Cubesat General Subsystem Performance Specification

A project present to The Faculty of the Department of Aerospace Engineering San Jose State University

in partial fulfillment of the requirements for the degree *Master of Science in Aerospace Engineering*

By

Amy Marie Rawls

May 2014

approved by

Dr. Papadopoulos Faculty Advisor

WARNING – This document contains technical data whose export is restricted by the Arms Export Control Act (TITLE 22, U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, as amended, Title 50, U.S.C., App. 2401 et. seq. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DoD Directive 5230.25.

© 2014

Amy Marie Rawls

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

CUBESAT GENERAL SUBSYSTEM PERFORMANCE SPECIFICATION

by

Amy Marie Rawls

APPROVED FOR THE DEPARTMENT OF AEROSPACE ENGINEERING

SAN JOSÉ STATE UNIVERSITY

May 2014

Dr. Periklis Papadopoulos, Department of Aerospace Engineering Dr. Nikos Mourtos, Department of Aerospace Engineering Nik Djordjevic, Department of Aerospace Engineering

ABSTRACT

CUBESAT GENERAL SUBSYSTEM PERFORMANCE SPECIFICATION by Amy Marie Rawls

CubeSats are quickly becoming a popular method for everyone from high school and university students to satellite companies to reach space relatively quickly and inexpensively for research and technology demonstration purposes. A standard was created by California Polytechnic State University, San Luis Obispo and Stanford University named the CubeSat architecture. This platform allows many different developers to create unique satellite payloads and buses while maintaining a common launch and deployment form factor. This work provides a performance specification for the general design of a CubeSat satellite. The satellite subsystems are the main focus, including attitude determination and control, data handling, thermal, mechanisms, structures, power, propulsion, telemetry, command and ranging. The purpose of creating this specification is to provide a design starting point to novice satellite developers who may benefit from industry knowledge of requirements, standards and configurations.

ACKNOWLEDGEMENTS

Without the loving support of my husband and mother I would not have been able to achieve my educational journey. I would like to thank them for the years of support and encouragement they have given me so that my dreams could become reality. I would also like to thank Dr. Periklis Papadopoulos, Dr. Nikos Mourtos and Nik Djordjevic for their insightful lectures, support and mentorship.

Table of Contents

List of Figures xi
List of Tables xii
List of Acronymsxiii
1 Introduction10
1.1 Background and Motivation 10
1.2 Literature Review10
1.3 Overview of Specifications12
2 Subsystems Specifications13
2.1 General Specification Scope13
2.1.1 Document Overview 13
2.1.2 Specification Flow down 13
2.1.3 Requirements Scope14
2.2 Attitude Determination and Control Subsystem (ADCS) Performance
Specification14
2.2.1 Attitude Determination and Control Subsystem (ADCS)
Description14
2.2.2 Reference Frames15
2.2.3 Definitions of Operational States
2.2.4 ADCS Configuration17
2.2.5 ADCS General Performance17
2.2.5.1 Sensor Biases17

2.2.6	ADCS Telemetry	18
2.2.7	ADCS Command	18
2.2.8	ADCS Hardware	19
	2.2.8.1 Earth Sensor (ES)	19
	2.2.8.2 Gyro	20
	2.2.8.3 Sun Sensor	20
	2.2.8.4 Reaction Wheels (RWs)	20
2.2.9	ADCS Subsystem Interface	20
	2.2.9.1 ADCS Configuration	.20
	2.2.9.1.1 Mass Properties	20
	2.2.9.1.2 Center of Gravity Uncertainty	21
	2.2.9.1.3 Propellant Propulsion	21
2.2.10	0 Control Modes	22
	2.2.10.1 General Requirements	22
	2.2.10.2 Safe Mode	22
	2.2.10.3 Earth Acquisition Mode	.22
	2.2.10.4 Nominal On-Orbit Mode	.23
2.2.6	Software Safety Monitors – Attitude Control	24
2.3 Thermal	Subsystem Performance Specification	25
2.3.1	Thermal Environments	25
2.3.2	General Thermal Design	.26
2.3.3	Temperature Margin Prediction	26

2.3.4	Heaters	27
2.3.5	Thermistors	27
2.3.6	Thermal Insulation Blankets	28
2.3.7	Thermal On-Orbit Requirements	28
2.3.8	Power Subsystem Interface	28
2.3.9	Thermal Firmware Requirements	.29
2.4 Comman	nd and Data Handling (C&DHS) Performance	
Specifica	ation	29
2.4.1	Telemetry Requirements	30
2.4.2	Command Requirements	32
2.4.3	Data Handling Requirements	32
2.4.4	Software Safety Monitors – Data Handling	34
2.4.5	Interface – Data Handing with Telemetry, Command and	
Rangi	ng Subsystem (TC&R)	34
2.5 Power St	ubsystem Performance Specification	34
2.5.1	Power Subsystem Description	34
	2.5.1.1 Solar Array Deployed Frequencies	35
	2.5.1.2 Battery Mission Operations Profiles	35
2.5.2	Power Subsystem Configuration	36
2.5.3	Power General Requirements	36
2.5.4	Bus Requirements	37
2.5.5	Solar Array (Panel) Requirements	38

2.5.6 Battery Requirements	39
2.5.7 Power Subsystem Command and Telemetry	39
2.5.8 Power Subsystem Firmware	40
2.6 Mechanism Subsystem Performance Specification	40
2.6.1 Mechanism Subsystem Description	40
2.6.2 Mechanism Subsystem Configuration	41
2.6.3 Mechanisms General Performance Requirements	41
2.6.4 Mechanism Subsystem Telemetry and Command	42
2.7 Propulsion Subsystem Performance Specification	42
2.7.1 Propulsion Subsystem Description	43
2.7.2 Propulsion General Performance Requirements	43
2.7.3 Propellant Storage	44
2.7.4 Propulsion Telemetry and Command	44
2.8 Structures Subsystem Performance Specification	44
2.8.1 Structures Subsystem Description	44
2.8.2 Structure General Performance Requirements	45
2.8.3 Testing and Integration	45
2.8.4 Structural Loads	46
2.8.5 Satellite Dimensions	46
2.8.6 Satellite Rails	48
2.8.7 Stiffness and Frequency	48
2.8.8 Alignments	48

3 Recommendations for Future Work	49
References	51

List of Figures

Figure 1: Additional Space Available in NanoRacks Launcher......47

List of Tables

Table 1:	Satellite Maximum Mass for Deployment with NanoRacks	
Deployer		21
Table 2:	CubeSat Dimensional Requirements4	-6

