTO = importdata('/Users/angelrocha/Desktop/ephemeris_MTO.txt'); 
eph_VTO = importdata('/Users/angelrocha/Desktop/ephemeris_VTO.txt'); 

 
%------------------------------------------------------------------------- 
%...Input Data: propagation time & initial states beginning 01/01/2018 
%***User input changes occur here 
n = 7; %number of tolerances to test 
span = 5; %days to propagate 
t0 = 0; tf = span*days; %initial and final times 
f0  = eph_HEO(1,:)'; %retrieve initial ephemeris as initial states 
ff = eph_HEO(span+1,:); %retrieve final ephemeris as final states 
%------------------------------------------------------------------------- 

 
%...Initialize variables to capture propagation data 
atol = zeros(n,1); %list of absolute tolerances 
rtol = zeros(n,1); %list of relative tolerances 
y = zeros(n,6,6); %array of final states for each propagation 
x = zeros(n,1); %extra variable used to define relative tolerance 
time = zeros(n,6);  %list of computational times for each propagation 
ns = zeros(n,6); %list of numbers of steps (correct calculations) 
nf  = zeros(n,6); %list of numbers of failed steps 

 
%...Loop through Orbit Propagations 
for i = 1:n 

x(i) = (7+i) 
z = x(i)+1; 
rtol(i) = 1*10^-(x(i)); 
rtol9(i) = 1*10^-(x(i)+2); 
atol(i) = 1*10^-(z); 
dum = 1e-10; 
opts = odeset('Reltol', rtol(i), 'AbsTol', atol(i)); 

 
tic 
[t1,f1, stats1] = rkf45(@nrates, [t0 tf], f0, rtol(i)); 
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time(i,1) = toc; tic 
q=1; 
[t2,f2, stats2] = ode45(@nrates, [t0 tf], f0, opts); 
time(i,2) = toc; tic 
q=2; 
[t3,f3, stats3] = DOPRI54(@nrates, [t0 tf], f0, atol(i), rtol(i)); 
time(i,3) = toc; tic 
q=3; 
[t4,f4, stats4] = rkf89(@nrates, [t0 tf], f0, rtol9(i)); 
time(i,4) = toc; tic 
q=4; 
[t5,f5, stats5] = ode87(@nrates, [t0 tf], f0, opts); 
time(i,5) = toc; tic 
q=5; 
[t6,f6, stats6] = ode113(@nrates, [t0 tf], f0, opts); 
time(i,6) = toc; 
q=6; 

 
y(i,:,1) = f1(end,:);   ns(i,1) = stats1(1);   nf(i,1) = stats1(2); 
y(i,:,2) = f2(end,:);   ns(i,2) = stats2(1);   nf(i,2) = stats2(2); 
y(i,:,3) = f3(end,:);   ns(i,3) = stats3(1);   nf(i,3) = stats3(2); 
y(i,:,4) = f4(end,:);   ns(i,4) = stats4(1);   nf(i,4) = stats4(2); 
y(i,:,5) = f5(end,:);   ns(i,5) = stats5(1);   nf(i,5) = stats5(2); 
y(i,:,6) = f6(end,:); ns(i,6) = stats6(1); nf(i,6) = stats6(2); 

end 
 

%...Calculate log scale difference between propagated states and 
%...ephemeris states 
diff = zeros(n,6,6); 
StateError = ff-y; 
diff = log10(abs(StateError)); %use when comparing to ephemeris solution 
%diff = log10(abs(y-y(end,:,:)));%use when comparing to highest order solution 

 
%...Calculate magnitude of vectorized error between propagated solution and 
%...ephemeris states 
Rerror = zeros(6,n); 
VError = zeros(6,n); 
for c = 1:n 

for r = 1:6 %dont forget to update 
Rerror(r,c) = norm(StateError(c,1:3,r)); 
VError(r,c) = norm(StateError(c,4:6,r)); 

end 
end 
%rnewnew 
figure 
plot(x,Rerror(1,:),'-r'); hold on; 
plot(x,Rerror(2,:),'-g'); 
plot(x,Rerror(3,:),'-b'); 
plot(x,Rerror(4,:),'-c'); 
plot(x,Rerror(5,:),'-m'); 
plot(x,Rerror(6,:),'-k'); hold off; 
title('Absolute Position Error') 
xlabel('tolerance e-n') 
ylabel('dr') 
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',... 