LIST OF ACRONYMS

ADCS – Attitude Determination and Control Subsystem

C&DHS – Command and Data Handling Subsystem

DC – Direct Current

DHS – Data Handling Subsystem

ES – Earth Sensor

FOV – Field of View

GEO – Geosynchronous Earth Orbit

GEVS – General Environmental Verification Standard

ICD – Interface Control Document

ISIS – Innovative Solutions in Space

ISS – International Space Station

lsp – Specific Impulse

ITAR - International Traffic In Arms Regulations

J-SSOD – Japanese Small Satellite Orbital Deployer

LEO – Low-Earth Orbit

Li – Lithium

ME – Mechanisms

NASA – National Aeronautics and Space Administration

P-POD – PolyPicosatellite Orbital Deployer

PR – Propulsion

PW – Power

RBF – Remove Before Flight

RW – Reaction Wheel

SJSU – San Jose State University

ST – Structures

STD – Standard

TC&R – Telemetry, Command and Ranging Subsystem

TH – Thermal

U – Unit

Chapter 1: Introduction

1.1 Background and Motivation

The number of CubeSats that have been designed, built and flown has drastically increased of the past few years. More Universities and even some companies have joined in on the comparatively low cost option to demonstrate new scientific, hardware and concept ideas. The majority of CubeSat developers are novices to the satellite manufacturing industry. The goal of this thesis is to provide a general performance specification document that can be used by new developers to aid their understanding of the unique requirements of satellite subsystems, the space environment and interfaces with deployment systems. Every mission must have a set of requirements in order to keep the goals and milestones in sight and to help ensure mission success. With the provided performance specification future failures and design issues can be minimized to some extent by considering this industry knowledge applied to the CubeSat platform.

1.2 Literature Review

On November 19, 2013, 29 satellites were launched on an Orbital Sciences-built Minotaur 1 rocket [1]. This record breaking CubeSat launch of 28 CubeSats along with an Air Force primary satellite demonstrates the increase in launch availability and the desire and capability of novice developers. Onboard the Minotaur was TJ³Sat which was designed and built by high school students in conjunction with Orbital Sciences [2]. Previously launch availability has been harder to come by and with fewer CubeSats per launch such as the launch of the SJSU/NASA CubeSat TechEdSat-1 along with F-1 and FITSAT-1 from the International Space Station on October 4, 2012 [1]. Many of the CubeSats are completed by university students working with space experts such as NASA or Orbital Sciences, such programs have the benefit of building off of the knowledge already present within those organizations. However some CubeSats such as FITSAT-1 are built by amateurs who begin with little if any knowledge of how to design or build a satellite [3]. It is those developers which this work aims at providing a guideline for the performance specifications of the CubeSat subsystems, in addition to the existing basic CubeSat specifications [4].

Various hardware companies have begun selling CubeSat components such as power management devices, attitude control actuators and sensors, and main body structures among other units. These micro sized aerospace hardware components allow for more complex CubeSats to be developed. The 3U to 6U size CubeSats allow for additional room and mass to integrate more complex subsystems. ISIS produces a magnetorquer at just 195g produces a magnetic moment of 0.24 Am² which provide passive magnetic control [5]. For more complex attitude control there are micro-thrusters in both electric [6] and gas propulsion [7], with I_{sp} of 590s and 100s respectively. There are reaction wheel (RW) assemblies that can be used on the larger CubeSats that require momentum storage. The SSBV Aerospace and Technology Group manufactures a RW system that provides up to 20 mNm and 0.65 Nms [8]. For attitude sensors there are mini sun sensors [9], earth horizon sensors [10], and GPS receivers [11]. Other components including solar panels, and main body structures are also available.

1.3 Overview of Specifications

Depending on the mission requirements, a set of off the shelf components may be available. Mission requirements drive subsystem budgets and unit selections. Once units have been selected or designed they may drive additional subsystem requirements themselves. Requirements in a performance specification are well formed, complete, consistent, individually verifiable and traceable to a higher requirement or goal [12]. In addition to performance requirements there are also functional, interface and operational requirements to be considered, which is outside the scope of this work. For example, interface control documents for J-SSOD or P-POD would drive additional requirements if chosen as the CubeSat deployer. Detailed in Chapter 2 are the general requirements for the Attitude Determination and Control, Data Handling, Power, Thermal, Telemetry, Command and Ranging, Structures and Mechanisms subsystems. These requirements are aimed at a larger CubeSat that has the capacity for such abilities as 3-axis attitude determination and control. Technical requirements performance specification documents in the satellite industry are formatted as shown in Chapter 2, with the entire document as a table. Statements that contain "shall" are requirements and statements that contain "may" are design goals or options.

Chapter 2: Subsystem Performance Specifications

Requirement	
Number	2.1 General Specification Scope
Number	
	2.1.1 Document Overview
	This specification provides the requirements of a CubeSat for the
	general performance and design. This document is geared
	towards larger CubeSats, such as the 3U to 6U form factors.
	2.1.2 Specification Flow down
	This document is derived in part from applicable documents
	such as the General Environmental Verification Standard
	(GEVS) NASA (GSFC-STD-7000), Cubesat Design Specification
	from Cal Poly, ICDs of various deployment platforms such as the
	NanoRacks CubeSat Deployer and satellite manufacturing
	industry knowledge.
	Each subsystem must satisfy the environmental, test and
	design requirements of the applicable documentation for the
	specific launch provider chosen. Any new revision of the launch
	provider's documents supersedes this document so care should
	be taken to look for new revisions subsequent to the publication
	date of this material.

2.1.3 Requirements Scope
Each CubeSat will have a unique set of design requirements
that must be met to ensure mission success, this document
outlines the general requirements for 1U to 6U Cubesats. There
are internal requirements to the developer of each CubeSat and
there are also derived requirements imposed on CubeSats to
ensure safety and compatibility with deployers and launch
providers.
In order to show compliance to the requirements set forth in this
document various evidence must be produced by each CubeSat
developer to demonstrate to the appropriate deployment and
launch providers before the CubeSat will be approved for
manifest. Such verification methods are industry common and
include analysis, inspection, demonstration, or test.
Requirements may need to be verified at different levels such as
unit, subsystem or systems level.
2.2 Attitude Determination and Control Subsystem
(ADCS) Performance Specification
2.2.1 Attitude Determination and Control Subsystem (ADCS)
Description
The ADCS includes the actuators, sensors, software and
electronics in order to determine the satellites orientation and

provide corrective motion and orbital control as necessary. Many
CubeSats have no means of attitude control or even sensing
ability and may simply accept a mission design that is compatible
with a possible random tumble or unknown initial injection and
mission attitude. However some more complex CubeSats rely on
elementary ADCS actuator hardware such as magnetic torque
coils, basic reaction wheels and micro thrusters, listed in order of
increasing complexity.
The main functions of the ADCS are to provide delta V to achieve
desired orbit, orient and maintain attitude through the missions
design life, and to provide means of deorbiting the satellite. Each
CubeSat may employ all or only some of these ADCS functions
CubeSat may employ all or only some of these ADCS functions as needed for their mission.
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames The reference frames may include an inertial, orbital, satellite
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames The reference frames may include an inertial, orbital, satellite body, ADCS sensor and launcher body. The orbital reference
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames The reference frames may include an inertial, orbital, satellite body, ADCS sensor and launcher body. The orbital reference frame is defined such that the Z axis is located in the
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames The reference frames may include an inertial, orbital, satellite body, ADCS sensor and launcher body. The orbital reference frame is defined such that the Z axis is located in the instantaneous orbit plane pointing towards the center of the
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames The reference frames may include an inertial, orbital, satellite body, ADCS sensor and launcher body. The orbital reference frame is defined such that the Z axis is located in the instantaneous orbit plane pointing towards the center of the earth. The X axis is located in the orbital plane perpendicular to
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames The reference frames may include an inertial, orbital, satellite body, ADCS sensor and launcher body. The orbital reference frame is defined such that the Z axis is located in the instantaneous orbit plane pointing towards the center of the earth. The X axis is located in the orbital plane perpendicular to the instantaneous radius vector and points in the direction of
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames The reference frames may include an inertial, orbital, satellite body, ADCS sensor and launcher body. The orbital reference frame is defined such that the Z axis is located in the instantaneous orbit plane pointing towards the center of the earth. The X axis is located in the orbital plane perpendicular to the instantaneous radius vector and points in the direction of spacecraft motion. The Y axis is perpendicular to the
CubeSat may employ all or only some of these ADCS functions as needed for their mission. 2.2.2 Reference Frames The reference frames may include an inertial, orbital, satellite body, ADCS sensor and launcher body. The orbital reference frame is defined such that the Z axis is located in the instantaneous orbit plane pointing towards the center of the earth. The X axis is located in the orbital plane perpendicular to the instantaneous radius vector and points in the direction of spacecraft motion. The Y axis is perpendicular to the instantaneous orbit plane and points south.

	The CubeSat and NanoRacks deployer reference frame have the
	+Z direction in the direction of deployment, the access facet is on
	the +Y direction, and the +X direction follows the right hand rule.
	2.2.3 Definitions of Operational States
	The ADCS subsystem may support the following operational
	states:
	a) Earth Acquisition. An Earth acquisition is normally used
	when a satellite initially acquires the earth and points
	the Body Z axis towards the earth.
	b) Sun Acquisition. This mode may be entered in order to
	point the solar arrays or panels towards the sun, some
	satellites may be designed to remain sun synchronous.
	c) Inertial Pointing. Holds the satellite in an inertially fixed
ACS101	orientation.
	d) Nominal On-orbit Operation. Attitude is maintained
	through actuators and determined from sensors.
	e) Stationkeeping Operation. Maneuvers may be used to
	maintain the orbital location or provide a transition delta v
	f) Safe. In the event of a system anomaly the satellite may
	enter a troubleshooting mode or potentially deactivate or
	perform safety precautions to itself in order to prevent
	catastrophic outcomes such as pressure vessel rupture.

	2.2.4 ADCS Configuration
ACS102	The unit configuration for a specific CubeSat will be specific to its
	mission and design.
ACS103	Possible actuators may include: magnetic torque coils, reaction
	wheels, or micro-thrusters.
ACS104	Possible sensors may include: earth sensor, gyros, sun sensors,
	magnetometer or star trackers.
	2.2.5 ADCS General Performance
ACS105	The ADCS shall determine the spacecraft attitude following
///////////////////////////////////////	separation and initial power on until the end of the mission life.
	Attitude option 1: The ADCS may determine and actively control
ACS106	the spacecraft attitude following separation and initial power on
	until the end of the mission life.
	Attitude option 2: The ADCS may passively control the spacecraft
ACS107	attitude following separation and initial power on until the end of
	the mission life.
ACS109	The ADCS shall provide stable operations with the mission orbital
AC3100	inclination(s).
	2.2.5.1 Sensor Biases
	The earth sensor biases either electrical or mechanical are
	defined as positive pitch bias in the East direction with the

satellite body biasing to the West, a positive roll bias in the North
direction with the satellite body biasing to the South.
The ADCS shall maintain the bias values appropriate for each
operational state.
2.2.6 ADCS Telemetry
The telemetry stream shall include the following information:
a) Sensor and actuator data
b) Operational mode
c) Diagnostic, health and status telemetry of processors,
sensors, and actuators.
d) Micro-thruster data including number of pulses and on-
time.
e) Critical temperature data
f) Deployment mechanism status
2.2.7 ADCS Command
The ADCS units shall be able to receive commands from the
data handling subsystem.
The command capabilities shall include:
Actuator and sensor on/off and configuration commands,
actuator control settings e.g. reaction wheel speeds or thruster
on times, operational states and modes.

	2.2.8 ADCS Hardware
ACS113	The ADCS components shall be compliant with the
	environmental requirements.
ACS114	The ADCS shall meet all requirements for the duration of the
/////	mission life.
ACS115	The ADCS units shall have under and over voltage protection.
ACS116	The ADCS hardware shall not harm other hardware if subjected
	to under or over voltage events.
	The satellite shall be capable of being stored for up to 6 months
ACS117	with no additional operator attention or maintenance prior to
	launch. [13]
ACS118	All sensors and actuators shall meet their alignment error
ACOTIO	requirements.
	2.2.8.1 Earth Sensor (ES)
ACS119	The ES shall provide status telemetry.
ACS120	The ES FOV including any baffles shall meet the mission
	requirements.
ACS121	The ES shall not be damaged by exposure to the Sun from any
	angle.
ACS122	The ES temperature shall be controlled within unit specifications.
ACS123	The ES biases shall meet the mission design required values.