'Location','northwest') 
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xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 
figure 
plot(x,VError(1,:),'-r'); hold on; 
plot(x,VError(2,:),'-g'); 
plot(x,VError(3,:),'-b'); 
plot(x,VError(4,:),'-c'); 
plot(x,VError(5,:),'-m'); 
plot(x,VError(6,:),'-k'); hold off; 
title('Absolute Velocity Error') 
xlabel('tolerance e-n') 
ylabel('dv') 
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',... 

'Location','northwest') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
 

%...Calculate initial & final orbital elements from state vectors 
%...simplification: only earth gravitational parameter considered 
coe0 = zeros(1,7); 
[coe0] = coe_from_sv(f0(1:3),f0(4:6),muS); 
period = 2*pi*coe0(7).^1.5/sqrt(muS)/60; 

 
%------------------------------------------------------------------------- 
%% Print Results 
%...Orbital Element Results 
fprintf('Initial Orbital Elements\n') 
fprintf('Angular momentum (km^2/s) = %g\n', coe0(1)) 
fprintf('Eccentricity = %g\n', coe0(2)) 
fprintf('Right ascension (deg)    = %g\n', coe0(3)) 
fprintf('Inclination (deg)  = %g\n', coe0(4)) 
fprintf('Argument of perigee (deg) = %g\n', coe0(5)) 
fprintf('True anomaly (deg)    = %g\n', coe0(6)) 
fprintf('Semimajor axis (km):     = %g\n', coe0(7)) 
fprintf('Orbital Period (min):   = %g\n', period) 

 
%------------------------------------------------------------------------- 
%% Plot Results 
%...2D X & VX Resuts 
figure 
subplot(2,2,1) 
plot(x,y(:,1,1),'-r'); hold on; 
plot(x,y(:,1,2),'-g'); 
plot(x,y(:,1,3),'-b'); 
plot(x,y(:,1,4),'-c'); 
plot(x,y(:,1,5),'-m'); 
plot(x,y(:,1,6),'-k'); hold off; 
title('X Convergence Results') 
xlabel('tolerance e-n') 
ylabel('X (km)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 
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subplot(2,2,2) 
plot(x,y(:,4,1),'-r'); hold on; 
plot(x,y(:,4,2),'-g'); 
plot(x,y(:,4,3),'-b'); 
plot(x,y(:,4,4),'-c'); 
plot(x,y(:,4,5),'-m'); 
plot(x,y(:,4,6),'-k'); hold off; 
title('VX Convergence Results') 
xlabel('tolerance e-n') 
ylabel('VX (km/s)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
subplot(2,2,3) 
plot(x,diff(:,1,1),'-r'); hold on; 
plot(x,diff(:,1,2),'-g'); 
plot(x,diff(:,1,3),'-b'); 
plot(x,diff(:,1,4),'-c'); 
plot(x,diff(:,1,5),'-m'); 
plot(x,diff(:,1,6),'-k'); hold off; 
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',... 

'Location','southwest') 
title('X Convergence Results (log)') 
xlabel('tolerance e-n') 
ylabel('log(diff)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
subplot(2,2,4) 
plot(x,diff(:,4,1),'-r'); hold on; 
plot(x,diff(:,4,2),'-g'); 
plot(x,diff(:,4,3),'-b'); 
plot(x,diff(:,4,4),'-c'); 
plot(x,diff(:,4,5),'-m'); 
plot(x,diff(:,4,6),'-k'); hold off; 
title('VX Convergence Results (log)') 
xlabel('tolerance e-n') 
ylabel('log(diff)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
%...2D Y & VY Results 
figure 
subplot(2,2,1) 
plot(x,y(:,2,1),'-r'); hold on; 
plot(x,y(:,2,2),'-g'); 
plot(x,y(:,2,3),'-b'); 
plot(x,y(:,2,4),'-c'); 
plot(x,y(:,2,5),'-m'); 
plot(x,y(:,2,6),'-k'); hold off; 
title('Y Convergence Results') 
xlabel('tolerance e-n') 
ylabel('Y (km)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 
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subplot(2,2,2) 
plot(x,y(:,5,1),'-r'); hold on; 
plot(x,y(:,5,2),'-g'); 
plot(x,y(:,5,3),'-b'); 
plot(x,y(:,5,4),'-c'); 
plot(x,y(:,5,5),'-m'); 
plot(x,y(:,5,6),'-k'); hold off; 
title('VY Convergence Results') 
xlabel('tolerance e-n') 
ylabel('VY (km/s)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
subplot(2,2,3) 
plot(x,diff(:,2,1),'-r'); hold on; 
plot(x,diff(:,2,2),'-g'); 
plot(x,diff(:,2,3),'-b'); 
plot(x,diff(:,2,4),'-c'); 
plot(x,diff(:,2,5),'-m'); 
plot(x,diff(:,2,6),'-k'); hold off; 
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',... 