	2.2.8.2 Gyro
ACS124	The Gyro shall meet the orientation required by the mission
	design.
	2.2.8.3 Sun Sensor
ACS125	The sun sensor FOV including any baffles shall meet the mission
100120	requirements.
ACS126	The sun sensor biases shall meet the mission design required
,	values.
ACS127	The sun sensor accuracy shall be at least 0.5 degrees.
	2.2.8.4 Reaction Wheels (RWs)
ACS128	The reaction wheels shall not create a resonance that induces
100120	ES noise larger than 100% of the nominal ES noise.
ACS129	The reaction wheel lubrication system (if present) shall not lead
AC3129	to performance instabilities.
	2.2.9 ADCS Subsystem Interface
	2.2.9.1 ADCS Configuration
	2.2.9.1.1 Mass Properties
ACS130	The maximum allowable density is 1.3Kg/U. [13]
ACS131	The ballistic number of the satellite shall be equal to or less than
	100kg/m ² . [13]
ACS132	The total wet satellite mass corresponding to the form factor shall

	be equal to or less than the mass	s in Table 1.	
	Table 1. Satellite Maximum Mass for Deployment with		
	NanoRacks Deployer. [13]		
	Form Factor	Maximum Mass (Grams)	
	1U	2,828	
	1.5U	4,243	
	2U	5,657	
	3U	8,485	
	40	11,314	
	50	14,142	
	6U	16,971	
	2.2.9.1.2 Center of Gravity Unc	ertainty	
ACS133	The undeployed center of gravity (cg) uncertainty shall be within:		
	X: ±2 cm Y: ±2 cm Z: ±2 cm. [13]		
	2.2.9.1.3 Propellant Propulsion		
ACS134	Thruster location and pointing shall be optimized to meet station		
//00104	keeping, delta-V and pointing requirements.		
ACS135	The AOC thruster throughput and maximum throughput margin		
	shall be compatible with the type of thrusters used.		
ACS136	Solar array position and tip deflection shall support the power		
///////////////////////////////////////	requirements in this document.		

	The ADCS shall meet all performance and pointing requirements
ACS137	with the deployed frequencies of any reflector or solar array
	assemblies.
	The ADCS shall meet all performance and pointing requirements
ACS138	with the structural thermal distortion allocations.
	2.2.10 Control Modes
	2.2.10.1 General Requirements
ACS139	All control modes shall have positive gain and phase margin.
ACS140	Control modes shall be compatible with the actuators selected
ACS140	and be compliant with their operational capability.
ACS141	Propellant slosh shall not cause loss of control of the satellite.
ACS1/2	There shall be a 2:1 safety margin on the control torque including
AC3142	the reaction wheels and thrusters.
ACS143	The reaction wheels shall support momentum unloading.
ACS144	The momentum unloading shall not cause a loss of control.
ACS145	It shall be possible to calibrate the gyro from ground.
	2.2.10.2 Safe Mode
ACS146	There shall be a safe mode where all actuators are inhibited.
	2.2.10.3 Earth Acquisition Mode
ACS147	There may be a mode that is capable of acquiring the earth and
	maintain earth pointing with 0.5 degree dead bands.

	An acquisition sequence or timer shall be automatically initiated
ACS148	on board the satellite upon deployment to deploy any antenna,
	solar array or device no sooner than 30 minutes from
	deployment. [13]
ACS149	The acquisition sequence shall also be able to be commanded
700140	from ground command.
ACS150	The earth horizon sensor shall be used to maintain Earth pointing
ACC 150	when Earth presence is detected.
ACS151	The earth horizon sensor and gyro shall be used for rate and
ACCIDI	attitude data.
ACS152	GPS may be used for orbit data.
	2.2.10.4 Nominal On-Orbit Mode
ACS153	The nominal on-orbit mode shall support the required pointing
	requirements of the mission.
ACS154	The satellite may be 3-axis stabilized.
ACS155	The satellite may spin about its major axis.
ACS156	The satellite may randomly tumble.
ACS157	Reaction wheels shall be the primary means of attitude control.
ACS158	Thrusters shall provide momentum unloading from reaction
	wheels either autonomously or by ground command.
ACS159	The reaction wheels shall avoid operating in a speed range that

	causes a resonance in the earth horizon sensor.
ACS160	The reaction wheels shall be operated in a manner that does not
	cause unexpected behavior.
ACS161	The earth horizon sensor and gyro shall be used for rate and
	attitude data for roll, pitch and yaw.
	2.2.6 Software Safety Monitors – Attitude Control
ACS162	There shall be a monitor to prevent thrusters from firing while
100102	their valves are closed.
ACS163	There shall be a monitor to filter out earth horizon sensor
//00100	glitches.
ACS164	There shall be a monitor to filter out gyro data glitches.
ACS165	There shall be a monitor to terminate thruster activity if the earth
ACS 105	presence is lost until the earth acquisition mode is entered.
	There shall be a reaction wheel monitor to disable the reaction
ACS166	wheels from the control loop in the event they are not performing
	as expected.
ACS167	There shall be a gyro monitor to disable the gyro from the control
	loop in the event it is not performing as expected.
	There shall be an earth horizon sensor monitor to disable the
ACS168	earth horizon sensor from the control loop in the event it is not
	performing as expected.

ACS169	There shall be a position angle error monitor to initiate Earth
	acquisition mode once earth presence is lost.
	There shall be a monitor to disable thruster control if any thruster
ACS170	fires for longer than 0.5 seconds, or shorter if determined by
	control design.
ACS171	The thruster duty cycle used shall be compatible with the thruster
ACSITI	material used.
ACS172	There shall be a monitor to prevent the reaction wheels from
AC3172	reaching speeds outside of their qualified speed range.
ACS173	Monitors shall be able to be armed, disarmed and reset.
ACS17/	Monitors shall set a trip counter stored in memory and
AC5174	transmitted to ground.
ACS175	There shall be a monitor for under and over pressure of the
ACS175	propellant and oxidizer tanks and lines.
	If there are redundant ADCS units including the gyro, earth
ACS176	horizon sensor, reaction wheels, thrusters or sun sensors there
ACST70	shall be health monitors to swap between units upon failure of
	the primary unit.
	2.3 Thermal Subsystem Performance Specification
	2.3.1 Thermal Environments
TH101	The thermal subsystem shall maintain the temperature of every

	component of the satellite within its design limits under all of the following conditions:	
	During all times from shipment, storage, deployment, and until	
	end of mission under all conditions and environments expected	
	during these periods.	
	a) Under all communications systems configurations	
	including communications system power off.	
	 b) All equipment consuming power as expected including worst case margins. 	
TH102	c) Including diurnal temperature variations.	
	d) Any orbit inclination specified in the mission design.	
	e) Diurnal or possible seasonal temperature variations.	
	f) Solar Heating.	
	g) Mission specified orbit, e.g. GEO, LEO, polar, etc.	
	h) Any attitude bias or attitude steering.	
	i) Launch on any day of year.	
	2.3.2 General Thermal Design	
TH103	The main means of thermal control shall be passive however	
	heaters and heat pipes may be used.	
	2.3.3 Temperature Margin Prediction	
TH104	The satellite thermal design shall be predictable by analysis, test	
	and based on transient analysis.	