'Location','southwest') 
title('Y Convergence Results (log)') 
xlabel('tolerance e-n') 
ylabel('log(diff)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
subplot(2,2,4) 
plot(x,diff(:,5,1),'-r'); hold on; 
plot(x,diff(:,5,2),'-g'); 
plot(x,diff(:,5,3),'-b'); 
plot(x,diff(:,5,4),'-c'); 
plot(x,diff(:,5,5),'-m'); 
plot(x,diff(:,5,6),'-k'); hold off; 
title('VY Convergence Results (log)') 
xlabel('tolerance e-n') 
ylabel('log(diff)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
%...2D Z & VZ Results 
figure 
subplot(2,2,1) 
plot(x,y(:,3,1),'-r'); hold on; 
plot(x,y(:,3,2),'-g'); 
plot(x,y(:,3,3),'-b'); 
plot(x,y(:,3,4),'-c'); 
plot(x,y(:,3,5),'-m'); 
plot(x,y(:,3,6),'-k'); hold off; 
title('Z Convergence Results') 
xlabel('tolerance e-n') 
ylabel('Z (km)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 
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subplot(2,2,2) 
plot(x,y(:,6,1),'-r'); hold on; 
plot(x,y(:,6,2),'-g'); 
plot(x,y(:,6,3),'-b'); 
plot(x,y(:,6,4),'-c'); 
plot(x,y(:,6,5),'-m'); 
plot(x,y(:,6,6),'-k'); hold off; 
title('VZ Convergence Results') 
xlabel('tolerance e-n') 
ylabel('VZ (km/s)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
subplot(2,2,3) 
plot(x,diff(:,3,1),'-r'); hold on; 
plot(x,diff(:,3,2),'-g'); 
plot(x,diff(:,3,3),'-b'); 
plot(x,diff(:,3,4),'-c'); 
plot(x,diff(:,3,5),'-m'); 
plot(x,diff(:,3,6),'-k'); hold off; 
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',... 

'Location','southwest') 
title('Z Convergence Results (log)') 
xlabel('tolerance e-n') 
ylabel('log(diff)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
subplot(2,2,4) 
plot(x,diff(:,6,1),'-r'); hold on; 
plot(x,diff(:,6,2),'-g'); 
plot(x,diff(:,6,3),'-b'); 
plot(x,diff(:,6,4),'-c'); 
plot(x,diff(:,6,5),'-m'); 
plot(x,diff(:,6,6),'-k'); hold off; 
title('VZ Convergence Results (log)') 
xlabel('tolerance e-n') 
ylabel('log(diff)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]) %use when comparing to highest order solution 

 
%...Plot Run Times, Total Steps, Number of Errors 
figure 
subplot(1,3,1) 
plot(x,time(:,1),'-r'); hold on; 
plot(x,time(:,2),'-g'); 
plot(x,time(:,3),'-b'); 
plot(x,time(:,4),'-c'); 
plot(x,time(:,5),'-m'); 
plot(x,time(:,6),'-k'); hold off; 
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',... 

'Location','northwest') 
title('Run Times') 
xlabel('tolerance e-n') 
ylabel('time (s)') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
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%xlim([x(1),x(end-1)]); %use when comparing to highest order solution 
 

subplot(1,3,2) 
plot(x,ns(:,1),'-r'); hold on; 
plot(x,ns(:,2),'-g'); 
plot(x,ns(:,3),'-b'); 
plot(x,ns(:,4),'-c'); 
plot(x,ns(:,5),'-m'); 
plot(x,ns(:,6),'-k'); hold off; 
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',... 

'Location','northwest') 
title('# Steps') 
xlabel('tolerance e-n') 
ylabel('# Steps') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]); %use when comparing to highest order solution 

 
subplot(1,3,3) 
plot(x,nf(:,1),'-r'); hold on; 
plot(x,nf(:,2),'-g'); 
plot(x,nf(:,3),'-b'); 
plot(x,nf(:,4),'-c'); 
plot(x,nf(:,5),'-m'); 
plot(x,nf(:,6),'-k'); hold off; 
legend('RKF45','ODE45','DOPRI54','RKF89','DOPRI87','ODE113',... 

'Location','northwest') 
title('# Failed') 
xlabel('tolerance e-n') 
ylabel('# Failed Steps') 
xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
%xlim([x(1),x(end-1)]); %use when comparing to highest order solution 

 
 

%% Functions 
function dfdt = Erates(t,f) 
global muE 
% f  - 
% t  - 
% mu - 
% J2 - oblateness coefficient 
% R - mean radius of Earth (km) 

 
rx  = f(1); % X component of r (ECI frame) (km)  
ry  = f(2); % Y component of r (ECI frame) (km)  
rz  = f(3); % Z component of r (ECI frame) (km) 
vx  = f(4);  % X component of v (ECI frame) (km/s) 
vy  = f(5);  % Y component of v (ECI frame) (km/s) 
vz  = f(6);  % Z component of v (ECI frame) (km/s) 
r = norm([rx ry rz]); % magnitude of position vector (km) 

 
%...Linearized Acceleration 
ax = -muE*rx/r^3; % x component of a (ECI frame) (km/s^2) 
ay = -muE*ry/r^3; % y component of a (ECI frame) (km/s^2) 
az = -muE*rz/r^3; % z component of a (ECI frame) (km/s^2) 

 
%...Output Vector 
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dfdt = [vx vy vz ax ay az]'; 
end %rates 
function dfdt = Srates(t,f) 
global muS 
% f  - 
% t  - 
% mu - 
% J2 - oblateness coefficient 
% R - mean radius of Earth (km) 

 
rx  = f(1); % X component of r (ECI frame) (km)  
ry  = f(2); % Y component of r (ECI frame) (km)  
rz  = f(3); % Z component of r (ECI frame) (km) 
vx  = f(4);  % X component of v (ECI frame) (km/s) 
vy  = f(5);  % Y component of v (ECI frame) (km/s) 
vz  = f(6);  % Z component of v (ECI frame) (km/s) 
r = norm([rx ry rz]); % magnitude of position vector (km) 

 
%...Linearized Acceleration 
ax = -muS*rx/r^3; % x component of a (ECI frame) (km/s^2) 
ay = -muS*ry/r^3; % y component of a (ECI frame) (km/s^2) 
az = -muS*rz/r^3; % z component of a (ECI frame) (km/s^2) 

 
%...Output Vector 
dfdt = [vx vy vz ax ay az]'; 
end %rates 
function dfdt = nrates(t,f) 
global muE muL muS R 
% This function evaluates acceleration of each member of 3 body system at 
% time t from their positions and velocities at that time. 
% t - time (s) 
% f - column vector of position and velocity componenets 
% R12 - cube of distance between m1 and m2 (km^3) 
% R13 - cube of distance between m1 and m3 (km^3) 
% R23 - cube of distance between m2 and m3 (km^3) 
% AX1,AY1,AY3 - acceleration components of mass 1 (km/s^2) 
% dydt - column vector of velocity and acceleration componenets at 
% time t 

 
%...Initial Conditions (Particle radius & velocity components) 
prx = f(1); 
pry = f(2); 
prz = f(3); 
pvx = f(4); 
pvy = f(5); 
pvz = f(6); 

 
%...Caclulate Vector & Scalar Radii (km) 
JD_0 = 2458119.500000000; % (2018-Jan-01 00:00:00.00) 
JD = JD_0 + t/86400; % Julian Date 
r_moon = lunar_position(JD); % ECI frame lunar position 
lrx = r_moon(1); 
lry = r_moon(2); 
lrz = r_moon(3); 
% [lam eps r_sun] = solar_position(JD); % Ecliptic frame solar position 
% srx = r_sun(1); 



35 

 

 

% sry = r_sun(2); 
% srz = r_sun(3); 
RE = norm([prx pry prz]); % Scalar distance Earth/Particle 
RL = norm([lrx-prx lry-pry lrz-prz]);  % Scalar distance Lunar/Particle 
%RS = norm([srx-prx sry-pry srz-prz]); % Scalar distance Solar/Particle 