TH105	The acceptance test conditions of all units shall be at least 5°
	more than the design limit.
TH106	The qualification and survival test conditions shall be at least 10°
	more than the design limit.
	2.3.4 Heaters
TU1407	Heaters shall be used where necessary to maintain units at least
	5° above their thermal design limit.
TH108	Heaters shall include safety switches to prevent stuck on heaters.
TU100	Heaters shall be protected from sharp corners or areas that could
	damage them.
ТН110	Redundant heaters shall be used on all critical or potentially
11110	dangerous equipment.
	2.3.5 Thermistors
	Thermistors shall be used as a minimum to report temperatures
	of the following:
	a) Battery cells
TH111	b) Propulsion tanks and lines
	c) Thruster valves and injectors
	d) Baseplate temperatures of all units
	e) Any motor or rotating mechanism
TH112	Thermistors shall be accurate to within 5°.

TH113	Thermistors shall support the entire range of temperatures that a	
	unit may observe.	
T 11444	Redundant thermistors shall be used on all critical or potentially	
1 [] 1 [] 4	dangerous equipment.	
	2.3.6 Thermal Insulation Blankets	
TH115	All blankets shall be grounded with a conductive outer layer.	
ТН116	All blankets shall be designed and installed to allow venting and	
	mechanical access where required.	
 ТЫ117	All blankets shall remain in place and not intrude or interfere with	
	any satellite component.	
	2.3.7 Thermal On-Orbit Requirements	
TH118	The thermal system shall be autonomous and not require any	
	ground intervention for nominal operations.	
	2.3.8 Power Subsystem Interface	
	The thermal subsystem shall keep the batteries within their	
TH119	design operating limits including during all seasons, eclipses,	
	discharge, and charge periods.	
	Thermal design shall keep temperatures of pressurized	
TH120	propellants at least 15° lower than boiling points and 15° above	
	freezing points.	
TH121	The thermal subsystem shall maintain the propellant in all areas	

	to preserve its physical and chemical properties to
	meet performance requirements.
	2.3.9 Thermal Firmware Requirements
TU122	Heaters shall operate under autonomous control with set points
	and thermistor inputs.
TH123	Where redundant thermistors are utilized, voting margins shall be
11120	used.
ТН124	It shall be possible to disable any heater or thermistor by ground
111124	intervention.
TH125	The firmware shall support all heaters and thermistors.
	There shall be a minimum thermal protection monitor to reduce
тн126	heater power consumption in the event of a satellite anomaly
11120	where solar power is insufficient to maintain a positive power
	margin.
	2.4 Command and Data Handling (C&DHS) Performance
	Specification
DH101	If there are redundant electronics systems they shall be fully
BIII01	cross-strapped.
	Radio communications shall begin no sooner than 30 minutes
DITIOL	from deployment. [13]
	Radio communications must adhere to all applicable regulations

	and guidelines.
	C&DHS shall provide telemetry and command capability for all
DH103	heaters, thermistors, solar array motors, antenna motors, and
	interface adapters.
DH104	Interface adapters shall be able to handle analog, digital and
Diriot	pulse commands and telemetry.
DH105	Data harnesses shall be unique or keyed to prevent incorrect
Dirios	mating.
	Interface adapter signal types, pulse widths, currents,
DH106	resolutions, resistances and voltages shall be compatible with
	both the hardware units, routers and processors.
	2.4.1 Telemetry Requirements
	The telemetry function shall gather, encode, multiplex, format
DH107	and transmit to ground the unit and satellite data for health,
	statuses, performance and environments.
DH108	Telemetry shall be functional from subsystem integration until
Dirioo	mission end at any time the satellite is powered on.
	Telemetry shall be available in both a normal data rate and a
DH109	faster dwell data rate where certain data may be needed more
	frequently for mission required data.
DH110	Dwell telemetry contents shall be configurable to read any

	memory region.
DH111	All telemetry shall be available at the rate required to determine
	the health, status and performance of each component.
	The satellite telemetry shall provide at a minimum:
	a) Satellite identification
	b) Bus voltages and currents
	c) Cell and battery voltages
	d) Battery charge/discharge currents
	e) Solar array current and shunt current
DH112	f) Unit and critical component temperatures
DITTZ	g) Propellant tank and line pressures and temperatures
	h) Thruster injector and valve temperatures
	i) Thruster pulse width and on-times
	j) Actuator and latch valves open/close statuses
	k) Unit and processor on/off, status, health and
	performance data
	I) Actuator and sensor data, voltages and currents
DH113	Critical events such as safety monitor trips shall be stored in a
	fault log, such that information will be available when telemetry is
	received by ground station.
DH114	Each telemetry parameter shall have sufficient bit resolution with
	zero to full scale to meet mission requirements.

DH115	Telemetry shall be continuously transmitted to ground.
	Critical telemetry shall be archived in a data recorder such that all
DH116	telemetry is available for downlink once communication with
	ground station is locked, if required by mission design.
	2.4.2 Command Requirements
	Commands shall be able to:
	a) Control payload units
	b) Control power subsystem
	c) Heater control
DH117	d) Propulsion valve control
	e) Motor control
	f) Attitude control unit configuration control
	g) All unit on/off, configuration and selection
	h) Memory uploads
DH118	Command decoders shall have unique addresses.
	Command units shall provide phase locking, demodulation, bit
DH119	synchronization, and decoding of incoming commands.
DH120	Critical commands shall be multiple step commands.
	2.4.3 Data Handling Requirements
	The data handling subsystem shall collect, interpret, and route
	commands to their intended recipients.

	Commands shall be routed to the actively selected units unless a
DH122	command is specific to an individual unit.
	There shall be a system clock to provide a time reference since
DH123	final power on from pre-deployment until at least 200% of mission
	life.
 אנינוח	The data handling system shall accept ground commands and
UH 124	internal autonomous commands as required.
DH125	Any autonomous feature shall be able to be overridden.
	The data handling system shall accept and process commands
	as fast as the mission requires.
DH127	The data handling system shall reject invalid commands.
הµ128	The data handling system shall be able to ignore signals from
DITIZO	any failed unit or component.
חטידים	A command echo shall be transmitted to the ground for all
	executed commands.
DH130	Hazardous command types shall be multiple steps.
	Power shall be provided in 3V, 5V and 9V supplies with total
DH131	power output sufficient to meet the satellite design.
<u>п</u> ш122	The data handling system shall support testing via a test
	connector while integrated in deployer or launch vehicle.
DH133	A monitor shall indicate when the satellite has been deployed.