 
%...J2 Purturbation (from Curtix 12.30) 
J2 = 0.00108263; 
fac = (3/2) * (J2*muE*R^2) / (RE^5); 
J2x = fac*(prx)*(5*prz^2/RE^2-1); 
J2y = fac*(pry)*(5*prz^2/RE^2-1); 
J2z = fac*(prz)*(5*prz^2/RE^2-3); 

 
%...Lunar Purturbation 
lax = muL*(lrx-prx)/RL^3; 
lay = muL*(lry-pry)/RL^3; 
laz = muL*(lrz-prz)/RL^3; 

 
%...Final Particle Acceleration States 
pax = -muE*prx/RE^3 + J2x;% - lax; 
pay = -muE*pry/RE^3 + J2y;% - lay; 
paz = -muE*prz/RE^3 + J2z;% - laz; 

 
%...Particle Output Vector 
dfdt = [pvx pvy pvz pax pay paz]'; 
end %nrates 
function r_moon = lunar_position(jd) 
%... Calculate geocentric equatorial position vector of moon given JD 
RE = 6376; %Earth radius (km); 

 
%...Time in centuries since J2000 
T = (jd-2451545)/36525; 

 
%...Ecliptic longitude (deg): 
e_long = 218.32 + 481267.881*T ... 

+ 6.29*sind(135.0 + 477198.87*T) - 1.27*sind(259.3 - 413335.36*T)... 
+ 0.66*sind(235.7 + 890534.22*T) + 0.21*sind(269.9 + 954397.74*T)... 
- 0.19*sind(357.5 + 35999.05*T) - 0.11*sind(186.5 + 966404.03*T); 

e_long = mod(e_long,360); 
 
 

%...Ecliptic latitude (deg): 
e_lat = 5.13*sind( 93.3 + 483202.02*T) + 0.28*sind(228.2 + 960400.89*T)... 

- 0.28*sind(318.3 + 6003.15*T) - 0.17*sind(217.6 - 407332.21*T); 
e_lat = mod(e_lat,360); 

 
%...Horizontal parallax (deg): 
h_par = 0.9508 ... 

+ 0.0518*cosd(135.0 + 477198.87*T) + 0.0095*cosd(259.3 - 413335.36*T)... 
+ 0.0078*cosd(235.7 + 890534.22*T) + 0.0028*cosd(269.9 + 954397.74*T); 

h_par = mod(h_par,360); 
 
 

%...Angle between earth's orbit and its equator (deg): 
obliquity = 23.439291 - 0.0130042*T; 
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%...Direction cosines of the moon's geocentric equatorial position vector: 
l = cosd(e_lat) * cosd(e_long); 
m = cosd(obliquity)*cosd(e_lat)*sind(e_long) - sind(obliquity)*sind(e_lat); 
n = sind(obliquity)*cosd(e_lat)*sind(e_long) + cosd(obliquity)*sind(e_lat); 

 
%...Earth-moon distance (km): 
dist = RE/sind(h_par); 
%...Moon's geocentric equatorial position vector (km): 
r_moon = dist*[l m n]; 
end %lunar_position() 
function [lamda eps r_S] = solar_position(jd) 
% This function calculates the geocentric equatorial position vector 
% of the sun, given the Julian date. 
% 
% User M-functions required: None 
% ------------------------------------------------------------------------- 
%...Astronomical unit (km): 
AU = 149597870.691; 
%...Julian days since J2000: 
n = jd - 2451545; 
%...Julian centuries since J2000: 
cy = n/36525; 
%...Mean anomaly (deg{: 
M = 357.528 + 0.9856003*n; 
M = mod(M,360); 
%...Mean longitude (deg): 
L = 280.460 + 0.98564736*n; 
L = mod(L,360); 
%...Apparent ecliptic longitude (deg): 
lamda = L + 1.915*sind(M) + 0.020*sind(2*M); 
lamda = mod(lamda,360); 
%...Obliquity of the ecliptic (deg): 
eps = 23.439 - 0.0000004*n; 
%...Unit vector from earth to sun: 
u = [cosd(lamda); sind(lamda)*cosd(eps); sind(lamda)*sind(eps)]; 
%...Distance from earth to sun (km): 
rS = (1.00014 - 0.01671*cosd(M) - 0.000140*cosd(2*M))*AU; 
%...Geocentric position vector (km): 
r_S = rS*u; 
end %solar_position 
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Appendix D: MATLAB Variation of Parameters Code 
 

% This program solves 2body + J2 perturbation dynamics while varying 
% orbital elements and tolerances 

 
% Each of the following numbers represents an orbital element state. Select 
% vary = 4 to vary inclination. Only elements 3,4,5 should be varied. 

 
% (1) h - angular momentum 
% (2) e - eccentricity 
% (3) RA - Right Ascension 
% (4) incl - inclination 
% (5) w - 
% (6) TA   - True Anomaly 
% (7) a    - semi-major axis 

 
clear all; close all; clc; 
%...Constants 
global muE muL muS R 
muE = 3.986004415e5; %Earth 
muL = 4902.799; %Moon 
muS = 1.32712428e11; %Sun 
R = 6378; %Earth Radius 
G = 6.67259e-20; %Gravitational Constant 
hours  = 3600; %conversion variable between seconds & hours 
days    = hours*24;  %conversion variable between seconds & days 

 
%...Retrieve Ephemeris Data 
eph_LEO = importdata('/Users/angelrocha/Desktop/ephemeris_LEO.txt'); 
eph_GEO = importdata('/Users/angelrocha/Desktop/ephemeris_GEO.txt'); 
eph_MEO = importdata('/Users/angelrocha/Desktop/ephemeris_MEO.txt'); 
eph_HEO = importdata('/Users/angelrocha/Desktop/ephemeris_HEO.txt'); 

 
%------------------------------------------------------------------------- 
%...Input Data: propagation time & initial states beginning 01/01/2018 
%***User input changes occur here 
vary = 4; %select orbital element to vary 
n = 6; %number of times to vary orbital element 
ntol = 9;  %number of tolerances to test 
span = 25; %days to propagate 
t0 = 0; tf = span*days; %initial and final times 
f0   = eph_MEO(1,:)';    %retrieve initial ephemeris as initial states 
ff = eph_MEO(span+1,:); %retrieve final ephemeris as final states 
r0  = f0(1:3); %initial position vector from ephemeris 
v0  = f0(4:6); %initial velocity vector from ephemeris 
%------------------------------------------------------------------------- 

 
%...Initialize variables to capture propagation data 
atol = zeros(n,1); %list of absolute tolerances 
rtol = zeros(n,1); %list of relative tolerances 
y = zeros(n,6,6); %array of final states for each propagation 
x = zeros(n,1); %extra variable used to define relative tolerance 
time = zeros(ntol,n);  %list of computational times for each propagation 
ns  = zeros(ntol,n); %list of numbers of steps (correct calculations) 
nf  = zeros(ntol,n); %list of numbers of failed steps 
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%...Retrieve State Vectors from Varied Orbital Element 
state = sv_vary_coe(r0,v0,muE,vary,n); 
variations = linspace(0,90,n+1); 
variations = variations(1:end-1); 
%...Loop through propagation for varied states and tolerances 
for i = 1:ntol %loop through tolerances 

for j = 1:n %loop through varied states 
x(i) = (3+i); 
z = x(i)+1; 
rtol(i) = 1*10^-(x(i)); %set relative tolerance 
atol(i) = 1*10^-(z); %set absolute tolerance (1e-1 tighter) 
opts = odeset('Reltol', 1e-4, 'AbsTol', 1e-5, 'stats', 'on'); 
tic 
[t, f, stats] = ode87(@nrates,[t0 tf], state(j,:)'); 
%...Store data 
time(i,j) = toc; y(j,:,i) = f(end,:); 
ns(i,j) = stats(1); nf(i,j) = stats(2); 

end 
end 

 
%% Text Results 
switch vary 

case 1 
fprintf('Cannot vary angular momentum, select vary = 3,4, or 5.\n') 

case 2 
fprintf('Cannot vary eccentricity, select vary = 3,4, or 5.\n') 

case 3 
fprintf('%g variations of Right Ascension\n',n) 
fprintf('Values of Right Ascension (deg) tested: %g\n', variations) 

case 4 
fprintf('%g variations of Inclination\n',n) 
fprintf('Values of Inclination (deg) tested: %g\n', variations) 

case 5 
fprintf('%g variations of Argument of Periapsis\n',n) 
fprintf('Values of Argument of Periapsis (deg) tested: %g\n', variations) 

case 6 
fprintf('Cannot vary True Anomaly, select vary = 3,4, or 5.\n') 

case 7 
fprintf('Cannot vary semi-major axis, select vary = 3,4, or 5.\n') 

end 
 
 