DH134	All deployments and mission activity shall not begin sooner than
	30 minutes from deployment monitor trip.
	2.4.4 Software Safety Monitors – Data Handling
DH135	On board computers shall have fault monitors that will either
Dirico	correct or reset the processor(s).
DH136	Safety monitors shall be disabled on processor restart.
DH137	Single Event Upsets shall be cleared by a safety monitor.
04410	Any critical data that is needed to be preserved during a
DH 130	processor reset shall be stored in a safe memory range.
	2.4.5 Interface – Data Handing with Telemetry, Command
	and Ranging Subsystem (TC&R)
	The TC&R subsystem shall provide the ranging path on/off status
DH139	in telemetry.
	The TC&R critical components shall be monitored and statuses
DH140	provided in telemetry.
DH141	Telemetry shall be at least 5% accurate of the full scale value.
DH142	Telemetry shall be calibrated over its full range.
	2.5 Power Subsystem Performance Specification
	2.5.1 Power Subsystem Description
	The power subsystem provides the satellite with power via a

	monitoring, controlling and conditioning the DC power.
PW101	The power bus is where the regulation characteristics are
	controlled. It is supplied via the battery and solar arrays and is
	distributed to the satellite loads. The power bus is regulated and
	shunted at various power levels.
	2.5.1.1 Solar Array Deployed Frequencies
	The solar arrays could be excited from reaction wheel or thruster
	activity. The solar array design and attitude control design must
PW102	be compatible in that the ADCS needs to be capable of handling
	the solar array response and the operational design should avoid
	the solar array structural frequency stay out regions.
	2.5.1.2 Battery Mission Operations Profiles
	The following assumptions are made for battery usage
	The following assumptions are made for battery usage and operations.
	The following assumptions are made for battery usage and operations. a) Battery must support full mission life from
	 The following assumptions are made for battery usage and operations. a) Battery must support full mission life from subsystem integration until end of mission life.
PW/103	 The following assumptions are made for battery usage and operations. a) Battery must support full mission life from subsystem integration until end of mission life. b) Discharge during eclipse or anomalies will not exceed max
PW103	 The following assumptions are made for battery usage and operations. a) Battery must support full mission life from subsystem integration until end of mission life. b) Discharge during eclipse or anomalies will not exceed max discharge rates or depth of discharge that may
PW103	 The following assumptions are made for battery usage and operations. a) Battery must support full mission life from subsystem integration until end of mission life. b) Discharge during eclipse or anomalies will not exceed max discharge rates or depth of discharge that may damage the battery.
PW103	 The following assumptions are made for battery usage and operations. a) Battery must support full mission life from subsystem integration until end of mission life. b) Discharge during eclipse or anomalies will not exceed max discharge rates or depth of discharge that may damage the battery. c) Battery is kept at 100% charge during power
PW103	 The following assumptions are made for battery usage and operations. a) Battery must support full mission life from subsystem integration until end of mission life. b) Discharge during eclipse or anomalies will not exceed max discharge rates or depth of discharge that may damage the battery. c) Battery is kept at 100% charge during power positive portions of the orbit.

	power negative anomalies.
	2.5.2 Power Subsystem Configuration
	The power subsystem consists of solar cells either on the
PW104	satellite body or on deployed solar panels, Li-ion batteries, power
	bus, dischargers, chargers and power conditioning units.
	2.5.3 Power General Requirements
P\//105	The power subsystem shall be compatible with operation in a low
1 00 103	earth orbit.
	The power subsystem shall provide power to the satellite units, in
PW106	addition to storing, regulating, generating, monitoring, controlling
	and conditioning the DC power.
PW107	The power subsystem shall be designed to meet the worst-case
	power requirements of the satellite design for all mission phases.
	The power subsystem shall provide full time power during
PW108	sunlight operations and during eclipse operations shall provide
	sufficient power to maintain the basic satellite bus health.
PW109	The power subsystem shall only have one main power bus.
PW110	The power subsystem shall generate power via photovoltaic solar
	collectors.
PW111	The power subsystem shall store power in Lithium-Ion batteries.
PW112	Fusing may be used to isolate short circuits or double insulation

	may be used.
PW113	Power conditioning electronics shall be used to regulate the
	power on the main power bus.
PW114	The power subsystem shall provide at least sufficient telemetry to
	determine state of health and safety.
PW115	When the battery is fully charged excess power shall be shunted.
PW116	Battery charging shall be automatic once connected to power
	supply.
PW117	Power shall be internal only before launch.
PW/118	Three launch inhibit switches shall be used with no greater force
	than 3N. [13]
	Launch inhibit switches may be Remove Before Flight (RBF)
PW119	pins, slide switches, captive jumpers, pusher or roller switches.
	[13]
	2.5.4 Bus Requirements
PW120	The power system shall provide 3V, 6V and may provide 9V
	power if required.
PW121	The power subsystem shall use a single point ground.
D\\/122	The power subsystem shall operate during sunlight, eclipse and
	during combined array and battery power operations.
PW123	The power subsystem shall regulate power such that no unit is

	under or over voltage under nominal conditions including ripples
	and transients.
PW124	The power subsystem shall provide sufficient power for all units
	for the system to meet full performance.
	2.5.5 Solar Array (Panel) Requirements
PW125	The solar array shall be able to support full satellite power load.
PW/126	The solar array shall be able to operate in full sun and full eclipse
1 1 1 20	with no damage.
D\\/127	A short in one photovoltaic cell or string shall not affect the power
1 1 1 27	from any other cell or string.
PW/128	The photovoltaic cells shall be designed to be protected from
FWIZO	electrostatic buildup.
	Margin shall be added on the power requirements from the solar
PW129	array to account for degradation or damage from thrusters if it
	cannot be avoided.
PW130	The solar array shall be grounded to the satellite body.
PW131	Solar array deployment, if required, shall have a 3:1 torque ratio.
PW/132	To aid in maintaining desired pointing or rotation, any deployed
F VV IJZ	solar arrays shall be symmetric about the satellite body.
P\//133	Solar arrays shall be designed and built to withstand launch,
F VV 133	deployment and operational loads and vibrations.