%...Plot Run Times, Total Steps, Number of Errors 
figure 
subplot(1,3,1) 
plot(x,time(:,1),'-r'); hold on; 
plot(x,time(:,2),'-g'); 
plot(x,time(:,3),'-b'); 
plot(x,time(:,4),'-c'); 
plot(x,time(:,5),'-m'); 
plot(x,time(:,6),'-k'); hold off; 
title('Run Times') 
xlabel('tolerance e-n') 
ylabel('time (s)') 
%xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
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xlim([x(1),x(end-1)]); %use when comparing to highest order solution 
 

subplot(1,3,2) 
plot(x,ns(:,1),'-r'); hold on; 
plot(x,ns(:,2),'-g'); 
plot(x,ns(:,3),'-b'); 
plot(x,ns(:,4),'-c'); 
plot(x,ns(:,5),'-m'); 
plot(x,ns(:,6),'-k'); hold off; 
title('# Steps') 
xlabel('tolerance e-n') 
ylabel('# Steps') 
%xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
xlim([x(1),x(end-1)]); %use when comparing to highest order solution 

 
subplot(1,3,3) 
plot(x,nf(:,1),'-r'); hold on; 
plot(x,nf(:,2),'-g'); 
plot(x,nf(:,3),'-b'); 
plot(x,nf(:,4),'-c'); 
plot(x,nf(:,5),'-m'); 
plot(x,nf(:,6),'-k'); hold off; 
title('# Failed') 
xlabel('tolerance e-n') 
ylabel('# Failed Steps') 
%xlim([x(1), x(end)]); %use when comparing to ephemeris solution 
xlim([x(1),x(end-1)]); %use when comparing to highest order solution 

 
function dfdt = nrates(t,f) 
global muE muL muS R 
% This function evaluates acceleration of each member of 3 body system at 
% time t from their positions and velocities at that time. 
% t - time (s) 
% f - column vector of position and velocity componenets 
% R12 - cube of distance between m1 and m2 (km^3) 
% R13 - cube of distance between m1 and m3 (km^3) 
% R23 - cube of distance between m2 and m3 (km^3) 
% AX1,AY1,AY3 - acceleration components of mass 1 (km/s^2) 
% dydt - column vector of velocity and acceleration componenets at 
% time t 

 
%...Initial Conditions (Particle radius & velocity components) 
prx = f(1); 
pry = f(2); 
prz = f(3); 
pvx = f(4); 
pvy = f(5); 
pvz = f(6); 

 
%...Caclulate Vector & Scalar Radii (km) 
JD_0 = 2458119.500000000; % (2018-Jan-01 00:00:00.00) 
JD = JD_0 + t/86400; % Julian Date 
r_moon = lunar_position(JD); % ECI frame lunar position 
lrx = r_moon(1); 
lry = r_moon(2); 
lrz = r_moon(3); 
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% [lam eps r_sun] = solar_position(JD); % Ecliptic frame solar position 
% srx = r_sun(1); 
% sry = r_sun(2); 
% srz = r_sun(3); 
RE = norm([prx pry prz]); % Scalar distance Earth/Particle 
RL = norm([lrx-prx lry-pry lrz-prz]);  % Scalar distance Lunar/Particle 
%RS = norm([srx-prx sry-pry srz-prz]); % Scalar distance Solar/Particle 

 
%...J2 Purturbation (from Curtix 12.30) 
J2 = 0.00108263; 
fac = (3/2) * (J2*muE*R^2) / (RE^5); 
J2x = fac*(prx)*(5*prz^2/RE^2-1); 
J2y = fac*(pry)*(5*prz^2/RE^2-1); 
J2z = fac*(prz)*(5*prz^2/RE^2-3); 

 
%...Lunar Purturbation 
lax = muL*(lrx-prx)/RL^3; 
lay = muL*(lry-pry)/RL^3; 
laz = muL*(lrz-prz)/RL^3; 

 
%...Final Particle Acceleration States 
pax = -muE*prx/RE^3 + J2x;% + lax; 
pay = -muE*pry/RE^3 + J2y;% + lay; 
paz = -muE*prz/RE^3 + J2z;% + laz; 

 
%...Particle Output Vector 
dfdt = [pvx pvy pvz pax pay paz]'; 
end %nrates 
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