	2.5.6 Battery Requirements
PW134	Charge capability shall be available for all batteries.
PW135	Discharge capability shall be available for all batteries.
PW136	The battery shall be able to be replaced without significant
	disassembly of the satellite.
PW137	The battery capacity shall be such that the required depth of
	discharge for the satellite design will not damage the battery.
PW138	The battery shall have a margin of remaining power after every
	eclipse.
PW139	The battery cycle life shall support the mission design life
	requirements.
PW140	A failure in one battery shall not propagate to other batteries, if
	there is more than one battery.
PW141	The battery shall be fully charged before each eclipse.
PW142	Batteries shall be equally discharged, if multiple batteries exist
	and are operational.
PW143	Batteries shall be maintained within operational temperature
	limits at all times.
	2.5.7 Power Subsystem Command and Telemetry
PW144	The following commands shall be available to the power
	subsystem:

	a) Unit on/off
	b) Battery heater on/off
	The following telemetry shall be available to the power
	subsystem:
	a) Unit on/off
	b) Battery heater on/off
	c) Battery state of charge
	d) Battery discharge/charge rate
PW145	e) Bus voltage
	f) Bus load
	g) Solar array current
	h) Shunt current
	i) Battery voltage
	j) Battery temperature
	k) Battery heater on/off
	2.5.8 Power Subsystem Firmware
	Monitors shall protect the battery from overcharging and under
PVV146	voltage.
	2.6 Mechanism Subsystem Performance Specification
	2.6.1 Mechanism Subsystem Description
	The mechanism subsystem provides the supporting structure for
ME101	antennas, solar arrays, sensors, actuators and must be compliant

	with thermal, mass, and deployment requirements.
	2.6.2 Mechanism Subsystem Configuration
ME102	The Mechanism subsystem includes the solar array support
	structure, deployment hinges or springs, and hold down devices.
	2.6.3 Mechanisms General Performance Requirements
ME103	The mechanisms subsystem shall provide the support for any
ME 100	deployment or moving device.
ME104	Mechanisms and deployment devices shall have a 3:1 torque
	ratio and force margin.
	There may be motor drive for solar arrays or any antenna
	positioning devices.
ME105	Any motor drive voltage shall have 2:1 margin.
ME106	Any rotating mechanism with bearings shall utilize lubricant.
	Any restraining hold down shall be designed to constrain the
MF107	object during all phases, including integration, shipping, storage,
	launch, deployment, and on-orbit until final release of the device
	or object.
ME108	Mechanisms shall minimize outgassing to within launch providers
	standards.
MF109	Debris shall not be generated from any mechanism or any
	deployment event.

ME110	Pyrotechnic devices shall not be used.
ME111	Electro-explosive devices shall not be used.
ME112	Satellites smaller then 6U shall incorporate captive separation
	springs. [13]
MF113	Separation springs shall be located at opposite corners of the –Z
	end of the rails. [13]
MF114	Separation springs shall have a minimum clearance of 1mm from
	the standoff. [13]
ME115	Separation springs shall have a spring force less than or equal to
	0.75 lbs each and 1.5 lbs total. [13]
MF116	Any magnet or electromagnet shall not interfere with the launcher
	or other CubeSats in close proximity.
	2.6.4 Mechanism Subsystem Telemetry and Command
	Telemetry for the mechanism subsystem shall include:
	a) On/off of all motors
ME117	b) Motor drive voltages
	c) Switch states
	d) Motor temperatures
	2.7 Propulsion Subsystem Performance Specification
	(if applicable)
	2.7 Propulsion Subsystem Performance Specification (if applicable)

	2.7.1 Propulsion Subsystem Description
PR101	The propulsion subsystem is a pressurized propellant based
	system that provides thrust via micro thrusters. Thrust is for
	delta-V and attitude control.
	2.7.2 Propulsion General Performance Requirements
	The propulsion system may use monopropellant such as
PRIUZ	compressed gas.
PR103	The propulsion system may use bipropellant.
	The propulsion system shall have a propellants tank(s),
PR104	propellant lines and thrusters.
	The number and location of the thrusters shall be optimized for
PR105	the mission requirements in order to maximize control authority
	and minimize propellant consumption.
PR106	Thrusters shall use latch valves and actuation valves.
PR107	There shall be a latch valve to isolate the pressurant from the
	propellant.
PR108	There shall be sufficient propellant loaded in the satellite to
	complete the duration of the mission.
PR109	Thrusters shall be compatible with the required thrust, I_{sp} , duty
	cycles and durations required of the control system.
PR110	Thrusters shall be placed so that their plumes do not blind

	sensors or degrade critical components.			
PR111	Pulse widths shall be avoided that may damage thrusters.			
	2.7.3 Propellant Storage			
PR112	The burst pressure of the propellant tanks shall have significant			
	safety margins of the expected worst-case pressure.			
PR113	The burst pressure of the propellant lines and fittings have			
	significant safety margins of the expected worst-case pressure.			
PR114	Propellant system shall utilize filters and design to minimize			
	debris and eliminate bubbles.			
PR115	There shall be propellant fill and drain valves.			
	2.7.4 Propulsion Telemetry and Command			
	Propulsion telemetry shall include:			
	a) Thruster temperatures			
PR116	b) Thruster on-times and pulse widths			
	c) Propellant tank(s) pressure and temperature			
	d) Propellant line pressure and temperature			
	e) Valve open and close statuses			
	2.8 Structures Subsystem Performance Specification			
	2.8.1 Structures Subsystem Description			
	The structures subsystem includes the supporting body of the			
	satellite, including the main body and any rigid or deployable			

	structures. This includes any brackets or hardware holding the satellite together.		
	2.8.2 General Structure		
ST101 co	The satellite structure shall provide support for all satellite mponents, subsystems and as an interface with the		
	deployment device or launch vehicle.		
ST102	Any deployable components shall be constrained by the satellite itself. [13]		
ST103	The NanoRacks CubeSat Deployer, its guide rails and walls shall not be employed to constrain any deployable items. [13]		
ST104	Deployment mechanisms shall hinge towards the +Z direction. [13]		
ST105	The satellite shall be able to withstand transportation by air, or ground.		
	2.8.3 Testing and Integration		
ST106	Access to internal components shall be designed so that minimal disassembly would be required to replace units.		
ST107	Access panels or facets shall be incorporated into the satellite design.		
ST108	Access facets shall be located on the +Y face of the satellite. [13]		

ST109	The access facet shall contain the data plate. [13]				
ST110	Any Remove Before Flight (RBF) pins of slide pins shall be				
	located on the access facet.				
ST111	Any charging socket, programming socket, fuel loading port, or				
	other access feature shall be located on the access facet. [13]				
	2.8.4 Structural Loads				
ST112	Each rail of the satellite shall be able to withstand with no				
51112	damage at least 50 N in compression in the Z direction. [13]				
	2.8.5 Sate	ellite Dimensi	ons		
	The complete CubeSat structure including all undeployed				
	attachments and components in the stored configuration must be				
	10 cm L x 10 cm W x 10 cm H, and having a volume of 1 liter if				
ST113	using a form factor of 1U, otherwise acceptable dimensions are				
	shown in Table 2.				
	Table 2. CubeSat Dimensional Requirements [13]				
	Form Factor	X dimension (mm)	Y dimension (mm)	Z payload dimension (mm)	Z rail dimension (mm)
	1U	100.00	100.00	100.00	113.50
	1.5U	100.00	100.00	156.75	170.25
	2U	100.00	100.00	213.50	227.00
	3U	100.00	100.00	327.00	340.50

	4U	100.00	100.00	440.50	454.00
	5U	100.00	100.00	554.00	567.50
	6U	100.00	100.00	667.50	681.00
ST114	Tolerance in <i>X, Y and Z</i> shall be ± 0.1mm. [13]				
	There ma	y be addition	al space outsi	de of the requ	irements listed
	in Table 2, as shown in Figure 4. Note that the +Z direction is				
	towards the right.				
ST115	Figure 1. [13]	Points	350+/-2 _ pace Availab	Load P	bints 94 Max + 100+/1 + 117 max + 117 max
ST116	The main structure of the satellite on the +Z facet shall be				
	recessed a minimum of 7.0mm from the end of the rails. [13]				
ST117	All components on the +Z facet shall be recessed at least 0.5 mm				
	from the outer edges of the rails. [13]				
ST118	The main	structure of a	a CubeSat on	the –Z facet s	hall be
	recessed	more than 6.	5mm from the	edges of the	rails. [13]

	2.8.6 Satellite Rails
ST119	The satellite shall have 4 rails, one on each edge along the Z
	direction. [13]
ST120	The satellite rails shall have a minimum width of 8.5mm. [13]
ST121	The edges of the rails shall have a chamfer of at least 1mm. [13]
	The rails shall have a minimum surface area of 6.5mm x 6.5mm
ST122	for contact with the adjacent satellite or the NanoRacks CubeSat
	Deployer. [13]
	The rails shall have the following minimum contact ratio: 75% of
ST123	the length of the satellite shall be in contact with the rails in the Z
	axis. [13]
ST124	Rail surfaces which contact the NanoRacks CubeSat Deployer
	rail guides shall be hard anodized aluminum. [13]
	2.8.7 Stiffness and Frequency
ST125	The satellite shall have a minimum fundamental frequency of no
	less than 100 Hz. [13]
ST126	The satellite shall meet stiffness criteria corresponding to the
	frequency requirement.
	2.8.8 Alignments
ST127	Units including actuators, sensors, antenna or other position
	sensitive units shall be aligned such that the mission design

	criteria are met with appropriate interface tolerances in all axes.
ST128	All materials shall be made of materials approved by NASA for
	space flight and use aboard the ISS according to NASA STD-
	6016. [12]
ST120	NanoLab CubeSats shall adhere to applicable ISS standards
51129	listed in the International Space Station documents. [13]
CT130	The satellite structure, hardware and all components shall be
51130	able to withstand the full mission life with at least 50% margin.
	The satellite shall be able to withstand up to 1 year of storage
ST131	with no maintenance or operations other than battery
	maintenance and propellant loading.
ST132	Single point failures shall be minimized if feasible.
ST133	Off-gassing materials shall be used according to NASA-STD-(I)-
	6001A. [12]
ST134	All edges and materials shall be deburred, chamfered or
	otherwise made safe to handle.

Chapter 3

Recommendations for Future Work

The contents of this work includes the performance specification of the subsystems of a large CubeSat satellite. This information is a necessary step to

design and build a quality satellite to complete mission goals and maintain a high mission assurance. There are many other steps in the design and manufacturing of a satellite including but not limited to developing functional, interface, environmental and operational requirements and specification documents. In addition to this work the specific units that are selected or manufactured for a CubeSat program would expand the scope of the presented specification and would be appropriate to be integrated into this document.

References

- [1] Buck, Joshua. (2013, Nov 20). NASA Helps Launch Student-Built Satellites as Part of CubeSat Launch Initiative [Online]. Available: http://www.nasa.gov/press/2013/november/nasa-helps-launch-studentbuilt-satellites-as-part-of-cubesat-launch-initiative/#.Uq0i_vRDvT8.
- [2] Wall, Mike. (2013, Nov 19). Dazzling Nighttime Rocket Launch Puts 29 Satellites In Orbit, a New Record [Online]. Available: http://www.space.com/23659-night-rocket-launch-record-29-satellites.html.
- [3] David, Leonard. (2013, Jan 31). Tiny Japanese Satellite Beams Morse Code Messages from Space [Online]. Available: http://www.space.com/19564-japanese-satellite-morse-codestargazing.html.
- [4] The CubeSat Program, Cal Poly SLO. (2013, Sep 20). CubeSat Design Specification (Rev. 12) [Online]. Available: <u>http://www.cubesat.org/images/developers/cds_rev12.pdf.</u>
- [5] Isispace. (2013, Oct 15). CubeSat Magnetorquer Rod [Online]. Available: www.cubesatshop.com/index.php?page=shop.product_details&product_id =75&flypage=flypage.tpl&pop=0&option=com_virtuemart&Itemid=65&vmc chk=1&Itemid=65.
- [6] Effective Electric Propulsion for Nanosatellite Applications. Clyde Space and Mars Space, Ltd. Glasgow, UK, 2011.
- [7] MicroSpace. (2013, Nov 5). Nanosatellite Micropropulsion System [Online]. Available: http://www.cubesatshop.com/index.php? page=shop.product_details&flypa ge=flypage.tpl&product_id=74&category_id=7&option=com_virtuemart&Ite mid=69.
- [8] SSBV Aerospace and Technology Group. (2013, Nov 3). Microsat Reaction Wheel [Online]. Available: http://www.ssbv.com/ProductDatasheets/page39/page33/index.html.
- [9] ISIS. (2013, Dec 1). CubeSat Sun Sensor [Online]. Available: http://www.cubesatshop.com/index.php?page=shop.product_details&flypa ge=flypage.tpl&product_id=104&category_id=7&option=com_virtuemart< emid=69.

- [10] ISIS. (2013, Dec 1). Static Earth Sensor [Online]. Available: http://www.cubesatshop.com/index.php?page=shop.product_details&flypa ge=flypage.tpl&product_id=103&category_id=7&option=com_virtuemart< emid=69.
- [11] SSBV Aerospace and Technology Group. (2013, Nov 10). Space-based GPS Receiver [Online]. Available: http://www.ssbv.com/ProductDatasheets/page39/page26/index.html.
- [12] NASA Systems Engineering Handbook, NASA/SP-2007-6105 Rev1, NASA, Washington, D.C., 2007.
- [13] Interface Control Document Between NanoRacks CubeSats and NanoRacks CubeSat Deployer, Interface Control Document NR-SRD-029, rev 0.35, Nanoracks, LLC, Houston, Texas, 2013.